Journal of
Applied Mechanics

Published Bimonthly by The American Society of Mechanical Engineers
VOLUME 69 « NUMBER 6 « NOVEMBER 2002

TECHNICAL PAPERS

717 Axisymmetric Instability of Fluid Saturated Pervious Cylinders
J. P. Bardet and S. lai

724 Motorcycle Steering Oscillations due to Road Profiling
D. J. N. Limebeer, R. S. Sharp, and S. Evangelou

740 On Mechanical Waves Along Aluminum Conductor Steel Reinforced
(ACSR) Power Lines
P. A. Martin and J. R. Berger

749 Hamiltonian Mechanics for Functionals Involving Second-Order
Derivatives

B. Tabarrok and C. M. Leech

755 Modeling of Plastic Strain-Induced Martensitic Transformation for
Cryogenic Applications
C. Garion and B. Skoczen

763 Analysis of Belt-Driven Mechanics Using a Creep-Rate-Dependent Friction
Law
M. J. Leamy and T. M. Wasfy

772 A Possible Limiting Case Behavior for Brittle Material Fracture
R. M. Christensen

775 Scattering From an Elliptic Crack by an Integral Equation Method: Normal
Loading
T. K. Saha and A. Roy

785 Large Deflection of Thin Plates in Pressure Sensor Applications
P. Tong and W. Huang

790 Thermomechanical Buckling of Laminated Composite Plates Using Mixed,
Higher-Order Analytical Formulation
J. B. Dafedar and Y. M. Desai

800 On the Singularity Induced by Boundary Conditions in a Third-Order
Thick Plate Theory
C. S. Huang

811 Transient Ultrasonic Waves in Multilayered Superconducting Plates
A. J. Niklasson and S. K. Datta

819 Wave Propagation in a Piezoelectric Coupled Solid Medium
Q. Wang

825 Transient Plane-Strain Response of Multilayered Elastic Cylinders to
Axisymmetric Impulse
X. C.Yinand Z. Q. Yue

836 Axial Loading of Bonded Rubber Blocks
J. M. Horton, G. E. Tupholme, and M. J. C. Gover

844 Stress Behavior at the Interface Junction of an Elastic Inclusion
Z. Q. Qian, A. R. Akisanya, and D. S. Thompson

BRIEF NOTES

853 Penetration Limit Velocity for Ogive-Nose Projectiles and Limestone
Targets
M. J. Forrestal and S. J. Hanchak

(Contents continued on inside back cover

This journal is printed on acid-free paper, which exceeds the ANSI Z39.48-
1992 specification for permanence of paper and library materials. @™
@ 85% recycied content, including 10% post-consumer fibers.




(Contents continued )

Journal of Applied Mechanics Volume 69, Number 6 NOVEMBER 2002

854 One, Two, and Three-Dimensional Universal Laws for Fragmentation due to Impact and Explosion
A. Carpinteri and N. Pugno

856 A Note on the Application of the Flamant Solution of Classical Elasticity to Circular Domains
A. J. Levy

859 A Closed Contour With No Warping: A Common Feature in all Confocally Elliptical Hollow Sections
T. Chen and Y. J. Kung

862 Are Lower-Order Gradient Theories of Plasticity Really Lower Order?
K. Yu. Volokh and J. W. Hutchinson

864 A Note on the Post-Flutter Dynamics of a Rotating Disk
A. Raman, M. H. Hansen, and C. D. Mote, Jr.

DISCUSSION

867 “Computationally Efficient Micromechanical Models for Woven Fabric Composite Elastic Moduli,”
by R. Tanov and A. Tabiei—Discussion by Z.-M. Huang

869 Annual Index

ANNOUNCEMENTS AND SPECIAL NOTES

874 Information for Authors
875 Preparing and Submitting a Manuscript for Journal Production and Publication
876 Preparation of Graphics for ASME Journal Production and Publication



Axisymmetric Instability of Fluid
s.p.Baret § Saturated Pervious Cylinders

Civil Engineering Department,
University of Southern California,

Los Angeles, CA 90089-2531 The emergence of two-phase instability is investigated analytically for the axisymmetric

] cylinders made of a pervious solid matrix with pores filled with an interstitial fluid.
S. lai General analytical solutions are derived for a broad range of constitutive models, and are
Geotechnical Earthquake Engineering illustrated for a few specific types of solids. For particular combinations of stresses and
Laboratory, material moduli, saturated hypoelastic and elastoplastic solids are found to undergo
Port and Harbour Research Institute, two-phase instability, whereas their dry solid matrices remain stable. Two-phase instabil-
Yokosuka 239-0826, Japan ity can emerge within stable single-phase solids due to the interaction between solid

matrix and fluid flow. The present analysis provides general analytical solutions useful for
investigating the instabilities of axisymmetric soil samples subjected to the undrained
triaxial tests of geomechanic§DOI: 10.1115/1.1505624

Introduction Definitions

Nonlinear pervious solids which have connected pores satu-problem Definition. As shown in Fig. 1, the cylinder is made
rated with an interstitial fluidi.e., two-phase materigiscan be- of a pervious solid matrix of heightt2 and radiusR, the pores of
come mechanically unstable as shown by Hitgfor saturated which are filled with an interstitial fluid. It is assumed tla} the
dilatant hardening rocks, and Vardoulak&3] for saturated con- fluid is free to permeate through the connected voids of the solid
tractant granular soils. The instabilities of two-phase materiaatrix, (2) the lateral side and end extremities of the cylinder are
have not been investigated as extensively as those of single-phiA¥gervious and frictionless, an@) the specimen remains cylin-
solids (e.g., Bardef4], Biot [5], Chau[6,7], Hill and Hutchinson drical when it is loaded axially in either compression or tension.

: : Hereafter, the solid-fluid mixture is referred to as a two-phase
(8], Vardoulakls[g],_and Vardo_ula_lkls and SuIe_EﬂO]). They have material. The geometry of Fig. 1 is intended to represent that of
been analyzed using the principle of effective stréSshrefler

. ) soil samples subjected to the undrained triaxial testing in soil me-
etal. [11]) and assuming constant-volume deformatidesy., chanics(e.g., Bardef18]). In these tests, cylindrical soil samples
Darve[12], Di Prisco and Nov413], Nova[14], and Lad€[15]). are saturated with water, compressed axially through lubricated
These approaches, which consider two-phase materials as sinfietionless platens, and confined laterally with pressure. Similar
phase materials, revealed the isochoric instabilities resulting fraggometries are also found in the testing of other porous solids
solid nonlinearities, but neglected the effects of fluid compresés.g., rocks and concrgteThe boundary conditions are carefully
ibility and fluid flow throughout pervious solids. Bardet and Shiwelected so that the fluid pressure, stress, and strain can be as-
[16] examined the two-phase instability of plane-strain rectang§Umed uniform and axisymmetric throughout the cylinder. At any
lar samples of pervious solids with voids filled with compressibldfiven loading state, the Cauchy stress components anywhere
incompressible fluids. Bardgt 7] showed that two-phase instabil—WIthIn the cylinder are

ity causes numerical difficulties for the finite element solutions of on=0yy and o,=0,y=0,=0 (1)
plane-strain boundary value problems involving water diffusion

within nonlinear solids. So far, two-phase instability has only bed¥€€ o, 04y, 01y, 01z, anday,, are the Cauchy stress com-

investigated for plane-strain problems, and not for axisymmetrP@nems in the polar coordlnatc_asa, andz of Fig. 1. .
. . . . . Possible departures from uniform states will be investigated by
conditions, which are very common in soil testin@.g.,

formulating a linear stabilityor incremental bifurcationproblem.

Bardet,[18]). . y _ Starting from a given uniform state of fluid pressure, stress, and

This paper analyzes the two-phase instability of axisymmetrigrain “we investigate the circumstances for which the rates of
cylinders made of a pervious solid with pores filled with an inteffjuid pressure, solid stresses, and solid strains may become non-
stitial fluid. It derives general analytical axisymmetric solutionsiniform within the cylinder. For a given rate of prescribed load-
for a large variety of constitutive models, examines the relatiomsg, the boundary conditions of the incremental bifurcation prob-
of one and two-phase instabilities, and considers the compressilim are as follows:
ity of _solld and_ fluuj cons_tltuents. The prt_asent analysis is I|m|te8IZ:O, t,=0 and p,=0 forz=+H and O<r=R
to axisymmetric bifurcation modes, which are commonly ob- ' (2a)
served on cylindrical samples during conventional laboratory ex-
periments. Symmetry-breaking instabilities and antisymmetric hi;=0, t,=0 and p,=0 forr=R and —Hszs<H
furcation modege.g., lateral buckling and localization of strain (2b)

within planar shear bangisre beyond the scope of this analySiSwherep is the time rate of fluid pressure changethe solid

velocity, andt the rate of applied distributed force at the boundary.
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF The partial differentiation with reSpeCt YO 0, a_mdz are denOt_ed
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIEDME- ~ With “, r” *, ¢”, and “, z” and the derivative with respect to time
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 21yith a dot. The incremental bifurcation pr0b|em will now be com-

1999; final revision, Sept. 14, 1999. Associate Editor: D. A. Siginer. Discussi : : : : ; o
on the paper should be addressed to the Editor, Prof. Robert M. McMeekiﬂgleted by |ntroducmg geometric and material nonlinearities, and

Department of Mechanical and Environmental Engineering University of Californiaé;qumbrium equations-

Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four - . .
months after final publication of the paper itself in the ASMBURNAL OF APPLIED Stress States and Rates. By definition, the distributed force

MECHANICS. vectort acting on the deformed surface, with ar@8 and unit
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A The generality of the present analysis is not affected by the choice
of the Jaumann rate of Kirchhoff stress. As shown in Bafdét
the analysis applies to other types of objective stress rates after

v,=0,t,=0,p,,=0

z
\>R/ adding stress-dependent moduli to the constitutive moduli in
Y Equation(7).
\ r Axisymmetric Conditions. In the case of axisymmetric ve-
v=0 5 > locity fields (i.e.,v4=0 andv, 4=v, ,=0), the nonzero terms of
{r;: 0 —»! deformation rate and spin tensors are
b’r= 0 H Ur
Drr:Ur,r! Dzz:vz,zr DQH:Tv
Drz:%(vr,z+vz,r): Wrz:_wzr:%(vr,z_vz,r)- (14)
Fig. 1 Geometry, coordinate systems, and boundary condi- Hereafter, we consider the following axisymmetric constitutive
tions of cylindrical porous solid for linear stability analysis equation:
}rr =Cy1D +C1D g+ C13Do, (152)
normal vectom, is related to the Cauchy stress tensoand the ~A
nominal (Piola-Kirchhoff) stress tensok through Too=C12Drr +C1iD gy C1dD 2, (130)
t=n-cdS=N-3dS, 3) 727=C31Dr + C31D g+ C3aD 5, (150)
whereN andd§, are the unit normal vector and area, respectively, Tiz=2C4D,, (15d)
of the reference surface. Nominal and Cauchy stresses are related - .
through y Wﬁerecll, Ci2, C43, Cs3, C3q, andC,, are constitutive moduli.

This general constitutive form, which was used by Ci&] will
S=de(F)F 1o (4) be later specified for some particular types of constitutive models.

whereF ! is the inverse transformation of the deformation gra- Equilibrium Equations. In axisymmetric conditions and cy-
dientF. By definition the Kirchhoff stress tenseris related too  lindrical coordinates, the stress-rate equilibrium equations for
through solid materials are¢Hill [20]):

r=dei(F)o (5) . ) 1 . .
+3, 1+ =S =) =
The rates ot and> are et 2z r (Zrr=260) =0
t=N-3dS, and S=de(F)F . (¢—L-o+otracdl)) . . 1.
(6) Szt 2t Fzrz: 0. (16)
whereL is the velocity gradient tensor. Using Eqg.(13), Eqg. (16) can be expressed in terms of Cauchy
Rate-Type Constitutive Models. In the present linear stabil- stress:
ity analysis, the behavior of the solid materials is modeled with

; R R 1.

rate-type equationéTruesdell and Nol[19]) T Gog)+ (o — )W, ,=0  (173)
7=C-D @)

where7 is the Jaumann rate of Kirchhoff stressD the rate of R A Ea'rz'i_(o'rr_o'zz)(wzr A+ szr) =0.

deformation, andC the fourth-order stiffness tensor. In genefal, ' r r

is homogeneous of degree zeroDnand depends on the states of (17p)

stress and strain. The Jaumann rate of Kirchhoff stress is Solid-Fluid Coupling. The solid-fluid coupling is described

T=7—W- 74+ 7 W. (8) using the following generalized effective stress princif@ehre-
. . fler et al.[11]):
The rate of deformatio and spin tensow are

D=3L+L") W=3L-L") ©)

where the superscript™ denotes transpose. The Jaumann rate
Cauchy stresg, which is defined similarly to Eq8), is related to

O'i’j:a'ij+ap5ij (18)

dghere gjj is the total Cauchy stress tensor{j the effective
auchy stress tensor, apdhe interstitial fluid pressure. By sign

7 through convention, boths;; and of; are positive in tension, ang is
R R positive in compression. The coefficieatis a positive constant
7=de{(F)(o+otracegD)). (10)  that depends on the bulk modullisof the solid skeleton and the
When the present configuration is chosen as reference, the def$tk modulusK, of the solid grains agSchrefler et al[11])
Tatlon gradient is approximately equal to the unity transformation a=1—KIKs. (19)
1 The physical parameter is mathematically convenient to model
F~F°~1 and detF)~1. (1) the solid-fluid coupling from completé.e., a=1) to none(i.e.,
In this condition, the nominal, Cauchy, and Kirchhoff stress ter=0). Hereafter, the superscript prime is omitted for effective
sors are identical: stress because all stresses for the solid phase are effective. By
substituting Eq(18) into Eq. (17), the axisymmetric equilibrium
S=o=7 (12)  equations for two-phase materials are

and their rates are related through

A~ SN O v+ 0 g+ — (0 — T gg) + (00 — = af
r=o+otracdD) and X=o+otracdD)—o-W—D-g. Tirrt Oara® (O = Top) ¥ (01 = 02) War,, = b

(13) (209)
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N - 1. 1 . 0 (for m, even
Urz,r+0'zzz+ro'rz+(‘7rr70'zz) Wzr,r+FWzr =ap;.

(200)

The fluid pressurg obeys the flow conservation equati@chre-
fler et al.[11])

0= (2&)

INTRE]

(for m, odd)

By substituting these modes into E®@5) and introducingf* so

that
1 p .
p,rr+rp,r+p,zz=:8 a Ur,r+rvr+vz,z +6 (21) f*:B::E_:;; (29)
where the parametes is related to the fluid unit weight,, and ) ) )
coefficient of permeabilitk through the following relations are obtained:
B= vk (22) Bidi+B5ds  B1Bdy —af v 0
The paramete® is the bulk modulus of the two-phase material, | Bi82ds  B3ds+ B5d, —ap; Vl _lo
which is related to the porosityand the fluid bulk moduluk; as £* 2( = :
follows (Schrefler et al[11]): apqf* aB,f* Ba+ Ba+ ) P 0
1 n a—n (30)
—_—= 4 — (23) S o
0 Ki K From the third line in Eq(30), f* is given by
After introducing the following coefficients —(B2+BHP
f*= . 31
d;=Cy—oy, d;=Cg3— 0y, (24a) P (31)

N N a(B1V1+BaVa) + )

d3=Cuy=5(0 =07, dy=Cyst Cizt 5(0 + 057

(240)  The coefficientf* is thus independent of time and space and,
hence, the solution of Eq29) is

(240) f(t)="f,exp(f*t/B) (32)

Egs.(20) and(21) become wheref, represents an initial amplitude of the nontrivial bifurcat-
1 1 ing solution. Wherf* >0, f(t) grows exponentially with time and
Up et TV T 20 +d3v, .+ g, =ap, (253) eventually becomes infinite. Hence, the bifurcating solution gen-
erates a material instability. Wheri <0, the bifurcating solution
1 ) dies out with time, and has little physical relevance. A set of
Urrzt er,z) =ap, nontrivial bifurcating solutions fo¥,, V,, andP exist when the
determinant of the matrix in E§30) becomes zero. After defining

ds=Cast 5(0 —03), dg=Cus+Ca—3(0r+05)

d;

+dyv,,,+de

1
ds Uzt sz,r

(250) the wavelength ratio of the bifurcating mode as
.1, : o p
p,rr+Fp,r+p,zz=,8 a Ur,r+er+vz,z +6 . (2% AI%, (33)
1
E g# Sa t'%qézi? clrtserllqgﬁgﬁnbdoinnt d%(r:ylzvglljueetgrg)t()llz)rlnmi? ?itrr}';l;ofg?r']ﬂhe condition for the existence of nontrivial bifurcating solutions
lated in terms of solid velocity, andv, and fluid pressurp after in Eq. (30) is
restating Eq(2) as follows: @?f*  N(A) 3
. ————s = —>0. 4
v,=0, v,,=0, v,,=0 and p,=0 for Bi+B; D(A) (34)
7=+H and O0<r<R (26a) The numerator and denominator of the left side of &B4) are
v,=0, v,,=0, v,,=0 and p,=0 forr=R and N(A)=a;A*+biA%+cy, D(A)=aA*+bA%+c, (35)
—H=z<H. (289)  \where
Trivial and Nontrivial Bifurcating Solutions.  Fields of con- a;=d,d;, by;=d;dy+dsds—d,dg, cy=d,ds (36a)
stant solid velocity gradient and fluid pressure are obvious solu-
tions of Egs.(25 and (26). The nontrivial bifurcating solutions a,=—dz—a;x, by,=—d;—d,+d,+dg—bqy,
are sought in the following modes:
V.3 o - C,=—ds—C1x (36h)
= rycog B,z+ t a
Uy 1J1(B1r) .5(,32 2 f() (279) X=l/a2®. (360)
v, =V2Jo( B1r)sin( B2+ 6,) (1) (270) Three types of instability and associated conditions can be
P=PJo(Bar)cos Boz+ ) (1) (27c)  defined:
whereJ, (x) is the Bessel function of the first kind amth order, solid-fluid (SF) instability for N(A)/D(A)>0 (37a)

and 0, denotes a phase shift. These modes satisfy the boundary R . . . .
conditions of Eg.(26) when B,, B», and 6, are selected as infinite. solid-fluid (SFe) instability

follows: for D(A)=0 and N(A)#0 (3M)

B1R=0, £3.832, *7.016, =*=10.173...(roots of Jl(gsoa)) solid (S) instability for N(A)=0 (37)

The SF instability is obtained when there are modes with wave-
_m . length ratiosA satisfying Eq.(37a). The SFe instability is a
PoH=Zm, for m integer (28) particularSF instability with f* — +9, which corresponds to an
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Fig. 2 Dimensionless p*-g* domains of S, SF, and SF« instabilities for hy-
poelastic material with incompressible fluid (x*=0, »=0.3)

infinite exponential growth, and a severe solid-fluid instabilitywhere . is the shear modulus andthe Lame’s modulus, which
The Sinstability is the material instability obtained for the solidare related to Poisson’s ratiothrough
alone without interstitial water. Th8 instability is obtained by

settinga=0 in Eq. (30), fully decoupling the solid and fluid, and = 2vp
ignoring the interstitial fluid SF instability can be physically in- T 1-2v°
terpreted as the result of a rapidly growing flow of interstitial fluid

through the pervious solid, which may create solid-fluid interadt is convenient to introduce the following nondimensional stress
tion forces and promote the emergence of nonuniform modes @fmponents and coefficients:

deformation. In theorySF instability could be detected by mea-
suring the spatial fluctuation of fluid pressure within the material
specimens tested in the laboratory.

(39)

Ont0z; . Op—0z

* _— — *
p P q 20 and x*=pux. (40)

L The hypoelastic model is useful for developing closed-form ana-
Applications lytical solutions for simple linear stability problems and compar-
The one and two-phase axisymmetric instabilities will be exaning numerical and analytical results.g., Bardef17]). However,
ined for three particular types of rate-type constitutive equationtfte hypoelastic model has only two material parameters, and
(1) hypoelastic modelq2) elastoplastic models, ar{8) Rudnicki therefore limited capabilities in modeling realistically all types of
pressure-sensitive models. material responses.
Figures 2 to 4 show the*-g* domains ofS SF, and SFx
stability for various cases of fluid and solid compressibility. By
definition, p* is positive in compression and negative in tension.
C11=C33=2u+\, Cy3=Cz;=N and Cu=u (38) Thesep*-g* domains are symmetric about tpé- axis, and are

Hypoelastic Model. The constitutive moduli of isotropic hy- in
poelastic models aréBardet[4])

5
@- 1 No Instability
5 SFeo/SF
o |
‘”’ All
* T SFe</SF/S Instability
(o
All'|
/ No Instability
O T T T T T T T T T
-5 / 0 5

SFe/SF
p*='(0rr+Gzz)/ 2“*

Fig. 3 Dimensionless p*-g* domains of S, SF, and SF« instabilities for hy-
poelastic material with compressible fluid (x*=0.5, »=0.3)
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No
| Instability

SFe/SF/S Instability

M No Instability
f T

0 5

(Grr'Gzz)/ 2”

q'=

SFeo/SF
Instability
p*='(6rr+622)/ 2]-1

Fig. 4 Dimensionless p*-g* domains of S, SF, and SF instabilities for hy-
poelastic material with compressible fluid (x*=0.5, v=0.43)

only represented for positive valuesgf. As shown in Fig. 2 for 0 —2(1-sin¢) d
incompressible fluidi.e., x* =0), zero stress states are initially 337 —— - an

stable. Forg* =1 andp* >0, all types of instability emerge si- V2(3-2sin¢+3 it ¢)

multaneously. Fop* <—2, SF and SF« instabilities appear in 1+sing

areaA without Sinstability. As shown in Fig. 3, the size of area A Q= (42b)
shrinks with the compressibility of the interstitial fluid.e., V2(3—2 sing+3 sirf ¢)

*=0.5. SF and S instabilities may occur simultaneously when . - .
i)(* decSr)eases below 3. As shown |¥1 Fig. 4, the size of ar)éa A al\évgrlgreéhbe mobilized friction angle and the dilatancy anglé are
shrinks as the solid becomes more incompressibde, »=0.43), fined by
and vanishes for incompressible matefia¢., »=0.5). In the in- )
compressible limit,S SF, and SF= instabilities may emerge sing=

simultaneously.

Oz7— Orr
— and

Ozt Oy

Elastoplastic Mohr-Coulomb Model. The constitutive ’(d8§z+2depr)__('333+2p11)

moduli of elastoplasticity aréHill [21] and Barde{4]) sing= deP—deP Pg—Py (43)
1 Figure 5 shows an example of instability domain in the H/ u

Cu=2u+N= 57[2uP1+ N (Psgt2P1y)] plane forv=0.3, y=—30 deg andy* =0. The variations of elas-

toplastic moduli for fixed values af, , andx* are characterized

X[2uQ11+N(Q33+2Q19)], solely by the values of andH/u, which are represented using

the point M of coordinategh—H/u in Fig. 5. When the stress
states are initially isotropic at the beginning of a shear loading, the
point M is initially in the upper left corner, which corresponds to
an elastic stateH{>1) and no shear stresg=0). As the shear
X[2u1Qa3+ N (Qa3+2Q11)], stress increases, point M moves down from the upper left corner
1 and intersects the SF/S boundary,Sif/SF boundary. If$<8
N deg, point M intersects first th&F/Sboundary for strain-softening
Cus=A = 7 [2P1t MPast 2P1) 124Qsst MQsst 2Quu) ] ¢ Bhiione H<0). In this caseSF and Sinstabilities will occur
1 simultaneously. If¢p>8 deg, point M will intersect th&Fe/SF
_ boundary for either strain-softening, strain-hardenikig=0), or
Car= A= 7 [21P3gt M(Paat2P1) [21Qua+ M(Qagt 2Quy) ], perfectly plastic H=0) conditions. This implies th&Fe and/or
SF instabilities may emerge witho@&instabilities for contractant
Cu=pn elastoplastic materials. In other wordsk> and/orSF instabili-
ties are not necessarily generateddipstabilities.

1
Csz=2u+N— W[ZMPSQ,"‘ N(P3gt+2Pyy)]

H'=H+N(P33+2P11) (P3a+2P11) +2u(2P11Q11+ P33Q33) o i L o o
(41) Rudnicki Model. In the investigation of material instability,

. . . . Rudnicki [22] proposed the following rate-independent constitu-
whereH is the plastic modulus; anB; andQ;; are unit tensors e model for axisymmetric conditions, which generalizes most

representing the flow and yield directions, respectively. For @nstitutive models used in linear stability analyses
Mohr-Coulomb material and axisymmetric conditions, the unit

tensorsP;; and Q;; are related to the mobilized friction angée C11=9K/4+ G, C13=9Kv/2, C3z5=9Kr*/4,
and the dilatancy anglé¢ as follows:
C33=E/2+9Kwr*/2, Cu=G, (44)
p33:ﬂ nd Pnzﬂ 42a) whereK, E, v, r*, G,, andG, are material moduli, the physical
V3(2+sir? ) V3(2+sir? i) meanings of which are defined in Rudnidi@2] and Chau[7].
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Fig. 5 Domain of S, SF, and SF« instabilities for elastoplastic contractant Mohr-
Coulomb material and incompressible fluid (v=0.3, y=—30 deg and x*=0)

5 3
. SFe/SF
Instability
= 3 All: SFe/SF/S Instability
N\
tp: 0 SFeo/SF No Instability
o All
F’/ _
o All
] SF/SF
_ Instability
'5 T T T T T Y= T T T
-5 0 5

p*=' (Grr"'czz)/ 2“

Fig. 6 Dimensionless p*-g* domains of S, SF, and SF« instabilities for Rudnic-
ki's model for incompressible fluid (X*=0, G,/2G;=0.5, KI2G;=1, »=0.3, and r*
=0.6)

Figure 6 shows the domains of instability of Ruckniki’s model ircumstances, e.g., when Eq4.8) and (21) do not hold due to
the p* —g* coordinates used for the hypoelastic model of Figsapillary effects and bubble formation in the interstitial fluid
2—4 for particular values of material paramete@/2G;=0.5; (Schrefler et al[11]).
K/2G,=1; v=0.3;r*=0.6; and incompressible interstitial fluid The analysis needs to be extended to nonaxisymmetric defor-
x*=0. For this particular selection of model parameters, the dgiations(e.g., strain localization which have been shown in the
mains ofS, SF, andSFx instabilities are similar to those of Fig. case of dry so!ids to become the predominant modes of instability
2, except for the asymmetry about the-axis. As for hypoelastic When the axisymmetry constraints are removg., Chau
models,SF andS e instabilities are not generated Byinstabil-  [7,23)). The general framework and solutions also need to be ap-
ity in area A. plied to constitutive models specific to geomechanics and investi-
gated in the context of undrained triaxial testing. There is also a
need to investigate the effects of two-phase instability on the nu-

. ) merical solutions of liquefaction problems in geomechanics, fol-
Discussion lowing the approach of Bard¢l7] for hypoelastic materials.

A general mathematical framework and analytical solutions
have been derived for studying the two-phase instability of axjx .
symmetric cylinders made of a wide variety of pervious solid onclusions
filled with a compressible/incompressible fluid. The present analy- The emergence of two-phase instability was investigated ana-
sis is based on the assumptions stated in Big8, (18), and(21). lytically in the case of pervious solid cylinders with voids filled
The analysis holds provided that these mechanical assumptiovith an interstitial fluid. The analysis develops a mathematical
represent the material physics, but may break down in some diramework and analytical solutions that apply to a broad range of
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material models, and illustrates their application for specific types[9] Vardoulakis, I., 1981, “Bifurcation Analysis of the Plane Rectilinear Deforma-
of solids including hypoelastic and elastoplastic models. For pays . 10" on Dry Sand Samples,” Int. J. Solids StrudZ(11), pp. 1085-1101.

! . . . EH)] Vardoulakis, 1., and Sulem, J., 199Bjfurcation Analysis in Geomechanijcs
ticular values of stress states and material moduli, hypoelastic and" jackie Academic & Professional, Glasgow, UK, p. 459.

elastoplastic models were found to undergo two-phase instability11] Schrefler, B. A., Simoni, L., Xikui, L., and Zienkiewicz, O. C., 1990, “Me-
and no solid instability. Two-phase instability can emerge in stable chanics of Partially Saturated Porous Medialtimerical Methods and Con-

; I ; ; ; stitutive Modeling in Geomechanid8. S. Desai and G. Gioda, eds., Springer-
solids due to the interaction between fluid flow and porous solid Verlag, New York, pp. 169-209.

matrix. The general results of the present analysis are relevant t) parve, ., 1994, “Stability and Uniqueness in Geomaterials Constitutive Mod-
geomechanics for studying instabilities in undrained triaxial tests.  eling,” Localization and Bifurcation Theory for Soils and RacRs Chambon,
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lands, pp. 73—88.
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Motorcycle Steering Oscillations
due to Road Profiling

Department of Electrcal and A stud_y of the effects (_)f regula_r road undulations on the dyna_mics of a cornering motor-
Flectronic Engingering cycle is presented. This work is based on an enhanced version of the motorcycle model
imperial College of Sciencé descrlped in “A Motorcycle.ModeI for Stability and Control Analysis” (R. S. Sharp and D.
Technology and Medicine J. N. Limebeer, 2001, Multibody Syst. Dyn., \Vol. 6, No. 2, pp.—122_). We make use of _
Exhibition Roady root-locus and fregugncy response plots that were derived from a linearized version of thls
London SW7 28T UK’ mo_del; the linearization is for small per@urbatlons frpm a general steady-cornerlng equi-
' librium state. The root-locus plots provide information about the damping and resonant
R.S Sharp frequencies of the key motorcycle modes at d@fferent machin_e spe_eds, while the frequency
e response plots are used to study the propagation of road forcing signals to the motorcycle
steering system. Our results are based on the assumption that there is road forcing asso-
ciated with both wheels and that there is a time delay between the front and rear wheel
forcing signals—this is sometimes referred to as wheelbase filtering. As has been ex-
plained before, control systems are used in the nonlinear simulation code to establish and
maintain the machine’s speed and roll angle at preset values (for flat road running). These
controllers are used to find the machine’s equilibrium state and not to emulate a rider’s
control actions. The results show that at various critical cornering conditions, regular
road undulations of a particular wavelength can cause severe steering oscillations. At low
speeds the machine is susceptible to road forcing signals that excite the lightly damped
wobble and front suspension pitch modes. At higher speeds it is the weave and front wheel
hop modes that become vulnerable to road forcing. We believe that the results and theory
presented here explain many of the stability related road accidents that have been re-
ported in the popular literature and are therefore of practical import. The models used in
this research make use of the multibody modelling package AUTOSIM (Autosim 2.5
Reference Manual, 1998, Mechanical Simulation Corporation) and are available at the
web site http://www.ee.ic.ac.uk/control/motorcycles/. The motorcycle and tire parameters
can be found at the end of the codeDOI: 10.1115/1.1507768

D. J. N. Limebeer

School of Engineering,
Cranfield University,
Whittle Building,
Bedford MD43 0AL, UK

S. Evangelou
Department of Electrical and
Electronic Engineering,
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1 Introduction independent observers. Secondly, there appears to be a tendency

. . . on the part of the investigating authorities and manufacturers to
It has been known for a long time that single-track vehicles can - 2. i
be unstable. Prior research has examined this issue in the Conperematurely attribute them to “rider error.” Thirdly, ihese events

1 C : )
of small perturbations from straight runnirifl—3)), and small on)fy occur under an unusual combination of circumstances in-

perturbations from steady-state cornerifg—6]). Oscillatory in- volving the motorcycle type and setup, the speed, the lean angle,

stabilities are clearly problematic and lightly damped resonanct(g'se.rlders stature, an_d the road profile. This is consistent W'th. the
ngtlon that the machine development process sometimes fails to

are commonplace. It is clear that there is a possibility that thes Veal these behavioral problems. Finally, we will show that the

; ; T
lightly damped modes could be excited by regular road surfac%Glerlying mechanisms are inherently complex.

undulations. As we will now explain, there is a persuasive body ) : . e
nontechnical evidence that suggests that these forced oscillatiﬂn'é‘ number of reports that describe these handling difficulties
ave appeared in the popular motorcycle press over the last ten

2;322 illusive source of danger for the riders of powerful mow{/'ears. Although these reports are based predominantly on anec-

In the established wisdori7]) low-frequency weave oscilla- dotal evidence, there is a compelling level of consistency between

them. One example of a loss-of-control event occurred during

tions are associated with high-speed operation, while high olice motorcycle training and the circumstances of this incident

frequency wobble, or wheel shimmy resonances, are associ 89 summarized in the following extract frdig] * . . . there is a

with lower speeds. There is some anecdotal evidence to sug Acific section of road which can cause severe handling difficul-
that wobble frequency steering oscillations can also occur at mug for motorcycles being ridden at high sgee . this section of
&

higher machine speeds. Collectively, these phenomena are the d has a series of small undulations in it at the beginning of a

ge sweeping right hand ben. . " .

Another well-publicized event occurred at a relatively low

peed under apparently benign circumstaric@s: “ . . . we were
proaching a village at no more than 65/70 mph, on a smooth
ad, on a constant or trailing throttle when, for no apparent rea-

sis of a notable class of accidents that involve no other road usq‘rﬁ,
Although this type of accident has been known for a long time, i
has proved remarkably difficult to obtain a complete understan,
ing of the mechanics involved. There appear to be at least fo
reasons for this: First, single-track vehicle out-of-control accide

are usually poorly documented and are often not witnessed (¥n, the bike went wildly out of contro. . . This incident and
—_ some of the associated background are describ¢tilinl3.
To whom correspondence should be addressed. A high-profile fatal accident occurred, when according to an

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF A . . . . . M
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIEDME-  €Y€ Witness, the machine being ridden went into a violent “tank
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octobeslapper”? at about 60 mph as the rider was going around a gentle
21, 2001, final revision, March 6, 2002. Associate Editor: O. O'Reilly. Discussion ogorner ([14]). The offending machine model was subsequently

the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depart; f ; ;
ment of Mechanical and Environmental Engineering, University of CaIifornia—Sana[;éca”ed in the U.S([lS]) as well as in the U'K([l6])' In their

Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after
final publication of the paper itself in the ASME)URNAL OF APPLIED MECHAN- 2This expression is used to describe an oscillation that causes the handle bars to
ICS. swing from lock to lock.
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recall statement, the manufacturers said. : the front wheel ing state-of-the-art mod€]4]) is extended to include road profile
may oscillate, causing the handlebars to move rapidly from sideitwluced effects. The full nonlinear model is linearized for small
side when accelerating from a corner and@eceleratingover a perturbations about an equilibrium cornering state that is found
rough road surface, commonly known as tank slagpin.”. from a simulation of the motorcycle-rider system on a smooth
There was further speculation as to the possible causes of thed. The linear, small perturbation, uncontrolled model is then
difficulty and various tests were performed on the machine thatibjected to sinusoidal road displacement forcing and the fre-
involved changing tires, fitting a steering damper and changigency responses are computed. The responses to forcing from
the rear damper uni{17]). Tire changes did not make a signifi-both the front and rear wheels are considered. When studying the
cant difference, but a new rear damper unit and a steering dampefbined effects of front and rear wheel road forcing, a wheel-
made a large improvement. One article claimed that riders wiR@se travel time delay is introduced into the model that ensures

weigh over 95 kg(210 Ibg had not experienced the instabilitythat the two road wheel inputs are correctly phased. Section 2

phenomend[18]). contains a brief description of the mathematical model and the
Resonance related difficulties are still being reported in tHe@rticular motorcycle being studie@ection 2.1, the modeling
popular press in the context of modern motorcyd[d9)]). extensions required for road forcing studi€ection 2.2, a brief

A remarkable video tape of a weave-type instability was takefescription of the various checks that were used to qualify the
during the 1999 Formula One Isle of Man TT ra¢e0]). Paul Computer mode(Section 2.3 and the role of the rider and the
Orritt can be seen exiting the gentle left-hand bend at the top Bjéarization procesgSection 2.4. The results are presented and
Bray Hill on a Honda Fireblade at approximately 150 mph WhekE'?CUSSGd in Section 3. Sgctlon 4 contains the conclusions and a
for no apparent reason his machine went into an uncontrollati}é&f commentary on the directions of future work.

2-3 Hz oscillation. His motorcycle subsequently ran wide and
crashed. “It just wouldn’t come out of the tank slapper,” he re2 The Mathematical Model
called. “I was no longer in contta . . thetrouble began imme-

diately afte1r7 | ran over a couple of bump_s in the freshly I‘i‘id roaﬁl' Section 3 off4] and the account given here will only describe
surfae . .. " ([21]). Needless to say, the financial and social Cos{fe eytensions needed for this study. Figure 1 shows the machine

associated with a serious motorcycle accident can be high. Thejis hominal configuration in static equilibrium with the key

Metropolitan police estimate that the cost of a fatal accident "rlﬁodeling points labeled as, -+ ,py4. The symbolic multibody
volving one of their officers is approximately £1.2 1.7 M y54eling package AUTOSIN26] was used to convert this con-
([22)). Thls_ reason alone is sufficient that the matter should kf’:"eptual model into a FORTRAN code that is used to produce the
treated as important and urgent. . . nonlinear simulation results, and a MATLAB M-file for the lin-
The free-steering system and the associated self-steering actign,;edq model based studies.
is fundamental to the stability and dynamic response properties ofrye model contains the following components: a main frame
all motorcycles and it produces_ several lightly damped oscillatofyiiny six degrees-of-freedom, a swinging arm and its associated
modes: wobble, weave, cornering weave, patter, shake, and sq @4y suspension system, a body with a roll freedom relative to the
([4,5,23). For the purposes of the present study, it is conveniep{ain frame that is used to represent the upper body of the rider, a
to distinguish straight-running motorcycle behavior from the morgont frame with twist and steer freedoms, telescopic front forks,
complex cornering case. When a motorcycle is upright and rugpinning road wheels, and dynamic tires. The road is assumed to

ning in a substantially straight line, the in-plane motions such &g fat, or regularly profiled, and the motorcycle can travel any-
bounce, pitch, and wheel hop are decoupled at first-order leyghere in the horizontal plane.

from the out-of-plane motions such as the sideslip, yaw, and roll.

When the machine is leaned over in cornering, the in-plane and2.1 The Machine. The machine and machine parameters
out-of-plane motions are coupled and this cross-coupling i€ based on a large touring machine of an early 1980's design
creases with increased roll angle. As a consequence of this feat(lre]); some of its basic parameters are given in Table 1. The in-
mathematical models for the straight-running case are signiferested reader can obtain a complete set of parameters from the
cantly simpler to derive than their cornering counterparts. Nowebsite http://www.ee.ic.ac.uk/control/motorcycles/.

withstanding Koenen's excellent work5]), it seems fair to say

that the effective analysis of motorcycle cornering behavior re-

quires an automated multibody modeling software packpge. yT_‘x Steer axis ,

The motorcycle model used in this study is based on that given

It is clear from the motorcycle dynamics literature that the stuc rider 2 /Twistaxis X

of motorcycle cornering effectively stagnated for almost 20 yea pmga‘;‘ﬁ‘; \

and that computer assisted multibody modeling tools were neec z

to break this impasse. Such software has recently been appliec pl3 %19

motorcycle dynamics studie3,4,23—2%), facilitating consider- aero

able extensions to previous knowledge. L
When a motorcycle is leaned over in cornering, the couplir

terms that cause the in-plane and out-of-plane motions to inter: @

provide a signal transmission path between road undulations & p7

lateral motions. This mechanism provides the means where

steering oscillations can be produced by road profiling. We belie

that the theory and results presented here provide an explana 0

for most of the behavioral observations described above. In every o ) ] )

case it will be assumed that the machine is operating in the neigh- Fig- 1 Motorcycle model in its nominal configuration

borhood of an equilibrium cornering condition and we will con-

main

pl4

centrate on the excitation of steering oscillations. Table 1 Machine parameters

The paper is concerned with quantifying the machine response
to regular road undulations through theoretical analysis. More par- Total mass 235 k@518 Ibg
ticularly, the strength of the steering response and the associated '\S"tiﬁﬁlumhggg'gﬁ power 6350k&’éB7 bhp
design_ parameter sen.sitivity problem‘are studied. The machine Steering offset 9 o.oesggm
condition of interest involves cornering and consequently an  Mechanical trail 0.0924 m

elaborate mathematical model of the system is needed. The exist
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dot(pos(fw0,yaw_fr0),[yaw.frz})

yaw_fr0

ground plane
[vaw.frz]

Fig. 2 Wheel and tire geometry, showing the migration of the ground contact point

2.2 Road Forcing. In order to introduce road forcing into In the nominal condition, this distance is the wheel radius, so the
the model, it is necessary to examine the road wheel ground coine radial deflection from the nominal can be found via a tire
tact geometry in some detail. We will assume that the road undieflection calculation and this deflection is converted into a force
lation amplitudes are small compared to the wheel radii and thettange via the tire carcass radial stiffness. Combining this with
their wavelengths are long. the unit vector defined above, one obtains a vector with the correct

The road wheel ground contact geometry is shown in detail magnitude and direction that points from the wheel spindle axis to
Fig. 2. the ground contact point:

A vector along the line of intersection between the ground and
wheel planes can be calculated via a cross product between vec- Cross(cross([fwy],[yaw —frz]),[fwyl) *
tors that are normal to these planes. Since the wheel spindle
unit vector [fwy] is perpendicular to the wheel plane, (dot(pos(yaw  _fr0,fw0),[yaw ~frz))-uf)/
and [yaw _frz] is a unit vector that is normal to the ground 1-d

-dot aw frz *x 2)
plane, we can useross([fwy],[yaw _frz]) to generate the ( ([wyl. Ly —frz]) )
plane-intersection vector. The Appendix contains a brief descriphe contact point can now be defined via the coordinates of this
tion of the AUTOSIM instructions used here. T_he vector pointingector as a moving point on the tire circumference. This point is
from the wheel center to the ground contact point must be perpersed to calculate the sideslip angle and it is the point of applica-

dicular to both the wheel spindle vector and the plane intersectiggn of the load and the sideforce. A parallel set of arguments
vector. This vector is computed using the vector triple produglpply to the rear road wheel.

cross(cross([fwy],[yaw _frz]),[fwy]) . To ensure o o
that the triple product is a unit vector, we divide it by the sine of 2-3 Model Validation. ~The model validation processes used
the angle betweefyaw _frz] and[fwy] as follows: here are an evolution of those described elsewltE3gd]). To
maximize their effectiveness, they were designed to be substan-
cross(cross([fwy],[yaw _frz]),[fwy])/ tially independent of the motorcycle model itself. Since we will
only describe the updates to the checks described in our earlier
sqrt(1-dot([fwy],[yaw _frz]) =2). work ([3,4]), we suggest that the interested reader consults these
) ) papers as well as the modeling code that is located at the web site
Note that[fwy] is always perpendicular toross([fwy], http://ww.ee.ic.ac.uk/control/motorcycles.

[yaw _frz]) ~ and consequently there is no need for a secondthe ynderlying principles behind the checks are that under
normalization term. The vertical component of the vector joiningqilibrium conditions:(i) the external forces acting on the mo-
the origin of the yaw frame axis systepaw_fw0 to the front 5rcycle rider system must match the sum of the inertial and gravi-
wheel centerfwO is the height from the ground of the wheeliinng) forces(ii) the external moments acting on the motorcycle
center in the case of a smooth road and is computed as followgger system must sum to zero afiil) the power supply and

dot(pos(fwO,yaw  _fr0),[yaw  _frz]) dissipation must be equal.

The Force Balance. The force balance check ensures that un-
rbet—:‘r equilibrium cornering conditions the sum of the external
Afrees is equal to the sum of the inertial and gravitational forces.

To check the balance, the force error

Ferrorzzi Fiext+ 2 m;

]
was computed. The first sum contains the external forces, while

front wheel center is adjusted via a front wheel road height v.
ableuf :

dot(pos(yaw _fr0,fw0),[yaw _frz])-uf
(VX w+Q)

Dividing the height by the camber angle gives the distance from
the wheel center to the ground contact point:

dot(pos(yaw _fr0,fw0),[yaw _frz])-ufy/ the second sum contains the centripetal and gravitational forces.
The F®™®s include:(i) the aerodynamic lift and drag force#) the
sqrt(1-dot([fwy],[yaw _frz]) *x2). front and rear wheel normal loadsiji) the tire side forces,
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Fig. 3 Straight running root-locus with speed the varied parameter. The speed is
increased from 5 m /s (11 mph) (O) to 60 m/s (135 mph) ().

and (iv) the longitudinal driving and braking forces that act on théo the tread base material ands the corresponding velocifyThe
wheels at the ground contact points. In the second termpitse  longitudinal component of this velocity is the machine velocity
are the machine’s constituent masses, the velocity of the mass multiplied by the tire’s longitudinal slip, while the lateral compo-
center of the main bodyy is the main body yaw rate vector, andnent is the machine velocity multiplied by the tangent of the tire
g is the gravitational acceleration vector. In our experience, os@eslip angle. The remaining dissipation effects are associated
should achievegF,| <4N, although many of the constituentwith the tires’ aligning moments. These dissipation effects can be
forces have magnitudes of several thousands of Newtons. computed using expressions of the foih @ in which theM’s
. . are the aligning moments and the's are the wheel's angular

The Moment Balance.In much the same way, it is possible o, o14city vectors. Our experience has been that the power check-
check that under equilibrium cornering conditions a moment errg(, . arror should be no more than 1 W.
vector is zero. We compute

_ 2.4 Linearized Models and Frequency Response Calcula-
Me”of_zi lixmi(vx "’+g)+2 Ijx FiJrzk M. tions. The preparation of linearized models involves a two-step
procedure. In the first, AUTOSIM is used to compute, symboli-
The reference point for all the moment calculations is the reagally, the linearized equations of motion. In the second, the non-
wheel ground contact point. THes are moment arm vectors thatjinear simulation code is used to find the equilibrium state asso-
point from the reference point to the appropriate mass centers ajfigked with the steady-state cornering condition being studied. In
m;(vX w+g) are the corresponding inertial and gravitationaprder to expedite the convergence of the simulation to the required
forces. The index ranges over each of the constituent massegendition, the drive and steering torques are controlled by feed-
The second term contains all the external force-induced momeptsck loops. The drive torque is controlled so that the machine
including: (i) the aerodynamic lift and drag force@i) the front  maintains a preset speed, while the steering torque is adjusted to
wheel normal load(iii) the front wheel lateral tire forces and themaintain a desired roll angle. In a sense, the feedback control is
(iv) the front tire longitudinal force. Thig's are moment arms that simply part of an algorithm that is used to solve the motorcycle’s
point from the reference point to the points of application of thequilibrium equations of motion. We have not attempted to repli-
various forces. The third term contains the gyroscopic momenigte any active rider control actions for the following reasons:
due to the rates of change of angular momentum of the spinning o ) ) )
road wheels under cornering, and the tyre moments. In our expel Individual riders have their own styles and attempting to
rience, one should achieyM /<5 Nm, although some of the quantify the “typical rider” using computer code is little more

constituent moments have magnitudes of several thousand Néan potentially misleading speculation.
ton meters. 2 Our focus here is on phenomena of 2—4(iWeave and 6—-8

) ) ) ] Hz (wobblg. The evidence suggests that most riders would find it

The Power Audit. This check is based on a “conservation ofgifficult to react consistently to an unfamiliar weave-frequency
power” audit. The power source is the engine and the most infype phenomenon and rider control intervention could make mat-
portant dissipators are the aerodynamic forces. Not surprisinglyte?s worse. Wobble frequency effects are effectively outside the
reliable checking process necessitates the inclusion of other gfter’s bandwidth and so in this case studying the uncontrolled

fects to do with the tire forces and moments, some of which aggachine is felt appropriate. The steering damping used here, with
subtle. The tires dissipate power via the longitudinal and lateral

slip forces and this power dissipation is, in each case, computetthe required velocity is that of a material point of the tire that is currently the
via a dot product of the forrf- v in which F is the force applied nominal contact point. This material point changes continuously as the wheel rotates.
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Fig. 4 Root-locus for a fixed roll angle of 30 deg. The speed is increased from 6 m Is

(O) to 60 m/s (k).

a nominal value of 7.4 Nnwad/9, is predominantly due to the 3 Results
rider’s grip on the handlebars—this represents passive rather than
active control. 3.1 Introductory Comments. Straight running root-loci of

3 Our aim is to characterize the properties of the machine {Re type presented in Fig. 3 are well known in the motorcycle
isolation, because a well-designed vehicle should behave saféigrature; see, for examplg},2,28,29.
even in the hands of riders who have limited skill and experience. This plot shows that the wobble mdtis lightly damped at 13

) m/s (29 mph and that the associated resonant frequency is ap-

We will present a number of Boddrequency respon$elots proximately 48 rad/¢7.6 Hz. This diagram also shows that the
that were calculated using Ilnearlz_ed models computed by AUTQeave mod@becomes lightly damped at high speeds and that the
SIM. In our case, we used two inputs and u, that represent yesonant frequency of this mode is approximately 22 ré8/s
changes in the road height at the front and rear wheels’ groupg) at a machine speed of 40 m{80 mph. It should also be
contact points, respectively. The steering anglevas the only poted that the front wheel hop mofighe rear suspension bounce
output. Let us now suppose that the s@ate—space mode_l, gener%h) mode’ and the front suspension boun@atch) modé are
by AUTOSIM, that corresponds to a given cornering trim condig|atively insensitive to variations in the machine speed. This ob-
tion is servation reinforces the notion that the in-plane and out-of-plane

%= Ax+ BU dynamics are decoupled from each other under straight running

conditions. We should also observe that in-plane disturbances

5=Cx such as sinusoidal road undulations will not couple at first-order

level into out-of-plane freedoms such as the roll and steering
angles.

Let us now contrast Figs. 3 and 4 with the help of Figs. 5 and 6.
Figure 4 shows the behavior of the important machine modes
) _under cornering at different speeds at a fixed roll angle—in this
The transfer functions that relate the front and rear road distsse 30 deg. Figures 5 and 6 show the effect of varying the ma-

in which

bance input to the steering angle are given by chine roll angle at two constant speed values 13 (8% mph
- and 40 m/s(90 mph. When one compares these plots, it can be
[gr 9, ]1=C(sI-A)"'B e s ph p plots, i

in which s is the usual Laplace transform complex variable. One
can study separately the influences of the front and rear roadZThis is sometimes called the wheel shimmy mode and is associated with a front
wheel disturbances usingy(s) andg,(s) independently. In the Wheel castoring type oscillation.

. . - SThis is associated with a 2—4 Hz fish tailing motion involving the simultaneous
case of studies of the combined influence of both wheels, thfiing and yawing of the whole machine. 9 9

transfer function 5This mode is associated with an oscillation that involves the compression and
expansion of the fork legs and the tire carcass.
g(s)= gf(s)+e’5'gr(s) "This mode is associated with an oscillatory motion of the swinging arm. This
movement results in the pitching, and to a lesser extent, the heaving of the machine’s
is used, in whichr is the wheelbase filtering time delay given bymain body. ) o ) )
; : ; 8This mode is dominated by a pitching motion that hinges around the rear wheel
wy/v. The constantv, is the machine wheelbase andits for- ) - : . .
. ._ground contact point and involves the oscillatory compression and expansion of the
ward speed. All our computations and plot outputs were obtainggk jeg assemblies. When this mode is excited there is also a discernible heaving of
using MATLAB ([27]) M-files. the machine’s main body.
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Fig. 5 Root-locus for a fixed speed of 13 m /s (29 mph). The roll angle in increased
from 0, (J) to 30 deg ().

1. cornering increases the damping of the wobble mode, while3. cornering tends to reduce the damping of the weave mode
the speed for minimum damping remains at approximately — and in our case this mode becomes unstable at high speed:;
13 m/s(29 mph. The associated resonant frequency of this  the weave mode is lightly damped at 40 rt@® mph.

mode is essentially unaffected. . - .
2. cornering reduces the damping of the front wheel hop mode - cormerning has a (_jestabnlzmg effe_ct on th? front suspension
pitch mode and it becomes particularly lightly damped at

and it is least damped at approximately 40 88 mph
with an associated resonant frequency of approximately 63 13 m/s and 30 deg of roll angle. The resonant frequency of

rad/s(10 H2). This figure is lower than the straight running  this mode is approximately 8 rad(4.27 H2 under these

figure of 73 rad/911.6 H2. conditions.
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Fig. 6 Root-locus for a fixed speed of 40 m /s (90 mph). The roll angle in increased
from 0, (O) to 30 deg ().
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Fig. 7 Frequency response for g¢«(s) (solid ), and e~%7g,(s) (dashed) (0 dB=1 deg/

m). The steady-state conditions are a 30 deg roll angle and a forward speed of 13
m/s (29 mph).
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Fig. 8 Frequency response for gqs) (solid ), and e~*7g,(s) (dashed) (0 dB=1 deg/
m). The steady-state conditions are a 30 deg roll angle and a forward speed of 40
m/s (90 mph).

Since road forcing signals will couple into out-of-plane free- 3. Since the coupling between road disturbances and the out-
doms under cornering, these observations lead to the following of-plane dynamics increases with roll angle, we expect to
hypotheses: find an increase in the vulnerability of the front wheel hop

1. The wobble and front suspension pitch modes are exposed to Mode, the weave mode, and the front suspension pitch mode
resonant forcing due to road profiling at speeds of the order ~ With roll angle. All three modal dampings decrease with in-

13 m/s(29 mph, and creased roll angle.
2. the weave and front wheel hop modes are similarly vulner- 4. We expect the vulnerability of the wobble mode to reach a
able at high speeds. peak at some worst-case value of roll angle. We suggest this
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Fig. 9 Bode magnitude plot of g(s) (0 dB=1 deg/m). Nominal state: 13 m /s (29
mph), 30 deg roll angle. The solid curve represents the nominal case, the dashed

one shows the effect of an increase of 20% in the steering damper setting, while the
dot-dash curve shows the effect of a 20% reduction in the steering damping.

because the interplane coupling increases with roll angt®, 42 m/s(85 mph to 95 mphonly changes the phase lag, at the
while the damping of the wobble mode increases with rolveave mode frequency of 18 rad/2.86 H2, by about 4 deg.

angle. Quantitatively, therefore, the reinforcement/cancellation issue is a
. . . . . ._small one.
It is the business of the remainder of this paper to |nvest|ga?e alrone
these conjectures. 3.3 Low-Speed Forced Oscillations. The root-loci pre-

- _ . sented in Fig. 5 suggest that road forcing effects may cause the
3.2 Individual Wheel Contributions.  Figure 7 shows Bode wobble and front suspension pitch modes to resonate at low

plots ofgy(s) ande *"g,(s) at the relatively low speed of 13 m/S gpeeqs in response to regular road profiling. We begin our inves-
(29 mph, a roll angle of 30 deg and with nominal parametefioation of this possibility by referring to Fig. 9 that shows a

values. It is clear from these plots that the resonant peaks for b quency response plot that relates road forcing inputs to the

the wobble and front suspension pitch modes are front-wheglshicie's steer angle. The road profile input is in meters, while the
input dominated. The difference between the front and rear wh tput is in degrees. If the vehicle is traveling at 13 (28 mph
excited resonant peaks for the wobble mode is 12 dB, while tr}%tad undulations with a wavelength of 1.8 &85 fi, will gen:
for the front suspension pitch mode is approximately 5 dB. We i 5 road forcing signal with a frequency of 45.4 rad/€2

conclude, therefore, that difficulties with either of these mod ). Since the transfer function gain is approximately 62 dB at
will almost certainly be ameliorated via adjustments to the front %Z?s. frequency, Fig. 9 indicates that one can expett28 deg of

the mac_hine_. . . L . steering movement for road undulations with amplitude mm.
The situation at higher speeds is quite different as is shown jf\e 45sume that the steering head mechanism can move through

Fig. 8. At 40 m/s(90 mph and 30 deg of roll, we see that thereag goximatelyizo deg from lock to lock, the linear model would

are resonance peaks associated with the weave and the front Wagghest that road undulations 5.5 mm will produce a sustained
hop modes. In _the case of the weave mode, the front and regf slapping” action? This figure also shows that road undula-

; . ibutions and thgjpng could excite the front wheel hop mode, but the gain is only
combined effect is a large one. Resonance difficulties with th proximately 44 dB in this case.
mode are likely to be more difficult to isolate and prevent, becausemmegiately, it is of interest to consider the influences of design

the problem involves potentially the geometry and parameters gf/or suspension parameter changes on the resonant peaks. Fig-
the whole machine as well as the properties of both tires. Th

o X ; Iffe 9 also shows the effect of changing the steering damper setting
excitation of the front wheel hop mode is due almost entirely +1.5 Nms/rad around the nominal value of 7.4 Nms/rad. De-
front wheel forcing and is consequently a problem that can e

isolated and tackled at the front of the hike. easing the steering damper setting causes the road forcing gain

to increase to 66 dB, while increasing it reduces the gain to 58 dB.
_’3} the weave mode peak, the frequency respomsés) and e root-loci presented in Fig. 5 demonstrate an increase in the
e *g(s) have a phase angle difference of approximately 56 degopble mode damping with increased roll angle. As a conse-

As the motorcycle speed changes, the phase ehift associated quence, we predicted that a reduction in roll angle could lead to an

with the wheelbase travel time changes. In principle, thereforigcrease(rather than a decreasim the wobble mode peak gain
changing the speed will influence the maximum gain, not only

through affecting the modal damping faCtori but also through iN="syote that this is only an estimate from a linearized model—see Section 3.6 for
fluencing the phase angle. However, changing the speed fromr8e on nonlinear effects.
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Fig. 10 Bode magnitude plot of g(s) (0 dB=1 deg/m). Nominal state: 13 m /s (29
mph), 15 deg roll angle. The solid curve represents the nominal case, the dashed

one shows the effect of an increase of 20% in the steering damping, while the dot-

dash curve shows the effect of a 20% decrease.
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Fig. 11 Bode magnitude plot of g(s) (0 dB=1 deg/m). Nominal state: 13 m /s (29
mph), 30 deg roll angle. The solid curve represents the nominal case, the dashed

one shows the effect of an increase of 40% in the rear damper setting, and the
dot-dash curve shows the effect of a 40% decrease.
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Fig. 12 Bode magnitude plot of g(s) (0 dB=1 deg/m). Nominal state: 13 m /s (29
mph), 30 deg roll angle. The solid curve represents the nominal case, the dashed

one shows the effect of an increase of 40% in the front damper setting and the
dot-dash curve shows the effect of a 40% decrease.

despite an accompanying reduction in the coupling between timode will be excited by road undulations with a wavelength of
in-plane and out-of-plane dynamics. Figures 9 and 10 show thegiproximately 14 n{45.5 ft), while a 4 m(13 ft) wavelength will

the peak wobble mode gain for the 15 deg and 30 deg roll ang&cite the front wheel hop mode.

cases are roughly equal at 62 dB for the nominal value of steeringFigure 13 show a Bode magnitude plot of the transfer function
damping. An increase of 20% in the steering damping decreagbat relates the steering angle to regular road height variations. For
the peak wobble mode gain to approximately 55 (@&her than nominal suspension and steering damper settings, the weave mode
58 dB in the case of 30 deg of rplWhen the steering damping isgain at 18 rad/$2.86 H2 is 58 dB, while the front wheel hop
decreased by 20%, the peak wobble mode gain increases to 83mi@&le gain is 52 dB. As in the case of wobble mode excitation,
which is substantially higher than the peak gain achieved at 8tis diagram shows that relatively low-amplitude road undulations
deg of roll angle. will cause the rider concern. This plot also shows that an increase

Figure 11 shows that changing the rear damper setting has lifthethe steering damper setting will make matters significantly
impact on the susceptibility of the wobble and front suspensiamorse. More particularly, a steering damping increase of 1.5 Nms/
pitch modes to road forcing. This result casts doubt on the susad increases the road forcing gain by 10 dB, or a factor of 3.
pected contributions of the rear damper to the wobble mode instafigure 13 also shows that the steering damper setting has little
bility associated with the Suzuki TL10017]). impact on the front wheel hop resonance.

As one would expect, the damping of the front suspension pitchFigure 14 shows the effect of changes to the rear damper set-
mode, and consequently the road forcing gain associated with tliagy. As with the steering damper, an increase in the rear damping
mode, is influenced by changes in the front suspension damp®reases the weave mode gain by 5 dB, while reducing this
setting. Figure 12 shows the effect of changing this damper settidgmper setting causes the peak value of weave gain to fall by 4
by =220 Ns/m about a nominal setting of 550 Ns/m. Although thdB. Also, it is clear that this change has virtually no influence on
wobble mode gain is relatively unaffected by these changes, tte front wheel hop peak gain that remains fixed at approximately
impact on the pitch mode is significant and it can be seen thata dB.
reduction of 220 Ns/m leads to a gain increase of 8 dB over theFigure 15 shows the effect of changes to the front damping. In
nominal value. contrast to the previous two plots, this diagram shows that in-
. _ o creasing the front damper setting has a beneficial impact on the
3.4 High-Speed Forced Oscillations. At the beginning of '\ eaye and front wheel hop gain peaks. An increase of 220 Ns/m

Section 3, we argued that at high speeds the weave and fraifne front damper coefficient reduces the weave gain peak and

wheel hop modes are vulnerable to regular road waves of critiGgly front wheel hop gain peak by approximately 2 dB. If the front
dimensions. The consequent forced oscillations are a signific

; X o ; ping is reduced by a like amount, the weave mode gain peak
potential threat to the motqrcycllst, because it is a high-spe reases by approximately 3 dB and the front wheel hop gain
phenomenon and for typical motorcycle parameters, lon

. : : f eak increases by approximately 6 dB.
wavelength low-amplitude road undulations will excite thes
modes. Also, regular long-wavelength low-amplitude undulations 3.5 Influence of Rider Parameters. There is anecdotal evi-
are virtually impossible for the rider to see. At a speed of 40 mfence to suggest that the weight and posture of the rider can
(90 mph with the motorcycle parameters used here, the weailuence the vulnerability of the motorcycle-rider system to
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Fig. 13 Bode magnitude plot of g(s) (0 dB=1 deg/m). Nominal state: 40 m /s (90
mph), 30 deg roll angle. The solid curve represents the nominal case, the dashed

one shows the effect of an increase of 20% in the steering damper setting and the
dot-dash curve shows the effect of a 20% decrease.
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Fig. 14 Bode magnitude plot of g(s) (0 dB=1 deg/m). Nominal state: 40 m /s (90
mph), 30 deg roll angle. The solid curve represents the nominal case, the dashed

one shows the effect of an increase of 40% in the rear damper setting and the
dot-dash curve shows the effect of a 40% decrease.
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Fig. 15 Bode magnitude plot of g(s) (0 dB=1 deg/m). Nominal state: 40 m /s (90
mph), 30 deg roll angle. The solid curve represents the nominal case, the dashed

one shows the effect of an increase of 40% in the front damper setting and the
dot-dash curve shows the effect of a 40% decrease.
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Fig. 16 Bode magnitude plot of g(s) (0 dB=1 deg/m). Nominal state: 40 m /s (90
mph), 30 deg roll angle. The solid curve represents the nominal case, the dashed

one shows the effect of an increase of 20 kg (4.1 Ibs) in the mass of the upper body
of the rider and the dot-dash curve shows the effect of a 20 kg (4.1 Ibs) decrease.
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Fig. 17 Bode magnitude plot of g(s) (0 dB=1 deg/m). Nominal state: 40 m /s (90
mph), 30 deg roll angle. The solid curve represents the nominal case, the dashed

one shows the effect of a forward shift of 15 cm (5.91 ins) in the center of mass of
the upper body of the rider and the dot-dash curve shows the effect of a rearward

shift of 15 cm (5.91 ins).
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Fig. 18 Bode magnitude plot of g(s) (0 dB=1 deg/m). Nominal state: 40 m /s (90
mph), 30 deg roll angle. The solid curve represents the nominal case, the dashed

one shows the effect of an upward shift of 15 cm (5.91 ins) in the center of mass of
the upper body of the rider and the dot-dash curve shows the effect of a downward

shift of 15 cm (5.91 ins).
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response to sinusoidal road forcing that begins at t=1s and has a peak amplitude
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lean angle is 30 deg and the forward speed 13 m /s (29 mph).
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Fig. 20 Transient behavior of the roll and steer angles and the yaw rate, in re-
sponse to sinusoidal road forcing that begins at t=1 s and has a peak amplitude of
0.25 cm. The forcing frequency is tuned to the weave mode. The lean angle is 30 deg
and the forward speed 40 m /s (90 mph).

weave related oscillations. We will investigate the suggestion thatit this study at a speed of 40 n¢&) mph and a roll angle of 30

light riders are more likely to experience difficulties with oscilladeg, via changes in the rider’s upper body mass and mass center
tory instabilities than are heavier on¢d8,30). We will also location.

investigate the suggestion that the rider can attenuate weave refhe effect of changes in the rider’s upper body mass on the
lated oscillations by lying down on the tarfk30]). We will carry transfer function that maps road vertical displacement to the steer-
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ing angle are studied in Fig. 16. As suggestefili8], an increase able to describe the propagation of road undulation signals from
in the rider’s upper body mass by 20 kg4.1 Ibg reduces this the tire ground contact points to the steering angle. A particular
gain peak by approximately 8 dB. In the same way, a reduction fefature of the frequency response calculations is the inclusion of
the rider’s upper body mass by 20 i¢#.1 b3 increases the peak the wheelbase filtering.
gain by approximately 7 dB. The results show that under cornering conditions, regular low-
The effect of variations in the longitudinal location of the rid-amplitude road undulations that would not trouble four-wheeled
er's center of mass are studied. As suggested by the video tap@icles can be a source of considerable difficulty to motorcycle
([30]), a forward shift in the rider’s upper body mass appears ifders. At low machine speeds the wobble and front suspension
Fig. 17 to reduce the vulnerability of the motorcycle to weavgitch modes are likely to respond vigorously to resonant forcing,
related instabilities. In our study, we see a small reduction in tRghile at higher speeds, the weave and front wheel hop modes are
signal transmission gain peak of 5 dB for a forward shift of 15 c§imilarly affected. The vigour of the oscillations is related to the
(5.85 ing. If the center of mass is shifted backwards by 15 crgreviously much studied linear stability properties insofar as low
(5.85 ing, the transmission gain peak increases by approximatefymping factors lead to correspondingly high peak magnification
13 dB. o . . o ) factors. Connections between resonant responses and a class of
The effect of variations in thévertica) zdirection location of gjngle-vehicle loss-of-rider-control accidents have been postu-
the rider’s center of mass on the transfer function that maps rogggaq

undulations to the steering angle are studied in Fig. 18. An upward-rh'e work reported here has a number of practical conse-

shift of 15 cm(5.91 ing reduces the signal transmission gain pea ences. First, it appears to explain the key features of many of

by 13 dB, wlhile a corresponding downward shift increases it Qe stapility related road traffic accidents reported in the popular
approximately 7 dB. literature, and it helps to explain why motorcycles that behave

3.6 Nonlinear Phenomena. Although it is not the primary Perfectly well for long periods can suddenly suffer serious and
purpose of this paper to study the nonlinear aspects of the rd#@ngerous oscillation problems. Such oscillations are likely to be
forcing problem, we do not want to conclude this account withowtfficult to reproduce and study in practice. Secondly, road build-
making some introductory observations that will motivate futurérs and maintainers, and motorcycle manufacturers, should be
research. Figure 19 shows the build up of oscillations in the raiware of the possibility of strong resonant responses to small but
and steer angles as well as the yaw rate in response to road pegular undulations under certain critical running conditions.
filing that is tuned into the front suspension pitch mode at 7.5Bhese conditions are characterized by the machine speed, the lean
rad/s (1.2 H2. The forward speed is 13 m(®9 mph and the angle, the rider’s mass and posture, and the road profile wave-
forcing amplitude is 5 mm. We can only study the very lowlength. The dynamic responses are influenced by the modal damp-
amplitude case here, because higher amplitude signals take itigefactors, the road profiling, and the effectiveness of the forcing
tyre model out of its domain of validity. It is evident that 7.54from the road. For our particular motorcycle, which is represen-
rad/s(1.2 H2 oscillations build up in 2 or 3 seconds. It can alsdative of many large machines, the wobble mode will be excited
be seen that another consequence of road forcing is a tendencybiproad undulations with a wavelength of approximately 1.7 m.
the roll angle to reduce in response to the onset of oscillationEhis will produce a forcing signal of 7.6 Hz at a road speed of 13
This is possibly the result of a slow growth rate instability of then/s (approximately 30 mph The forcing will last for 2-3 s,
capsize type described [i]. In practical terms, this effect will which is enough time for the resonance to build up, if there are
cause the vehicle to run wide, a common feature of real accidedfs—23 periods of undulation. If the undulation period is approxi-
involving oscillations. As the roll angle reduces, the road-forcinmately 11.4 m, a road speed of approximately 40 (G mph
signal transmission gain will also reduce and we can see evidend# produce forcing at the weave frequency of 3.5 Hz. In this case
of this effect in the yaw rate and steering angle oscillation amplire forcing will last for 2—3 s if there are 7—11 periods of undu-
tudes. At approximately 35 s, one can see evidence of the onselation. It will be difficult for manufacturers to establish a set of
wobble frequency oscillations. This excitation of the wobble mod&vorst case” operating conditions to be associated with new
is the product of nonlinear effects that remain to be analyzed. products and yet it is essential that this is done. Thirdly, the kind

Figure 20 shows the response of the machine to low-amplitudé theoretical analysis presented here appears to be a necessary
road undulations that are tuned into the weave mode. Again, largeirt of determining these worst case conditions in a reliable and
amplitude profiling will take the tire model out of its domain ofeconomical way. This type of analysis should be an essential part
validity and consequently cannot be used. In common with thg the motorcycle designer’s toolkit in the future.
previous simulation result, oscillations build up in about 3 s. It is We have studied the individual contributions to these reso-
also evident that the roll angle tends to decrease. As can be seendnces made by each of the two road wheels. Our results show
the video tap€[20]), weave-related instabilities cause the vehiclghat the wobble and front wheel hop resonance peaks are “front
to run wide. It is also clear that as the roll angle reduces, the stegieel dominated.” In other words, difficulties with these modes
angle and yaw rate oscillations reduce in consequence. We beligye likely to be caused by the design and set up of the front of the
that this is the result of transmission gain reductions that comgachine. The same is true, but to a lesser extent, in the case of the
about in response to reductions in the roll angle. At approximatefypnt suspension pitch mode. In contrast, the weave mode reso-
25 s, one sees evidence of waveform distortion, & product of nafance peak involves the road forcing to both wheels in almost

linear mechanisms. equal measure. As a consequence, weave related problems appear
. to be more difficult to isolate and remove.
4 Conclusions As might be anticipated, the vulnerability of the wobble mode

A study of the effects of road profiling on motorcycle steeringesponses to road forcing is decreased markedly by an effective
responses is presented. The work is based on an enhanced vesiie@ring damper, but changes to the suspension dampers are inef-
of the nonlinear cornering model presented4h This model has fectual. The front suspension pitch mode resonance, that is asso-
been qualified using tests that are based on the principle that uncieted with low-speed operation, is sensitive to the front suspen-
equilibrium conditions all the external forces and moments actirgion damping, but is insensitive to the rear suspension and
on the motorcycle-rider system must sum to zero. We have alsi@ering damping.
checked that the drive power supplied by the engine matches thaln the case of high-speed operation, the weave and front wheel
dissipated by the tires and the aerodynamic forces. An AUTOSINbp modes are exposed to road profile induced oscillations due to
code was used to generate a linearized state-space model their low modal damping. The results show that the weave mode
describes small perturbations around a general equilibrium cornegsonant response is reduced by increasing the front suspension
ing state. By introducing appropriate inputs into the model, we adamping, but it is made larger by increasing the rear suspension
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and steering damper settings. These damping results depend, of rameter Sensitivitigsvehicle NVH lanq Refinement, Proc Int Conf., Birming-
course, on the nominal setup and will not be universally true. ]E;’mb’g:} g_i' mecgh:gg'RP“S""C::&’E;’EJZTSS’ gp'zlggl_ 12#16 Stabiliy of
Increasing the front suspension damping reduces the front Wheé? Motorcycl’es Under Acceleration and Braking,” Proc. Inst. Mech. Eng., Part D
hop resonance peak, but this peak does not respond to changes in (J. Automob. Eng, 215C9), pp. 1095—-1109.
steering dampingl or rear suspension damper settings, [4] Sharp, R. S. and Li!"nebeer,_ D. J. N., 2001, “A Motorcycle Model for Stability
It has also been shown that light riders are more likely to suffer, _, and Control Analysis,” Multibody Syst. Dyn6(2), pp. 123-142. )
from road forced resonant weave oscillations than are heavy one&” Koenen C.. 1983, fhe Dynamic Behavior of Motorcycles When Running
A 7 N » Straight Ahead and When Cornering,” Ph.D. thesis, Delft University of Tech-
as has been observed in practi¢&8]) and on the video tape nology. Delft, The Netherlands.
([30]). The results indicate also that the peak gains associated witfé] Sharp, R. S., Limebeer, D. J. N., and Gani, M. R., 1999, “A Motorcycle Model
the weave mode are brought down by moving the rider upper for Stabilit_y and Co_ntrol Analysis_,’Euromech Colloquium 404, Advan_ces in
body mass forwards and upwards. There is not sufficient practical (e:g m";’;’}aztgf‘él"g?"'b‘)dy Dynamics. A. C. Ambrosio and W. O. Schiehlen
evidence at the moment to indicate whether or not these findings Shérp, R. S., 1992, “Wobble and Weave of Motorcycles With Reference to
coincide with experience. From the rider’s perspective, a worrying  Police Usage,” Automot. Eng17(6), pp. 25-27.
feature of the road profile induced oscillations is the tendency of8] BMW statement to allUK) chief constables, Dec. 14, 1993.

I wai » . . [9] Cuitts, J., 1993, “The Boxer Rebellion,” Superbike, Apr., pp. 4-10.
the uncontrolled machine to “sit up” and run wide. This aspect °f[1o] Evans, J., 1993, BMW R1100RS, Motor Cycle Int., Mar., pp. 58—64.

the maChin? behavior can be seen on the video (&) in the |1y Raymond, K., 1993, “Could do Better,” Perform. Bikes, Apr., pp. 34—36.
case of a high-speed weave accident. [12] “An Interview With Dr. Goeschel,” 1993, Motorcycle Sport, May, pp. 234—
A preliminary time domain study of these resonances by motion _ 235.

B : ; B : ; ] “Boxer Comeback,” 1993, Which Motorcycle, Apr., pp. 26—32.
simulations has shown the existence of mterestlng and essentla{ 4] Duke, O., 1997, “Planet Bike—Radical Thriller or Flawed Killer,” Bike, June,

nonlinear phenomena, that seem to accord with practical experi-"~ 1417
ence. These nonlinear phenomena are worthy of further studys] “Safety Recall Notice, American Suzuki Motor Corporation,” 1997, Motor-
together with more wide-ranging investigations of design influ-  cycle, June 9.

ences on the various potentiall roblematic runnina conditions [16] Farr, K.,_ 1997, “Suzuki TL1000 Recalled i_n UK,” Motorcycle News, June 18.
P yp 9 117] “Operating Stable,” 1997, Performance Bikes, July, pp. 44-51.

. [18] Farr, K., 1997, “Fats the Way To,” Motorcycle News, July 2.
Appendlx [19] Robinson, J., 2001, “Wobble and Weave,” Performance Bikes, July, pp. 83—
85.
AUTOSIM Commands. This Appendix contains a brief de- [20] Duke Marketing Ltd., 1999, “Motorcycle Magic.”

scription of the AUTOSIM commands used in the paper. A mucﬁZl] Farrar,_S., 2002, “Orritt's Story to Explain the Phenomena,” Times Higher
. Educational Supplement, Feb. 15.
fuller account can be found in the AUTOSIM reference manuaj,,, Metropolitan Police, private communication, 2000,

([26]). [23] Sharp, R. S., 2001, “The Stability, Control and Steering Responses of Motor-
Vector Algebra cycles,” Veh. Sys. Dyn.35(4-5), pp. 291-318.
[24] Breuer, T., and Pruckner, A., 1998, “Advanced Dynamic Motorbike Analysis
Autosim code Mathematical interpretation and Driver Simulation,”Proc 13th European ADAMS Users’ Conference
Paris, Nov. 1998, 20pp.
cross(vl VZ) the cross product between vectors [25] Imaizumi, H., and Fujioka, T., 1996, “Motorcycle-Rider System Dynamics by
! d Multibody Dynamics Analysis—Effects of the Rear Load and the Suspension
vy anduv; Assembly on Wobble and Weave Motions,” JSAE Revid®1), pp. 54-57.
dot(vi,v2) inner product between vectors andv, [26] Mechanical Simulation Corporation, 199autosim 2.5+ Reference Manual
pos(pl,p2) vector going from point p2 to point p1 http:/Avww.trucksim.com.
] symbol is a unit-vector when enclosed [27] The Mathworks, Inc., 2000,MATLAB 6 Reference Manuyalhttp:/
in braces www.mathworks.com.

[28] Evangelou, S., and Limebeer, D. J. N., 2000, “Lisp Programming of the
“Sharp 1971" Motorcycle  Model,” http://www.ee.ic.ac.uk/control/
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The propagation of elastic waves along composite wire rope is considered. The rope is
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The other two modes are dispersive and have small torsional components.
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1 Introduction F=Ae+Ax and M=Aze+Ay, (1)

We are interested in the propagation of mechanical waves alofyiereF is the axial force acting at an arbitrary cross section of
overhead power lines. These are often composite structures knaw@ wire ropeM is the axial twisting moment; is the axial strain,
as aluminum conductor steel reinforcelCSR) electrical con- y is the rotation per unit length, and;, A,, A;, andA, are
ductors. These are composite wire ropes consisting of a cenigahstants[4]). This model has been used for the static response
steel wire rope surrounded by several aluminum wires. Our intesf ACSR cables by McConnell and Zemks], and it has been
est stems from the potential use of mechanical waves to detegtended to include bending momeiis,7]).
defects in ACSR power lines. Equation(1) is a constitutive relation for the wire rope. Clearly,
It is known that fatigue failure of strands in ACSR power lineshe coefficientsA; will depend on the details of the rope’s con-
is the most common form of damage, resulting from varioustruction. Much effort has been directed at obtaining analytical
forms of vibrations—aeolian, galloping, and wake-indu¢gd). expressions foA, ; see, for examplg4,8], and references therein.
Two regions of an ACSR power line can be distinguished: thieor ACSR applications, sdd], Section 3.9 an@5]. One can also
region near the points of support and the region further away, “oattempt to determind,; experimentally([9,5]). The diagonal co-
in the span.” Most fatigue damage seems to occur in the firstficientsA; (relating two axial quantitigsand A, (relating two
region ([1] p. 53). In this region, the mechanical problem is veryrotational quantitissmay be obtained using standard test equip-
complicated and three-dimensional: one must take into accounént, but the off-diagonal coefficiens, and A; require more
such features as interstrand slippage, suspension clamps andspecialized techniques. A third option is to adopt a hybrid scheme,
mor rods. Damage may also occur in the second region, soméierebyA,; andA, are determined by analytical approximations
times induced by corrosion, and it is here that there is scope far static experiments, b, andA; are found using information
some simpler models. obtained from dynamic experiments. This option will be men-
In a previous papeft[2]), we considered the propagation oftioned in Section 2.
torsional waves along a bimaterial elastic cylinder, composed of aOne question that arises is: doks=A;? Costellg4], Section
steel circular cylindrical core surrounded by a co-axial aluminu®.9, has calculated; for a particular ACSR cable, and found that
cladding. The interface between the core and the cladding was=1.21x10° Ib, A,=1.69x10"inlb, A;=1.61x10"inlb,
assumed to be imperfect, so that some slipping was allowed. Thisd A,=5.55x 10 in? Ib, with A,/A;=1.05. For a steel wire
model accounts well for the composite nature of an ACSR powsspe used in marine applications, Samras ef#lfound experi-
line, and the imperfect-interface conditions include a parametgfentally thatA,=4.44x1C° b, A,=2.23x10° inlb, A;=2.36
that may be varied. Moreover, it is possible that this model could 105 in Ib, and A,=1.43x10" in?Ib, with A,/A3=0.94. Thus,
be developed further, so as to treat the region near the pointsjiofs reasonable to assume thag=A,. Moreover, this equality
support. follows from the assumption that the wire rope is genuinely elas-
However, some features of the problem are not included, tiig; it seems to be a good approximation for real wire ropes, where
most important of these being the anisotropy of wire rope. Thugsnstituent wires may slip, for example.
“The static response of axially loaded wire rope clearly points out Following on from Eq.(1), one can write down equations of
the coupling between the axial and rotational displacemef®;’ motion, in the form of two coupled wave equations for the axial

p. 244. It follows that any plausible model of a wire rope shouldjisplacementw) and the angular rotatioty),
take this coupling into account. This paper is concerned with the

development of such models for the dynamic response of wire A 82W+A 02¢:mf92_W @)
rope. Yoz T2 972 ot
The simplest models are based on a strength-of-materials ap-
IMPIES . Pw o P PP
proach, in which one writes A LA _, 7% ®)
Soz2 o2 a2
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In Section 3, we develop an alternative thgory, l_:)ased on the mic*—c?(IA;+mA,) +AA,— AA;=0; (9)
exact stress equations of motion for a composite anisotropic elgs- .
tic cylinder. The cylinder consists of co-axial layers, each Jf€Se roots are given by

which is made of a cylindrically anisotropic elastic material. =A-+mA+ JIA —mA) Z+ AmIAALY/ (2ml). (10
Simple kinematical assumptions are made, leading to a system of (1A At (1A~ mA,) 2As}( )- 10)

three coupled one-dimensional wave equations: We observe that these are the eigenvalues of the matrix
A PPw A PP A d%u 5 au PPw . A A/m  A/m
— A= FAs—— FB—=m—= = :
Yo2 T2 502 Tlaz a2 “) 20V A/ AL
Fw ) U au 9P Thus, we obtain two positive values ofaind two negative values.
Az? + A“F + Ae? + BZE =1 e (5) The positive values correspond to different wavespeeds for waves
propagating in the positivedirection; we will denote these hy;
Pw P Pu oW dd é%u andc,. _
As—r tAc 7 TAr 7 =B =By = Bau=l —7. We can rewrite Eq(9) asA,A;=(mc®—A,)(Ic2—A,). If we

©) assume thaf,=A; and we have good estimates f&f and A,
) o ) (perhaps obtained from fairly standard static measurements on the
Here,u gives the radial displacement. In general, this3system wjre ropa, mandl, we could then calculatd, using a measure-
does not reduce to the>22 system, EQS(Z) and (3), whenu ment of Wa\/espeed a|0ng the rope.
=0, which is an underlying assumption in the derivation of the Returning to Eqs(2) and(3), we could eliminatew instead of
2x2 system. On the other hand, th&3 system does reduce 0 ¢. This shows thatp satisfies exactly the same equationvas
well known equations for the approximate description of waves ﬁhme|y Eq(s)’ and so admits the same wavespeeds.

isotropic elastic rods([10] Section 8.3. o Next, let us look for solutions of Eq$2) and (3) in the form
Our model for the wire rope is callesemi-continuou®y Car-
dou and Jolicoeuf11] in their thorough review article: all the w(z,t)=f(£) and ¢(z,t)=g(§), (11)

strands in each co-axial layer of the rope are *homogenized” intnere ¢=z—ct andc solves Eq(9). We obtain

an elastic continuum. This idea was first used by Hobbs and Raoof

[12]; they regarded each layer as a thin orthotropic sheet. It has (A;—mc)f"+A,g"=0,

been developed further by Cardou and his stud¢fit8—15). Asf"+(A,—1c?)g"=0,

They do not regard the layers as thin, and they permit the orthot-

ropy axes of the material of each layer to be aligned in directioss that §”,g")T is an eigenvector of\, corresponding to the
that differ from the global cylindrical polar coordinate axes. Weigenvaluec?. Integrating twice, we see that

have extended this model to dynamic situations.

The coefficients occurring in Eqé4)—(6) are given in terms of f(z—ct)=G(c)g(z—ct), (12)
certain integrals of the elastic stiffnesses of each layer overygere the factorG is given by G(c)=A,/(mE—A,;)=(Ic?
typical cross section. Once these are known, wave propagation,)/A;. (When we integrated, we discarded terms of the form
along the wire rope can be studied. For an example, we presenk+cC,, whereC; and C, are constants of integration. Such
some numerical results for a simple seven-wire ACSR conduct@gyms do satisfy Eqs(2) and (3), as do any functions that are
Three distinct modes are found. The slowest mode is mainly tqrnear in bothz andt‘ but they are not usua"y of interebt_
sional and mainly nondispersive in character. Such a mode could=quation(12) shows that if there is a torsional waug, propa-
be excited by a devicéransducer designed to launch torsional gating at speed, then it will be accompanied by an axial wave,
waves. The two other modes are dispersive and have small tgfopagating at the same speed and with the same shape, but with
sional components. a different amplitude. For this conclusion to be valid, we require

that there is actual coupling between axial and torsional motions;
for a solid isotropic rod, we would have,=A;=0, and then the
2 The Samras-Skop-Milburn (SSM) Equations of Mo- axial and torsional waves can exist independetat/Eqs(2) and
tion (3) decouple.

This completes our study of the SSM system. In the next sec-
on, we attempt to give a more rational derivation of one-
imensional wave equations modeling the wire rope. We shall see
that the SSM system should be replaced by>a33system, in
general.

Let z be distance along the wire rope andtidte the time. Let
w be the axial displacement and Iigtbe the angular rotation. We
use the constitutive relation€l), in which e=dw/dz and x
=dd¢ldz, whence

J de J de
F:AlE+AZE and M :ABE+A4E' M 3 An Approximate Theory for Waves in a Wire Rope

Then, a balance of forces and moments acting on an elementar@.1 Stress Equations of Motion. In cylindrical polar coor-
slice of the wire rope gives Eq$§2) and (3), which are approxi- dinates (, 6,z), the exact stress equations of motion &dd], p.
mate, one-dimensional equations of motion for the wire ropé00)

They were derived by Samras, Skop, and Milb(@&t; we call P 19 P 1 ﬂzur

Egs.(2) and(3) the SSM systenihis 2x 2 system has been used R = 13
in several subsequent papers, includiBgl6—1§. ar Tty g et gy Tt (T To0) =P I (13)
It is of interest to obtain solutions to the SSM system. If we 3 19 P 5 P
eliminate ¢, say, we obtain a single fourth-order linear partial Tyt = — gt — Topt =T g=p Uy (14)
differential equation fomw, ar " r a6 az % r'’ a2
d*w I*w I*w d 14 d 1 5u,
ml—7 = (1A1+MA) —7—7 +(AA— AA3) —7 =0. (8) o Tt g et 5y Tt T TP (15)

This has traveling-wave solutions of the fom{z,t)=f(z—ct), where {,,uy,u,) is the displacemenp is the mass density, and
wheref is an arbitrary functiorfwith four continuous derivatives ; are the stress components. We seek approximate solutions of
and there are four possible wavespeedgiven by the roots of these equations for a wire rope.
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We model the wire rope as a circular cylinder of radaus he I,=1,=1,=0. (21)
cylinder consists of a cylindrical core<tr <a,, andN co-axial

layers,a,_;<r<a;, i=1,2,...N, with ay=a. Thus, there are This simplifies the analysis, of course, but it also turns out to be
Ninterfacesy =a;_;, i=1,2, ... N. The outer surface is free of realistic([1], p. 54:
tractions, Real conductors do not have frictionless strands, and, for the
=7 =7 =0 onr=a (16) small amounts of flexure experienced due to vibration waves out
mr—reT frz— -

in the span, the friction present between strands is normally great
In general, theN interfaces may be imperfect: Slippage may oc-enough to prevent gross sliding between them. The relative axial
cur. They could be modeled using one of several available modelmovements of the strands are absorbed in largely elastic shear

of imperfect interfaces; s¢@] or [19]. strains around the small areas of interstrand contact. The
In order to develop a “rod theory” for wire rope, we begin with amounts of movement are not great enough to build up tractions
some kinematical assumptions. Thus, we assume that that exceed the threshold of sliding.
u,=ru(zt), u,=r¢(zt) and u,=w(zt), (17) ©Onthe other hand, the assumpti@1) cannot be justified near the

L points of support.
whereu, ¢ andw are to be found. Here, the approximationsdipr

andu, are usually made for longitudinal motiorigl0], p. 511, 3.2 Cylindrically Anisotropic Materials. Next, we need
whereas the approximation fer, means that cross sections carconstitutive relations for the materials of the wire rope. We as-
rotate about the central axisat 0. One consequence of Ed.7) Ssume that each layer is composed of a cylindrically anisotropic
is that thed-derivative terms in Eq913)—(15) are zero. elastic solid. Letting «(, 6,2) =(1,2,3), Hooke’s law becomes
We are going to integrate Eq§l3)—(15) across an arbitrary —C 22
cross sectiort” of the wire rope. We have Tij = ik Bkl (22)
N N wheree;; are the strain components, and we emphasize that the
2 d _ a o d _ aj stiffnessesC;;,, are referred to cylindrical polar coordinates; see
r—rrzdr—E r—rrzdr—z [r7,] I .
o Or =0 Ja, O =4 a1 [20] and[21] for more details. We assume further that each layer
' of the wire is homogeneous, so that the stiffnesses are constant
8 a within each layer. ThusCij,=Cijj(r) are piecewise-constant
- Tdry =1, 7rdr, functions ofr.

0 The strains are given as follow20], p. 2399:

aj-1

wherea_;=0, we have used E{16),

N1 au, 1 aué,+ U,
_ Srr:—:U, o= -, —=u,
ar r 460 r
= Z ai[ 7,(a;,z,1)]
= _du, 9w 1 13Ur+¢9ue Ug|
and fu= 5y Tz fr 2 v a0 T ar v
[f(a,z,t)]= lim f(r,z,t)— Iim+ f(r,zt) 1{du, du\ 1 au
- rﬂai =—| — —_— = —
A e\ or Tz T2 9
gives the jump in a quantitfyacross an interface at=a; . Thus,
integrating Eq.(15) acrossC, we obtain s :E (%+ E % = Er %
) b2\ oz r a0 2 gz°
d I“W
7 LTzszJr 2ml,=m—7 (18)  The corresponding stresses are given by 8) as
wheredA=rdrd 6 andm= [ pdA is the mass per unit length of il =Cijuer + Cijaz g+ Cijagezzt 2Cij128r0 2Cij252 02
the wire rope. IW L)
We use a similar procedure with Eq4.3) and(14), the differ- +2Cjj1381,= (Cijuat Cij22)u+cij33E + Cijogf 27
ence being that we multiply both hybefore integrating ovet.
We obtain au
p 72U +Cijad =
— | r7,dA— T+ 7)) dA+ 27 =1 — 19
(92 fc rz fc( rr f}f}) r atz ( ) Thus
and =7113=(Cy5+C +C ﬁW+C &¢+C o
P o 24 . 7r2= T13= (C15+ Cop)U 35 asf 9z 550 57
J— + =| ——
9z C”’ez ™=l 2z (20) oW 9 au
=Tp= + + + —+ —
where Tgz= To3= (C14+ Cog)U C34E Cagr 97 Cosf 97"
N-1 N-1 oW do au
=2 aflr(@.z] 1= 2 aflnd(a;,z0)] 7r9= 712~ (Ca6t Cog) Ut Cog + Cadl 77+ Codl 57
i= i=
and | = fpr?dA is the mass moment of inertia per unit length  _ _ _ =(Cy3+Cop)U+C ﬂJrC rﬁJrC ra_u
about the central axis. 2z e 2 Bgz T gz T gz

Note that if the wire rope was a solid circular cylinder of radius o ” au
a, with constant density and 2Welded |nterf§tces, then we would 71 = 713=(Cy1+ Cyp)U+ Crge— + Cpff —
havel,=1,=1,=0, 1=(1/2)ma” andm= mpa“. Jz

The quantitied,, |4, andl, give the total contributions from

the possible discontinuities in the traction across each of\the ow ¢ du
. = Too= + + — + -
interfaces. We assume that 7o0= 722~ (Crat CoU+ Cog -+ Codf
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where we have used the usual contracted notafigp for Cyj;  scale, we shall use, the outer radius of the rope’s cross section.
([22], Section 2.3 Note that these expressions make use of 20 @Phillips and Costellg17] use the length of the ropeDefine

the 21 stiffnesses, the exception beiDgs. . oot I
R R 0 [
3.3 One-Dimensional Equations of Motion. We use the =2, U=s— u=u\=
expressions above for; in Egs. (18), (19), and (20), together
with Eqg. (21), and obtain Eqs(4)—(6), wherein w
¢'=¢ ey and w’=g, (26)

— — — 2
Ar= LC”dA’ A2= ch34dA' As= Jcr CaidA, where the primes signify dimensionless quantities. Then, Egs.

(4)—(6) become

A5=frC35dA, A5=fr2C45dA, A7=fr2C55dA, JPwW Pt Ut ou’ AW
c c c Ay 9772 +A; 972 +A582’2 +Blﬁ_Wv (27)
2\ps! 2 41 20! ’ 2 11
B:f(C +Cpa)dA, B:fr(c +C,,)dA, ,owW L 9tgt  dtu ,ou’ 9%
N e 2 ) Ay oz TA i TR By = —or, (28)
_ JPw et U ow'  aet U’
Bg— JC(CllJ’_ 022+ chZ)dA A5 (9272 +A6 (9212 +A7 ﬁZ'Z Bl (921 BZ &ZI BSU’: W!
Note that these expressions make use of 13 different elastic (29)
stiffnesses. where
Equations (4)—(6) are three coupled one-dimensional wave
equations fou, ¢, andw, defined by Eq(17). This 3x 3 system A’:i A Az A’:ﬁ Al As
should be compared with thex2 SSM system{which was de- 1 m(%’ 2 Cg\/ﬁ 4 cg| ' 5 C(Z) ml’
rived by strength-of-materials argumenté/e do this next.
A’—AG A’—A7 B/ — aB; ,_aBz
3.4 Comparison With the Samras-Skop-Milburn (SSM) STl Tk Tt cZyml’ ? 2l
System. We see immediately that Eqgl) and(5) reduce to Egs. )
(2) and(3), respectively, ifu=0 (no radial displacementThen, and B’=a B3
the third equation, Eq6), becomes 3 cgl :
Pw PP AW ip Henceforth, we drop all the primes.
As 972 +As 972 _BIE_ BZE_O' (23) The scaling introduced above may seem complicated but it has

. . threebeneficial consequences. First, all equations and coefficients
Now, we know that the SSM system has traveling-wave solutionge dimensionlessSecond, it will lead to aermitian coefficient
given by Egs.(11) and (12). When these are substituted in Edmatrix when we seek solutions proportional to fikz— at)} (see
(23), we obtain an ordinary differential equation fgt£), with  £q. (32) below) and, third, the wave speedwill be determined

solution g(£) =e”* where y=(B,G+B5)/(AsG+Ag), provided by solving an eigenvalue problefnather than ageneralizedei-
As andAg are not both zero. This particular exponential solutiogenvalue problem

is not of interest to us, as we want to consider the propagation ofrhys, we seek solutions in the form
bounded pulses along the wire rope; therefore, we discard this " " "
solution. If As=Ag=0 (this case will arise in Section 4,1Eq. u=uge*t, ¢=goe™t and w=we'’, (30)
(23) reduces tdB,G+B,=0. This may be satisfied for one value\yhere ¢=z— at, u,, ¢,, andw, are constantsk is a nonzero
of ¢? given by Eq.(10), but not both. _ _ dimensionless real wave number, amds a dimensionless wave

Another way to satisfy E¢(23) identically is to require that the speed; the actual wave speechis, and the actual wavelength is
stiffnesses are such that 27ralk. Substituting Eq(30) in Egs.(27)—(29) gives

As=Ag=B,=B,=0. (24) (A—a?)x=0, (31)
These conditions involve the stiffnesses and radius of each cQphere
centric layer of the composite cylinder. They will be satisfied if )
the material in each layer satisfi€s=C4s=0, C;3= — C,3 and Ay Az As—iBy/k
C14:—C24_ A: A2 A4 A6_|82/k (32)

We conclude that, in very special circumstances, oxi33sys- ) ) )
tem reduces to the SSM system, together with0. As+iBi/k  AgtiBy/k  A;+Bslk

Let us also calculate the forces and moments acting on a Cragsy XT=(Wq, bo,Uo). Equation(31) will have a nontrivial solu-
sectionC of the wire rope. The axial force is given by tion provideé that

de{A—a?1)=0, (33)

which is a cubic ine?. The three solutions fak? are all real. This
follows by noting thatA is a complex Hermitian matrix so that
XTAx is real (where the overbar denotes complex conjugation

We would like to know that the real solutions fa® are all
positive so that we have six real solutions fer With A = a?, we
can write Eq.(33) as

—\3 2 _
3.5 Waves. Before looking for solutions of Eqg4)—(6), it FN =M+ daA "+ diA+do=0, (34)
is convenient to introduce dimensionless variables. debe a where the coefficientd; are known in terms of the entries 8f
typical wave speed for elastic waves in the rope. For a lenglle know thatf (\) =0 has real roots only, so elementary consid-

F= A=A &W+A ﬁ¢+A (9U+B 25
_CTzzd_lE 2, tAs B (25)

and the axial twisting moment is given by

M dA=A aWJrA a¢+A 8U+B
=1r =A,— — — u.
. To7 257 457 657 2

Both of these reduce to E?), providedu=0 or Eq. (24) holds.
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erations(such as sketching the graph f(f\)) will lead to condi- Cj, Cj, Cjs O
tions ond; that are sufficient to guarantee that all the roots are , ,
positive. For example, we must hav&0)<0, which vyields Cp Cyp O
det(A)>0. We must also have two positive turning points, and c! 0
this yieldsd,<0. c'= 3

Let us make three further remarks. First, despite the appearance Cu O
of first derivatives with respect tp the system(27)—(29) is sym- c!
metric in z. In other words, if there is a solution proportional to 5
e'?, then there is another proportional & %%, with the same Cés
value of a. For detf—a?))=detA—a?), asA is Hermitian. s yransformed into dsymmetrig stiffness matrix referred to co-
Second, a®\ depends ork, so too doesv: the waves arelisper- . dinates ¢,6,2) with the structure
sive unlike the solutions of the SSM system. Third, having found

o O O
O O o o o

the eigenvaluesa?, the relative displacement amplitudes are Ciy Cip Ci3 Cy O O
given by the corresponding eigenvecior (Wq, ¢bg,Ug) " Of A. Cy Cp3 Cy O 0
Cs Cy» O O

C= (37)
4 Cylindrically Orthotropic Materials Ca 00
C55 C56

The theory developed in Section 3 is fairly general. As a special
case, we can suppose that the material of each layer is cylindri- Ces

cally orthotropic. For such materials, there are nine nontriviﬂ lici . fof i fc! . i A
stiffnesses, namelZ;1, Cip, Cys, Cons Coss Cass Casy Cos, xplicit expressions foC,,, in terms ofC/,, are given in Appen-

andCes. It follows thatA,=As=As=B,=0, so that the torsional 4iX A- A consequence of this structure f is that As=Ag=0,
components decouples fromu andw. Equation(28) reduces to leading to a slight simplification of the analysis in Section 3.
A4 ¢ldz*=9*plat?, the one-dimensional wave equation with 4.2 Transverse Isotropy. Transverse isotropy is a special

wavespeed/A,. Equations(27) and(29) reduce to case of cylindrical orthotropy. For such materials, there are five
nontrivial stiffnesses; thaunrotated stiffness matrix can be writ-
Pw - Pw ten as
A—— +Bi—=—, 35
Yoz2 T Yoz at? (35) Chn Cip C3 0 O 0
Cy Ciz3 O 0 0
Pu ow #*u )
A7?— BlE_ B3U: W (36) C33 0 0 0
C'= Cu O 0
These can be solved, using E§0). However, we do not pursue Cia 0
this here, as we are interested mainly in situations where the tor-
sional motions daot decouple. E(C’ —cl)
We remark that foiisotropic materials, we can show that Egs. 2 T T2

(35) and (36) reduce to Eq(8.3.148 in [10] In order to use the results [14,15, it is convenient to introduce
4.1 Rotated Coordinate Systems. Above, we considered a engineering constants. These are the longitudinal Young’s modu-

material with cylindrical orthotropy, where the principal axes arkis E, , the transverse Young's modulusy, the longitudinal

aligned with the cylindrical-polar coordinate axes. We saw th&oisson’s ratioy , the transverse Poisson’s ratig, and the

torsional motions decoupled from axial and radial motions. longitudinal shear modulu§, . Then, using/15] (Eq. (2)) and
Suppose, now, that the material of each layer is cylindrically23] (Egs.(2.25 and(2.36), we obtain

orthotropic with respect to a different coordinate system,

2 2
(r',0',2"), with nine nontrivial elastic stiﬁness@;B ([14,15)). Ch:ﬂ Er, %:M .
We want to expres€,,z in terms ofCt’w. (This is a standard A A
calculation in tensor analysjsSpecifically, at a typical poinP, v (14 v7) 1— V%
the cylinder has three coordinate directions, nameiyy 12=46 c;13=T Ly Cé?’:TEL

and 3=z. At the same point, the material has three principal di-
rections, nam_ely, _1zr’, 2_’2_0’, and 3=z". We suppose that and Cj=G_; here,y=E_/E; and A=1—v2—2ypZ(1+v7).
ther andr’ directions coincidgat P), and that the ¢,z) direc- Note that C{=(1/2)E+/(1+ v7). After rotation, one obtains a
tions are obtained by rotating the'(z") directions by an angl®  matrix C with the same structure as EQ7).

about ther-direction. The stiffnesses transform according to For an isotropic materiaE, =E;=E, v =v;=v andG,=pu
=(1/2)E/(1+v).
Cijki (B)=Qip Q2 sChars Following Jolicoeur and Carddu 4,15, we shall use this con-

stitutive model(rotated transverse isotropfor a composite wire
rope. A specific example of a simple ACSR electrical conductor is

where considered in the next section.

1 0 0
5 A Simple Example of an Aluminum Conductor Steel

Q(B)=| 0 coss  sing . Reinforced (ACSR) Conductor
0 —sing cosp In order to use the foregoing theory, we have to specify the
physical characteristics of the wire rope and we have to estimate
Explicit calculations show that thésymmetri¢ stiffness matrix the elastic constants. Methods for doing this have been described
referred to coordinates (,6',z’), which has the structure by Jolicoeur and Cardo{i14,15 in their analysis of the static
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loading of wire rope. We follow their method closely, making use m(rs+ 1)/ (X.Cg)=790.5%E, IF,

of some calculations of Costellp4], Section 3.9. Thus, we con- ) ] ) )

sider a very simple ACSR conductor, consisting of six aluminuyhereF is the(statig axial force on the wire rope. As an example,
wires helically wound around a single straight steel-wire core. THgt us takeF=5000 N (1124 I1h. We take E,=7x 10'* N/m
steel wire has radius,=1.70 mm(0.067 in). All the aluminum WhenceEy=0.22%E,. (Evidently, E; will increase if F is in-
wires have radius,=1.68 mm(0.066 in). In terms of the model Ccreased, but the increase is not linear; in f&gt,depends loga-
described in Section 3, we haw=1, a,=r, and a;,=a=r¢ fithmically onF, so that large changes Mwill induce moderate
+2r,. The aluminum wires have a helical radiustofr +r, changes inEr.) Hence »r=0.08, v, =0.10, y=3.3, and A
and a helical angle oB= 10 deg.(These parameters are approxi—=0.92. Then, from Section 4.2, we obta@®y,=0.241,, C;,
mately those of the so-called Raven 6/1 ACSR conductor; se€).02&,, Cj,=0.08%€,, C;,=0.81&,, C,,=0.02%, and

[24], Table 1-6. C¢e=0.10€E, . Finally, the rotated stiffnesses are given by
Mass per Unit Length. Taking a cross section of the wire 024 0.03 009 001 O 0
rope, we see that each aluminum wire has an approximately ellip-
tical cross section, with a semi-minor axis of length and a 023 011 001 O 0
semi-major axis of length, secs; see[4], Fig. 3.1. Thus, each 078 011 O 0
wire has a mass per unit length op,r 2 secB=m,, say, wherg, C=E, 005 O 0 ,
is the density of aluminum. Hence, g is the density of steel, :
5 0.03 —0.01
m Ps (s la
5=—|—=|+6 —) secB=0.998, (38) 0.10
TPa8"  pal@ a

using the relations given in Appendix A.
where we have usep,="7800 kg/nf and p,= 2700 kg/ni. Note d g PP

that the mass of the wire rope is almost the same as that of a solid\veraged Stiffnesses. The coefficientsA;, Ay, Ay, As, Ag,
aluminum cylinder of the same diameter. Note also that our calv, By, B,, andB; are defined in Section 3.3 by certain integrals
culated value fom is consistent with the tabulated value of 21@f the stiffnesses over a cross section of the wire rope. Dimen-
kg/km for the Raven ACSR conductor; sg&f], Table 1-6. sionless versions of these coefficients are defined in Section 3.5,
making use ofn, | and a typical wave speeg}, which we shall
take to be the speed of shear waves in aluminugrﬁ=2pa(1
+v,)/E,. Thus, mcg;=0.375rE,a?, using »,=0.33 and Eq.
é}‘_S). Then

Moment of Inertia. The moment of inertia of an ellipse
about an axis through its cent@nd perpendicular to its plahes
(1/4)M (a%+b?), whereM is its mass ané andb are the lengths
of the semi-major and semi-minor axes. Then, using the parall

axes theorem, we obtain 2

Eq Es

I's

a

I's

a

Ao 1 JC dA_ﬂ-Eaaz[
1, , 1, Y'm& /.7 md
I == mpgi+6{mh?+ -mri(1+seép);.

2 4 where the superscripts @y; denote steel or aluminum, as appro-

Hence,| =0.35Ma?; about 95% of this comes from the alumi-Priate. We havers/a=0.337, Es/E,=3, C3JE,=1.2 and
num wires.(For comparison, a solid composite cylinder compose@34/E,=0.78 whenceA;=2.94. The other coefficients are ob-
of a steel core of radiuag, surrounded by an aluminum claddingtained similarly. Thus, we find that

of outer radiusa hasl =0.422ma?.) A=204 A—032 A—024 AcmA.—0
17 & ’ 27 Y- 1 4 M ’ 5— M6 Y

Cis
E.)’

Stiffnesses. The steel core is isotropic with Young’s modulus
E, and Poisson’s rati@g=0.25. ThusE, =E;=Eg, v =vr=rs A;=0.17, B;=2.00, B,=0.096 and B;=11.61.
and G, =0.4E;. The corresponding stiffnesses af®;=Cj;
= 1253 and C12: Cl3: C44: C66: O4ES .

Let aluminum have Young’s modulus, and Poisson’s ratio
v,=0.33. Then, from Eqgs(3), (9), and (12—(14) in [15], the
aluminum wires may be modeled using

Waves. Having specified the mechanical properties of the
ACSR conductor, we can now calculate the allowable wave
modes, according to the theory described in Section 3.5. For a
given dimensionless wave numbek, the dimensionless
wavespeedg are given by solving Eq.33), which can be written

E. 3r, as a cubic il =a?, namely Eq.(34), in which
— =~ —secB=0.756, > 2
E. 2h d,=—(3.35+11.6k ), d;=1.14+329k and
w Er 1 v E do=—(0.103+6.14&"2).
va ELov' ova Ed As dy and d, are both negative, for ak?, the cubic has only
ositive real roots, so that all the wave speeds are real.
G, r2(E/E,) - P P
E, 2(1+ v)(r2+h?)(1+cos B) =0.0285 Numerical Results. We have solved Eq34) for «?. In Fig.
1, we have plotted the three positive valuesxpfas a function of
and k. Evidently, we can denote these three valuesf{k), i=1, 2,
1 C n 1 3, with 0< a1 <ay,<az. We see thaty;(k) is a decreasing func-
- _CE m(rs ra)_ - tion of k. In fact, the lowest wave speed,, is almost indepen-
Er = XCe 3)’ dent ofk: for example,a;(1)=0.448 anda4(10)=0.447. Thus,
. . the wave corresponding te, is almost nondispersive: it travels
\év:?erexC is the contact force per unit length and, fr¢gb], Table with a speed of approximately 0.5 wherec, is the speed of
’ shear waves in aluminum.
1—22 1-12 1.204 Figure 1 also suggests that(k) — a1(k) —0 ask—o. This is
Ce=—¢ ° = L =—. false. To see this, l&t— in A, and putA;=Ag=0. Then, using
S a a

the notation of Abramowitz and Stegy@6], Section 3.8.2, we
usingE=3E, . The calculation oK is described in Appendix B, calculateq®+r2, whereq=(1/3)d;—(1/9)d5 andr = (1/6)(d;d,
using the method of Costellgt]. From Eq.(B6), we obtain —3d) — (1/27)d3. We find that
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Dimensionless Wavespeed, o

Dimensionless Wavenumber, k

Fig. 1 The dimensionless wave speeds
mensionless wave number k

a; as functions of di-

1
108

which is negative, confirming that all the roots are re@henk
=o). However, for our particular values % , we obtaing®
+r2=—0.02, which is small, and sa; and a, will differ by a
small but finite amount for largk. In fact, we find «,(10)
=0.523 anda3(10)=1.73.

Next, we have calculated the eigenvectarsf A, correspond-
ing to «;, wherex=(Wy,dq,U)". We can arrange thak|=1
and, asA;=A4=0, it follows from Eq.(31) that we can takev,
and ¢, to be real andiy to be pure imaginaryy=ia, say. Then,
taking the real part of Eq.30), we obtain

= ¢y coské

0+ 2= — o {(Ar— Ay 2+ AABHAZH (Ar— A7) (A=A},

u=—0sinké, and w=wgcoské,

=

-0.25 o

e

n

(=}
1

-0.75

Displacement Coefficient

-1.00

-1.25 T T : T . T . :
Wavenumber, k

Fig. 2 The components of the dimensionless eigenvector x 1
=(wyp, ¢y, i) corresponding to the dimensionless wave speed
aq, as functions of dimensionless wave number k. This is the
quasi-torsional mode.

We derived a set of three coupled partial differential equations,
Egs.(4)—(6). The coefficients in these equations are given as in-
tegrals involving the elastic stiffnesses of each layer of the com-
posite wire rope, when regarded as a solid with cylindrical anisot-
ropy. A basic difficulty is how to determine these stiffnesses. We
have used a method described by Jolicoeur and CdrgjuThis
leads to a logical inconsistency: one of the Young’'s modtti,
was calculated from a knowledge of the contact forces between
individual wires within the rope, and these forces were estimated
using Costello’s theory[4]); the inconsistency is that the latter
theory gives Eq(1) for F whereas we obtain Eq25) (wherein

whereé=z— at. Thus, the radial component is out of phase witt
the axial and torsional components. Then, the normalized eige
vectors show the physical character of each mode.

The three components of;, corresponding to the lowest
wavespeedy, , are shown in Fig. 2, as a function kfWe see that
this mode is a quasi-torsional mode: The axial and radial comp__
nents are small. This weakly dispersive mode is the most impc.§
tant in the context of our application to ACSR conductors, bez
cause our transducers are designed to launch torsional Waves.“zg

The components of the eigenvectoy, corresponding to the ©
wave speedy,, are shown in Fig. 3, whereas is shown in Fig.
4. We see that both of these modes have small torsional comy
nents. Fox,, the axial component decreases vktand the radial
component dominates, whereas the opposite situation occurs w
X3.

isplacement

D

6 Conclusions

In this paper, we have attempted to give a rational model for tf
propagation of elastic waves along composite wire ropes. Tl
goal was to obtain one-dimensional differential equations ¢
wave-equation type, with coefficients obtained from certain inte
grals over the cross section of the wire rope. Such equations
well known for waves in isotropic rods. We used simple kinemati
cal assumptions, E@17), but it is clear that various expansions in

r could be used; see Bostng 27] for a recent discussion of suchFig. 3 The components of the dimensionless eigenvector x
corresponding to the dimensionless wave speed

methods.
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1
Cg3=Cj5c0¢ B+ Ch,sin’ g+ ( Chat 5053) Sir? 23,

1 ) ) 1 1 .
Ca=3 (Ciyc0€ B—Chysir? B)sin 28— > ( Cit 5 C§3> sin 48,
0.5 «

=

1 :
Cy4=Cj,C08 28+ 7(Cast Coom 2Cy)sir? 23,

L 9% | Cos=Ca5C08 B+ CgesSir’ B,

L
1 Cse=> (Cls—Cggsin 28 and Cgg=C(zcog B+ Clssir? S.

Displacement Coefficient

05 Appendix B

Contact Stresses. In order to calculateer, we have to cal-
culate the contact stresses between the aluminum wires and the
— _ steel core. Specifically, we requibe., the contact force per unit

-1.0 y T = — — B E— osssss length acting along the line of contact. Thus, we apply a static
0 2 4 6 8 load to the wire rope; the axial fordg axial twisting momeni,
Wavenumber, k axial straine, and rotation per unit lengtg are related by Eq1).
) ) ) ) The theory in[4] yields expressions foA;—A,, and also forX,
Fig. 4 The components of the dimensionless eigenvector x 5 the contact force per unit length along the centerline of the rope.
corresponding to the dimensionless wave speed as. Then, X, is given by[4], Egs.(3.10 and (3.114, as

X.=—X{cog B+ (rs/h)?sir? g} "12=-1.011X, (B1)
As=0). In fact, we applied a static tension, determined the conta&fgingﬁzlo deg and/h=0.503 for our ACSR conductor.
forces, and'then superimposed a wave motion. In the absence 0 2he total axial forge acting on the wire rope fis=F o+ F
better algorithm, we feel that the present approach is adequ.‘"‘te;\)(ﬂ?ereF andF, are the axial forces in the steel core gnd éfumi-
note that the modulus; depends weakly on the actual magnitude 0 1

- ; _ 2
of the contact forces, so that a rough estimate should suffice. Eum wrl]resf, Irlespectlvely. We h?ﬁb_ ”SESrS_S' ';0;!:1 andX, we
One aspect not considered here is thalainping experimen- have the following equations frof], Section 3.9:

tally, it is observed that wave amplitude decays with distance F,=6(T cosB+Nsing),
along the wire rope. The precise cause of this phenomenon is

unknown. For a wire rope under static tensknit is known that hX=(N cosB—T sinB)sin g,
interwire slippage is not responsikle28]), although the damping

does vary withF and with the number of wires comprising the hN=(H sinB— G cosp)sing,
rope; seq29] for a review. Further work is needed so as to de- 1

velop a predictive model for damping. hG= : 7Er4(A Si? B— ay sin 28),
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1
hH= 7 m(1+ va) 'ELra(A singcosf— a; cos 28),

Comparing our notation with that used [d4], we haveF;
Appendix A =F,, G=G;, H=Hj, N=N;, T=T,, X=X,, a1=Aa,, I,
. . . N =R,, rs=Ry, B=(1/12)7— a5, h=r,, y=7sand&;=&,. Also,
Rotated Stiffnesses. A material with cylindrical orthotropy m2:26.s 1 f=(12)m = a 2 X7 Ts §=6
has elastic stiffnesses;,, when referred to principal axes. Rota- “we can solve Eqs.B2) and @3) for & anda;

tion about the radial axis by an angteleads to stiffnesse§,,,,,

defined as follows: £=0"Ye(hcod B— vy sir? B)+ xh?sin B cospl},
C11;=Cj;, Cy,=C},c0¢ B+ Cissir? B, a;=0"Ye(h+ vgr g+ v,r,)sin B cosB— xyh? cog g},
C13=C}5c0¢ B+ Cj,sir? B, where Q=h+ v,r, sir? 8. We can then substitute back, so as to
1 1 obtain an expression fdf in terms ofe and y.
Ciim=(Cl.mC!)sin 2 CoeC..cod B+ = CL.Sir? 2 Let us suppose that the wire rope is subject to a prescribed
15 (Cram ColSIN 2B, Co=CC08 B 5 CaSIM 2B, tic loadF and that the momer is adjusted so that the rope
1 1 does not rotatex=0). Then, we find that
Co= Cé3(CO§1 B+ sin’ B)+ ZCéz‘i‘ ZCé:,,— C4,14 sir? 2B, T= wEargeﬂ’l(h co< B— vsrssinz B),
1 . 1 . : 1 4 .
Co=3 (Clhat+Cho)sin 4B+ 5 (Chgsir? B—Cj,cod B)sin 28, hG=7 TErae Q™ Hvgr s— (2h+ 2vgr o+ var ) cog B)sir? B,
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1
hH=Zm(1+ va) EaraeQ T H(2h+2ur o+ var )Sin? B

—h}sinB cosp.

If we take vs=0.25 andv,=0.33, we find that
G=—0.025%,r3s, H=—0.046E,r3¢,
T=3.01%,r2s and N=0.0015E,r2s.

We can takeE,=3E,, whence
Fo=1.07E,a% and F,;=1.96E,a%, (B4)

and soF =3.03E,a%¢. Thus, given the static loaB, this equa-
tion determines the axial strai) whence

N=(5.5x10 5F, T=0.1F and hX=—0.003F.
(B5)

Finally, we deduce from Eq.B1) that
hX.=0.003%F. (B6)

The fact thatN is much smaller thail suggests that asymptotic
approximations valid for smaJ should be useful. With errors of
0O(B?) asB—0, we easily obtaifd=h, & =g, T=nE,r2e, G
=0(B%), H=0(B), N=0(8%,
F,/(E,a%e)=6m(r,/a)?>=2.07

(which should be compared with the “exact” result E®4)) and
hX~ — 7 8%r2E .6 ~ — 0.003F,

using 8=0.17. This result foiX is in error by about 3%.
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Hamiltonian Mechanics for
Functionals Involving
Second-Order Derivatives

B. Taba.rro.k1 Hamilton’s principle was developed for the modeling of dynamic systems in which time is

Department of Mechanical Engineering, the principal independent variable and the resulting equations of motion are second-order
y UﬂiVEFSity of Victoria, differential equations. This principle uses kinetic energy which is functionally dependent
British Columbia, V8W 3P6, Canada on first-order time derivatives, and potential energy, and has been extended to include

virtual work. In this paper, a variant of Hamiltonian mechanics for systems whose motion
is governed by fourth-order differential equations is developed and is illustrated by an

C. M. Leech example invoking the flexural analysis of beams. The variational formulations previously
Department of Mechanical Engineering, associated with Newton's second-order equations of motion have been generalized to
UMIST, encompass problems governed by energy functionals involving second-order derivatives.
Manchester M60 10D, UK The canonical equations associated with functionals with second order derivatives emerge
Fellow ASME as four first-order equations in each variable. The transformations of these equations to a

new system wherein the generalized variables and momenta appear as constants, can be
obtained through several different forms of generating functions. The generating functions
are obtained as solutions of the Hamilton-Jacobi equation. This theory is illustrated by
application to an example from beam theory the solution recovered using a technique for
solving nonseparable forms of the Hamilton-Jacobi equation. Finally whereas classical
variational mechanics uses time as the primary independent variable, here the theory is
extended to include static mechanics problems in which the primary independent variable
is spatial. [DOI: 10.1115/1.1505626

1 Introduction been a positive definite function in velocities. Rodrig{i@scon-
sidered Lagrangians that contained second-order differentials, and

Hamilton's pr|n<3|p|e and his CE|et.’rated (_:anonlca! equatlons_aagveloped the corresponding Hamilton equations; since the for-
based on Newton’s second-order differential equations of motig ulation is dynamic, he did not suggest the source of these high

The same is true for the further development of this a”a'y“ca rivatives. In the following a theory for the Hamiltonian mechan-

approach to mechanics culminating in the celebrated Hamiltopg o oystems described by fourth-order differential equations is

Jacobi equation. Excellent accounts of the theory are availabledgejoped and is illustrated by an example invoking the flexural
texts in classical mechanics, e.g., Lanc4d$, Goldstein[2], analysis of beams.

Whittaker[3], Pars[4], Synge[5], and Logar{6]. Classical varia-
tional mechanics invokes kinetic energy functions, which are ex-
pressed in terms of momenta or velocities. This theory is then ] ] o
developed where the first derivative is the highest temporal d&- Functionals Involving Second-order Derivatives
rivative. Itis of interest to examine the extension of this theory to consider the following functional:
cases when the Lagrangian involves second-order derivatives;
such circumstances arise in spatial mechanics, and for such func- s
tionals the Euler-Lagrange equations are fourth order. Accord-
ingly, the generalization of Hamiltonian theory for such systems is
ideally suited to problems of beam flexure. In this generalizatiodhere
the mathematical structure of the Hamiltonian theory remains es- 2

e X ; . X i ay Py
sentially in tact; the change in the independent variable from time y,=— and y,=

. . . . X7 ax XX KZ
to space implies a change in the physics of the problem from
dete_rmlnlng trajectories (_)f particles in time to finding deflecteg,q Euler-Lagrange equation of this functional is given by
configurations of beams in space.
Rund [7,8] examined the theory of functionals depending on gL d[dL d? [ oL

second-order derivatives and in particular identified some difficul- gy dx |\ dyy * A\ Gy -0 @)
ties when the functional is not a positive definite function in the ] ] ] ) -
second derivative terms. Analogous difficulties would have arisenNow in analogy with classical mechanics a modified momen-
in Hamilton’s principle in dynamics had the kinetic energy notum is defined,

X2

L(X,Y,Yx Yx)dX=0 1)

X1

— f
Deceased. d_e IL(XY,Yx,Yxx) 3
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MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- xx

CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 21,ith this definition, Eq.(2) may be written as
2001; final revision, Feb. 28, 2002. Associate Editor: M. Ortiz. Discussion

on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depart- JL dlaoL dr

ment of Mechanical and Environmental Engineering University of California— — = | — — . (4)
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four ay dx|ady, dx

months after final publication of the paper itself in the ASMBURNAL OF APPLIED

MECHANICS. If a modified momentunp is also defined as
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defl gL dr _ B i
pZTTw_& ®) P=—Fyx— g (EIVx-
then Eq.(4) may be expressed as If q(x)=0,y will not appear inL and is therefore ignorable, the
associated momentum namely
L dp ©)
gy dx: P=—FYx—ElYxxx

This equation resembles Lagrange’s equation in dynamics, th

differences being the definition of the momenta and also the f"#len « will not anoear explicitly inL. and the HamiltoniarH
that in dynamics the independent variable is timiestead of the pp plicitly
=pYyx+ry.—L, will have a constant value across the beam. In

space variable. Again in analogy with classical dynamics we canis case
see that ify does not appear in the Lagrangian, i4./dy=0,
theny will be ignorable with a conserved modified momentum, El =
i.e.,p=c. =_—\2 2

The modified momentunp shown above is used here to dis- H= 3 Yoo Ay ™ 5 V5 ElY ol
tinguish it from generalized momentum. This definition for modi-
fied momentum is reserved here for use within the theory of sp&
tial mechanics whereas the generalized momerpaa@L/dy, is
conventionally associated with temporal mechanics. This distinc-
tion is made so that the following development can be compared
with those associated with classical Hamiltonian theory. Finally
the modified momentum defined above is now relabeled hypetvhich vanishes by virtue of Eq10). It is interesting to note that
momentum since it is the derivative with respectytg and not in contrast to the case of classical dynamics the energy terms
yy; the second temporal derivatiyg is not intrinsic in classical appearing in the Lagrangian that define the problem, are not suf-

| then be constant across the beamEIlf andq are constants,

dH
a = (ElYyoct FYx— )Yy

Hamiltonian mechanics. ficient to describe the Hamiltonian, i.e., an additional energy term
Now consider the total derivative &f with respect tox, is needed for definition of Hamiltonian in this case.
At this point the general solution of E(LO) is stated, for use in
ar ﬂJr L N JL N L 7) 2 later section,
dX (9)( é,y yX ayx yXX ayxx yXXX' ,
Substituting fordL/dy in Eq. (7) from Eqgs.(3) and(4), yields y=A+Bx+C sinA\x+ D CoOsAX+ % (11)
L _d L d | dL ) L
ox dx| - Gy, dx|\dye) | Yy where
and after simplification, , F
No=— 12
d L _dL g El (12)
&[ _yxp_yxxr]_&- ( )

andA, B, C, andD are constants to be determined from the bound-
If x does not appear explicitly ih, then Eq.(8) may be inte- ary conditions.
grated resulting in

—L+py,+ryw=H, a constant 9)

whereH is the Hamiltonian the system. The first two terms re3 The Canonical Equations

semble the form of the Hamiltonian for dynamics. The inclusion The second-order Newtonian equations of motion yield two
of the second-order term in the functional in E#)) modifies the first-order canonical equations; for the present fourth-order sys-
Hamiltonian through the third term above. tem, four first-order canonical equations arise. To derive these

. L equations, Eq(3) is inverted,
Example. In order to illustrate the application of the develop-

ments in this paper, an example is included and is revisited after Vi = UKV, Yy T).

various developments in this paper. A prismatic bar is subjected to

an inline compressive axial forcé and to a lateral distributed Here it is assumed tacitly that, appears irL in such a fashion
load q(x). For small deflection theory, the Lagrangian for thishat the above inversion can be carried out.

system is The Hamiltonian is now constructed,
El F
L= ?yiqu(x)yf 5 y2 HGY Y P = = LOGY, Y 0GY Y )+ PYst (XY, Yy T )
and the associated Euler-Lagrange equation is and leads to the canonical equations
ElYsoxt FY=0- (10) dH L dL ay Iy aL ( aL) A aL
—_ fr—=—— r——|—=-—
The hyper momentum, the bending moment, is ay dy dypdy dy ady Y| ay aay
aL since the term in the brackets on the right hand side vanishes by
AV Elyx definition ofr.

» . Now noting Eq.(6), the first canonical equation becomes
and the modified momentum, the effective shear, becomes
oL dr oH - _ @
p= (7—yx— dx ay dx

or Similarly
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gH oL dL oy Y Fyy+p=—Elyx

9_yx o 6’_)’; W/ ‘9_yx Tyx and now substituting int¢12) to eliminatep gives
_ +(r_ﬁ)ﬂ_’ﬂ_i A= (F Yt ElY s
W] Nx IYx the static equilibrium equation.
gL d [ dL aL d /[ dL
:{W_d_x(ﬁ) Ty Ax|dy

Again referring to Eq(3), the second canonical equation become% Generalization of the Principle of Least Action
In analytical dynamics the principle of Least Action, attributed

ﬁ:, ﬂ to Maupertuis and described by Tabarrok and Rimfaf], is
dyx  dx stated as
The third and fourth canonical equations are obtained readily as ty
dH dy aH  dyy ty

—=—and —=——.
9y dx g dx In this principle the independent variable tit¢he generalized

The four canonical equations are thus tabulated: displacementsy; and the momentg; are subject to variations.
The principle is subject to two constraints. These are the conser-
ﬁ __ @ ﬁ: ﬂ vation of the Hamiltonian and the coterminations of the displace-
ay dx ap dx ments(but not timg att; andt,, i.e.,
gH  dr JH  dy, H(P;,q)=C
dyx dx g dx’ Agi=569;+q0t=0 atty,t,.

Now consider the total derivative f: Generalization of this principle to functionals depending on

d JH  oH 9H 9H 9H second-order derivatives results in
&H(XxYNvavr):W"’WYX"'a_yxyxx"'%px'i'yrx- Xy
I . . . . . A (PYxt+Tyx)dx=0 (17)
Substituting the canonical equations into the right-hand side, and X1
simplifying gives
or
d aH
—H=—. X2 X
ax (2 J o(pyx+ ryxx)dX+(pyx+ryxx)(‘sx)|xi20-
X
Example. Consider again the prismatic beam under the inline ) ! ) . . .
compressive load and recall the Lagrangian Integrating the terms under the integral we write this equation
as
L= Yo axy—5v; o dp dr - dy %
27 27 f ~ i Y G Yt gy P YT | dXE POy +YyDX)
and the Hamiltonian “ X,
H=L—pyx+ryx +r((wx+yxxax)|§j=o. (18)

wherer =Elyyy. Now as in the case of dynamics we impose the constraints

Eliminating y,, from the Hamiltonian results in the following:

) 5 H(y,yx.p.,r)=C
e El r F o, r q
ST ER T Yt Pt an
or Ay=Ay,=0 at Xq,X,.
1 r2 = Thus in Eq.(29) the last two terms drop out by virtue of the
H=- —+qy+ = Y2+ pyx second set of constraints. It remains to show that the integrand in
2 El 2 Eq. (17) also vanishes by virtue of constancy téf
The canonical equations are then Now
oH dp M M M
o9 (13) M= Gy OV Gy O g P G o0
IH dr In terms of the canonical equations, this equation becomes
—=Fy,+p=— — 14
TP T g (14) SH= = DBy~ 105t YxOP+YydT =0
IH dy the integrand in Eq(17)
o dx (15)
H_r _d% 16y 5 Canonical Transformations
g El  dx’

Assembling the variablesy(y, ,p,r) as a state vectos and
Combining (13) and (15) to eliminater results in the equilib- transforming to a new state vect® whose components are
rium equation (Y,Y,,P,0) that is

Journal of Applied Mechanics NOVEMBER 2002, Vol. 69 / 751



Y=Y, Yx,prx) S, S S,

_p' —:r' _:Y (24)
Yx=Yx(Y,Yx,P,1,X) ay Yy P
S, 7S,
P=P(Y.yx.P.I,X) 95 _ _S
Y:¥x.:P R Yy and K P +H. (25)

R=R(Y.Yy,P.1 %), . . .
it is now required to develop the canonical equations in the ne(\SN The Hamilton-Jacobi Equation

system, so that they are of the same format as those in the oldNow let (P,R,Y,Y,) be theinitial state vectdr, that is
coordinates; the Lagrangian in these new coordinates is thus _
Y=Y(Yo0,Yx0:Po,l0,X)

L=PY,+RY,,—K
X x> Yx=Yx(Y0:¥xa:Po:"0,X)

whereK is the new Hamiltonian; that is
p:p(yO!yXOYDOer!X)

oK dpP K dY

O'D_Y:_& ﬁ_P_a rzr(yO!yXOvavrovx)'
To ensure thaty, and y,, are constant, seK=0. Then
ﬁf _ d_R % _ % dKI1dyo=dpge/dx=0 and thusp, is constant.
aY,  dx IR dx’ If S, is the generating function, the Hamilton-Jacobi equation

. . _ . can be written
The two Lagrangians can differ at most by the total derivative

of an arbitrary functiors, that is S, TH-0
~ ds ax h
L_L:(pyx+ryxx_H)_(PYx+RYxx_K):& (19) or
or &SZ(valyXJDIR) ( ‘982 ‘952)
———————— +tH{ XYY o | =
X2 . X2 Ix Iy~ dyx
L (L-L)dx= fx (PYxtTyxx—H)dx The variables in this nonlinear partial differential equation are
! ! X, y andy,; P andR are constants sindé=0. Now
X2
- [P0 9 _08 08 08 05
*1 ax  ox T ay Yt e Yot 5p Py
x2dS . Lo
_ f &dx=S(x2)f S(x,). (20) The last term vanishes sin€®is a constant and
X1

ds,
To effect this transformatio8, the generating function must be ax - HTPYt Y

a function of both the oldf,r,y,y,) and the new P,R,Y,Y,)
state variables. ThuS besides being a function afmust depend ©'
on the eight variablesp(r,y,y,) and P,R,Y,Y,); however, only
four of these can be independent since the two sets of state vari- Sfj Ldx+ constant.
ables are related by the four mapping functions. The generating
function may now be written as a function of four independent Example. The prismatic beam with in-line axial load
variables in one of 56 possible ways.
Consider for example the following four generating function El

forms: L= 7Y§x_ gyf—qy
S1=S1(Y,Yx, Y, Yy, X) where
$2=S,(Y,Yx,P,RX) o aL el
XX
S=S3(p.1,P.RX) W
and the Hamiltonian becomes
84284(p1r1Y1Y><1X) 2 =
r
and specifically the first form, H= >E1 + §y§+ qy+pYy,
(PYxF 1Y xx=H) = (PYx+RY,u=K) the Hamilton-Jacobi equation takes the form
ds, 9SS, 9IS IS, IS, S, JS,
_K_W+Wyx+a_y)(yxx+WYx+ﬁ_Y)<YXX' (21) —Z+H=0
Now matching the coefficients results in or
9S, S, S, S, 1?2 F
Py R (22) = T 3ET T 3 Y Hay+py=0
(751 (981 or
ﬂYX__R’ and K—W-FH. (23)
. %o, Yxo. Po, andr, are known constants, from the initial conditions when
If the second form is used, x=0.
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S, 1 [4S,\2 (1 S, One solution for the kernel functions is
" ﬁ(ﬁ) *(EFW W)yx“‘y—o- (26) j El

. a=-FEl=—w, b=c=0 wherej=+—-1.
The above equation must now be solved $(x,y,y,), from 2 2

which the specific form ofy(x) can be developed. In texts on : : wp g : ;
theoretical mechanic§1-10]), solutions for few examples of ;Lhnectl%?‘dsl?rg(ggf:zgggvgqoﬁorx?n and from this the following

Hamilton-Jacobi equation are obtained by splitting the generating

function into separate additive parts, i.e., X
Q(X):f q(s)ds
S2=Sox(X) + Say(¥) + Sy (V). @7) 0
Denham and Bucli1l] used a separable product f&r that is and
S(q,t) =S4(a)S(t) where in this cas¢, time is the independent X
variable andy(t) is the generalized coordinate. Other forms $or E(x):j e“*Q(s)ds
have been used, for example Saletan and Crdrb2};, Benton 0

[13], and Sanz-Serna and Caly/d4]. The aim is to represent the . == . . . .
Hamilton-Jacobi partial differential equation by decoupled Ordy_vrllt_er:ewf—Za/EI—132F/Elda:r31gs_|sfa”dummr¥ integration variable.
nary differential equations but the assumed form of the principal en from Eqs(32) and(33) it follows that

function S,, Eg. (26) will not yield decoupled equations. A new X

scheme for solving some nonseparable forms of the Hamilton- e(X)Z—J q(s)ds=a;—O(x) (35)
Jacobi equation has been suggested by the present authors

([15,16)). In this approach the generating function is formed by gnd
polynomial in terms of the primary variables. Thus a solution of
the following form is assumed for E§25):

S,=a(X)yi+b(X)y,y+c(X)y?+d(X)y,+e(x)y+f(X).

0

d0=ae = (1-e ) re UEX)  (36)

(28) wherea; and a, the previously defined constants of integration
. : : ) are associated with the initial momenta. Finally the secondary
Using this form forS, in Eq. (25) we find system function can now be determined from E29) as

da , db dc , dd de 1 (x
&YXJF &YXYJF axY +&yx+ axY f(x)=— —— | d2ds
2EI J,
+df+1 2ay,+by+d)%+ (by,+2cy+ x 2
ax T 2ET (2aYxt by+d)"+ (byx+2cy+e)y, _ 1 205 g ﬂ(ews_ 1)+E(s)| ds
2EI J, ®
F
+§y§+qy:O. Since the constanta; and a, are ignorable([1,2]), there are
constants of motiorB; given as follows:
Collecting the various polynomial terms 55,
, da 2a? F Bi=5 - =12 (37)
N &+H+b+§=0 (29) [
where 8, may be associated with the initial displacem&nand
db 2ab B> with the initial slopeY, .
VY gy + ﬁ+20=0 (30) Using the assumed form f@&,, then
ad(x) de(x) af(x) .
dc  b? = + =
2. . - _ i i Yx i y+ i i=12 (Sb)
y< dx+ 2E| =0 (31) da; da; da;

sincea(x), b(x), andc(x) do not depend owm; . To facilitate the
dd 2ad evaluation of the constants of motigs), the following deriva-

Vi gxt g te=o (32)  tives of f(x) are established:
de bd of 3 1 X s e az[l_ewa]z
Y gt E a0 (33) Ja. Elo Oe E(s)(1-e *)dst — - —>—
. d? o a4 ai[1+2wx—(2—e“%)?]
constant: d_X + E =0. ( ) — 5El w3

The first three of these equations are coupled,ib andc; these and

variables form the&ernel functions(Leech and TabarroKL5] and %6 W

Leech[16]). The solutions to the first three equations are noﬂzf ifxefz‘”sE(s)dsf aj[1-e 2] ay[1-e “*]?

unique and the constants of integration may be set arbitrarily. &x, El Jo 2Elw 2Elw?

solution for these equations subjected{®)=b(0)=c(0)=0 is

presented. Introducing the following integral&(x) = [5e~ “E(s)ds and
The kernel functions, b, and ¢ generate the solution for the G(x) = f§e~2“SE(s)ds into the above equations yields

primary system functions(e) ande(x). The latter, determined

from the last two differential equations are solved for the initial I FX0-G(X)  afl-e i
conditionsd(0)=a, and e(0)=«a; where «; and «, are con- day Elw 2El?
stants associated with the initial momeraand R. Finally the o2
secondary system functioiix is determined by quadrature from _ ay[1+20x—(2—e )]
the last equation subject to the initial conditibf0)=0. 2Elw®
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and is the differential of the above equation fg(x) even though it
o 2wx o —ex2 was generated as an independent generalized coordinate as the
Of G al-e ™) I a[1-e ] (38) second part of Eq(36b).
day El 2Elw 2Elw?

The constants of motion thus become, by substituting the partifl c luding C ¢
derivatives equations above into the two equati(36d), oncluding Lomments
(1—e-o%) F(x)—G(x) ) In the foregoing the variational formulations associated with
Bi=y— Vs + 5 (1—e™9%)2 Newton'’s second-order equations of motion have been ger)eral-
® Elw 2Elw ized to encompass problems governed by fourth-order ordinary
differential equations. This new formulation is applied, as an ex-
Y 5 (2wx+1—[2—e “]2) (3%) ample in the analysis_ of E_uIer-BernouIIi b(_eam_s. The mat_hematical
2Elw structure of the Hamiltonian theory remains intact and its further
extension to functionals depending on, say, third-order deriva-
tives, becomes largely self-evident.
k2 The canonical equations associated with functionals with
2Elw —(1-e 2 second-order derivatives emerge as four first-order equations in
(3%) each variable. The transformations of these equations to a new
. ) . . system wherein the generalized variables and momenta appear as
These two equations can be solved yofirst by solving fory, in  constants, can be obtained through several different forms of gen-

and

G(X) a,

Ba=e Y E gE, (e

the second equation abo(@8b), in terms of 3, erating functions. The generating functions are obtained as solu-
G(x)e® a, tions of the Hamilton-Jacobi equation. This theory is illustrated by
= B,e%+ = +e“”‘2E|w (1—e 29%) application to an example from beam theory the solution recov-

ered using a technique for solving nonseparable forms of the
Hamilton-Jacobi equation.

—e = 2EI ———(1—e “%)? Finally it is considered important to emphasize that in this pa-
per, classical variational mechanics that uses time as the primary
and then substituting in the abo{@8a) for y,; this yields independent variable is extended to include static mechanics prob-
. ox lems in which the primary independent variable is spatial.
718 + ( —e ) B G(X)e +ew>< a2 (1_872@()
y=F1 2 El 2Elw
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Modeling of Plastic

Strain-Induced Martensitic
c.carion' | Transformation for Cryogenic
B.skoczen” § Applications

CERN, European Organization

for Nuclear Research, A simplified model of martensitic transformation in stainless steels at cryogenic tempera-

LHC Division, tures is proposed. The constitutive modeling of plastic flow under cryogenic conditions is
CH-1211 Geneva 23, based on the assumption of small strairs0(2). The hardening law for the biphase
Switzerland material (@' martensite platelets embedded in thaustenite matrix) has been obtained

from the Mori-Tanaka homogenization. A mixed hardening with combined isotropic and
kinematic contributions is proposed. The constitutive model, containing a reasonable
number of parameters, has been numerically implemented and checked with respect to
experimental data. Finally, the model is applied to compute the martensite evolution in
thin-walled corrugated shells designed for cryogenic temperatures (mechanical compen-
sation system of the Large Hadron Collider at CERN)OI: 10.1115/1.1509485

1 Introduction enced by the plastic strain-induced martensitic transformation. As
Fe-Cr-Ni stainless steels are commonly used to manufactd result of the transformation the initially homogenouphase
components of superconducting ma netsyand crvodenic tran%%es its homogeneity because of the inclusions of the harder mar-
-0mpol pe . g mag yog Yetisite phase. The martensite platelets embedded in the soft aus-
lines since they retain their ductility at low temperatures and &
paramagnetic. The nitrogen strengthened stainless steels of S&HBVement of dislocations. Therefore the onset of martensitic
300 l_:)elong to the group of metastable austenitic alloys. Undﬁ nsformation leads to an increase in strain hardening. Results
certain conditions the steels undergo martensitic transformation

. - -~ showing the increase aof' martensite with strain for 304L and
cryogenic temperatures that lead to a considerable evolution 4LN stainless steel at 77 K have been reported by Morris et al.

"?ff“e”a' properti_es and toa ferromag_netic behavi(_)r. The_ mart _nL]. Similar studies for 304L and 316L stainless steels at 77 K and
sitic transformations are induced mainly by plastic strain fiel 4 K were carried out by Suzuki et &2]

and amplified by high magnetic fields. Spontaneous transrorma‘l’ransformation kinetics has been developed by Olson and
tions due to the cooling prqcess—identified with respect to so hen[3]. The authors attribute the strain-induced martensite
alloys—are not observed in the mOSt often_used grades 30 cleation sites to the shear-band intersectitthe shear bands
304LN, 316L, and 316LN. The series 300 stainless steels showai, iy the form ofs’ martensite, mechanical twins or stacking-
trgr?itme ggg&e?ﬁéepﬁa‘g:ﬁgﬂ?gr?:% rorrf1 E?ﬁefgé]:)er:ggecgfbt;%g;Sfau“ bundle$. The analysis leads to the following equation for the
centered tetragonal ferrif®CT) or to a hexagonak-phase. The volume fraction of martensite versus plastic strain:
most often occurringy-o’ transformation leads to formation of =1— _ _ o pyn
martensite sites dispersed in the surrounding austenite matrix. In Sar=1exp{=Al1-exp—as?) ]} @
the course of the strain induced transformation the marten%erea represents the rate of shear band format@nepresents
platelets modify the FCC lattice leading to local distortions. Thghe probability that a shear-band intersection will become a mar-
amount of martensite depends on the chemical composition, tefansite site, andh is a fixed exponent. The transformation curves
perature, stress state, plastic strains, and exposure to a magnetfume fraction of martensite versus plastic strahow a typi-
field. It is well known that the solutes like Ni, Mn, and N Consid'ca| Sigmoida| Shape with saturation levels below 100 per(}_egt
erably stabilize the-phase. For instance, the strain-induced mat),
tensitic content in the grades 304LN, 316LN at low temperaturesConstitutive modeling of steels exhibiting strain-induced mar-
is much lower than in the grades 304L, 316L for the same level ginsitic transformation was initiated by Narutani, Olson, and Co-
plastic strain([1]). _ _ _ hen[4]. The approach was based on the Voigt model with equal
The increase in martensite fraction promoted by plastic defaiepartition of strains in both phases of the two-phase composite. A
mation can be detected by measuring the magnetic permeabilifgre complex constitutive model has been developed by String-
w. The evolution ofu at low temperature corresponding to monofe|low, Parks, and Olsof6]. Here an isotropic hypoelastic formu-
tonic straining as well as to the cyclic loads for 304L and 316lation based on large strains was used. The inelastic stretching was
stainless steels was investigated by Suzuki €2l Tensile prop- decomposed into two parts: slip in the austenite and martensite
erties of stainless steels at low temperatures are strongly infihases and the nucleation component resulting from the transfor-
mation process. Local and global stress and strain components
10n leave from LaRama, Blaise Pascal University, Clermont-Ferrand, France.yere linked by using the Eshelby solutions for incompressible

20n leave from Cracow University of Technology, Cracow, Poland. ; ; ; ; [ f ; ; ; ;
Contributed by the Applied Mechanics Division oHE AMERICAN SOGIETY OF spherical inclusions in an infinite, incompressible isotropic matrix.

MECHANICAL ENGINEERSfor publication in the ASME GURNAL oF AppLIEDME- | e model was successfully validated on the Arjgébet of data.
CHANICS. Manuscript received by the Applied Mechanics Division, June 19, 200iffhe next complex constitutive modeling has been developed by
final revision, Apr. 3, 2002. Associate Editor: M.-J. Pindera. Discussion on the pagegvitas, ldesman, and Olsdid]. The phase transformation model

should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Department; of : : . i
Mechanics and Environmental Engineering, University of California—Santa Barbatpegl, based on the mesoscopic continuum thermOdynamlcs' Generali

Santa Barbara, CA 93106-5070, and will be accepted until four months after firgtion of the Prandtl'Reuss equations V‘{ith. iSOtrOPiC hardgning to
publication in the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. the case of large strains for elastoplastic isotropic materials was

nite matrix provoke local stress concentration and block the
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Fig. 1 Volume fraction of martensite versus plastic strain at
cryogenic temperatures

>

/pg i ep

used. The deformation gradient was decomposed into three pafig: 2 Volume fraction of martensite £ versus plastic strain &
elastic, plastic, and the transformation one. Elastic strains were
assumed small when compared to inelastic strains. A difference
between phase transformation under displacement and stress con-
trolled boundary conditions was demonstrated. Some further re- s P\ r _ _
cent constitutive modeling of TRIP steels for the temperature §=AT o, £PH((p~ P (£ ¢) @
above 77 K can be found ii8—11)). where

The constitutive modeling mentioned above was based on the,
assumption of large inelastic strains. However, if the strain-
induced transformation occurs at very low temperatutiemid
nitrogen 77 K, liquid helium 4.5 Kthen the steep part of the
transformation curveésee Fig. 1 remains in the domain of rela-
tively small straingdbelow 0.3. In such a case, constitutive mod-
eling can be considerably simplified and remains within the scope
of the classical theories of plasticity. The relevant elastoplastic The three regions shown above are thus simplified in the fol-
model with linear mixed(isotropic/kinematit hardening includ- lowing way:
ing the effect of strain-induced martensitic transformation is de-
veloped in the present paper.

A'is a function of temperature, stress state, and strain rate,

* p; is the accumulated plastic strain threshdidl trigger the
formation of martensite

» £ is the martensite content limit, over which the martensitic

transformation rate is considered equal tdHOrepresents the

Heavyside function.

* region I: no martensitic transformation unti} is reached.

« region II: the volume fraction of martensitg) is linearly
. A related to accumulated plastic straj) until ¢, is reached.
2 Transformation Kinetics « region Ill: no martensitic transformation abogg.

Olson and Cohef3] developed a one-dimensional model for .
the kinetics of martensitic transformation, called the OC model. Stringfellow and et al5] show that the stress state dependence

The evolution of the volume fraction of martensite as a functioﬁ best represented by the triaxiallty defined as the ratio of the

of plastic strain is derived by considering shear band formatiofydrostatic stress and the equivalent stress.

probability of shear-band intersections and probability of an inter- 1 tr o]

section generating a martensitic embryo. In this model, only tem- 3= 3 (5)

perature and plastic strain control martensite evolution. Different Te

improvements have been brought to this model, covering the with o.=372Ss, wheres is the deviatoric stress

fluence of stress statg5]) and strain raté[7]). However, a con-

Zilgerable number of parameters has to be identified for these mod- 5= o— %tr[a]l (6)
In the_ present paper, a simplified model will be _developed fOJndI is the identity tensor.

cryogenic applications. Generally, the volume fraction of marten-

site &£ can be presented in the following form:

= <P . . . . .
§=&(p.T.e%0) ) 3 constitutive Modeling of Plastic Flow at Cryogenic
wherep is the accumulated plastic strain defined by Temperatures
t 2 The present section aims at developing a mesoscopic model,
p:f §ep:spdr (3) capable of representing the hardening work and the evolution of
0 martensite content for the material under different types of loads
with &P the plastic strain rate and the stress tensor. (mpnotonic or cyclig. .T.he model is sufficiently simple to be eas-
Under isothermal conditions and for a given strain rate, tH¥ integrated into a finite element code. _
classical sigmoidal curve is shown in Fig. 2. The constitutive model is based on a classical approach to the
The curve may be decomposed into three regions: plastic flow, that is on linear mixed hardening. Since the material

. . . (stainless steglcontaining a limited amount of martensite, can be
« region | that corresponds to a nonlinear increase of the matescribed as a ductile austenitic matfixphase containing rigid

tensitic content with straifprimary phasg inclusions(a’-phase, dispersed in the whole volume of the RVE
« region Il where thex’ volume fraction(é) is linearly related (representative volume elemgnit is obvious that the material
to plastic deformation4P) ([12]) (secondary phageand retains its ductility also at cryogenic temperatures. As long as the
« region Il that corresponds to a saturation effétrtiary plastic flow mechanism is based mainly on the motion of disloca-
phase. tions (no serrated yielding classical models can be applied.

A simplified evolution law for the martensite content may be 3.1 Constitutive Formulation. Generally, the model is
proposed for region Il as follows: based on the following assumptions:

756 / Vol. 69, NOVEMBER 2002 Transactions of the ASME



1. The rate of increase of the volume fraction of the martensitic
phase¢, is given by

E=A(T.3,eP)pH((p—pe) (£~ £)).
2. Small strains are considerééhear additive rule The total
strain is given by

£=£%+ &P+ !N+ ££P8 (8)
where ¢ denotes elastic strain, ane and " stand for
plastic and thermal strain tensors, respectivelyy. is free
deformation called bain strain. It can be expressed in terms
of relative volume changdv, due to the phase transforma-

tion, as
£Ps= : Avl 9)
3
with
Vm_Va
= 6.
Av A (10)

whereV, andV,, represent the unstressed specific volumes
occupied by the austenite and the martensite, respectively.
The value ofAv is about 0.02—-0.05, depending on the alloy
composition([13]).

The expression for the thermal strain is given as a func-
tion of the dilatation tensor of the biphase matedaby the
general formula

de'"= (T, £)dT. (11)

Considering both phases isotropic and under the assumption
of global isotropy of the material, the tensarcan be re-
duced to

a=a"l (12)

with " the homogenized dilatation coefficient.
3. The constitutive law is given by

o=E:(g—P— &' ££9). (13)

(7) 5.

3.2 Hardening Law for the Biphase Material.
martensite is much harder than the FCC austenite. The martensite
platelets do not have the same orientation as the initial lattice. If
the movement of the dislocations occypastic flow then the
dislocations are mobile in the austenitic matrix and are supposed
to be stopped by the martensite inclusions. Thus, an elastoplastic
matrix and elastic inclusions are the principal components that
constitute the biphase material model.

is the second invariant of the stress tens6ris the back
stress tensor and-,, R stand for the yield point and the
isotropic hardening parameter, respectively.

It is assumed that the material obeys the normality rule with
the yield function postulated as the plastic potential. The
plastic flow rate is given by

3 sX

P
de’=3 3,(o—%)

d\ (18)
whereN\ is the plastic multiplier. Furthermore, it is assumed
that the yield surface of the biphase material is smooth and
convex. This assumption is justified by the fact that the mar-
tensite inclusions are considered elastic and the austenitic
matrix is elastoplastic with a smooth and convex form of the
yield surface. Neither instabilities of Drucker type nor the
serrated yieldingdiscontinuous in terms afa/de) are con-
sidered in the constitutive model. Thus, a combination of
elastoplastic matrix with elastic inclusiofisiphase compos-
ite) preserves convexity and regularity of the yield surface.
The hardening variabldgandX are altered by the presence
of martensite and the corresponding evolution laws are pos-
tulated in the following general form:

dR=F(&€)dp (29)

2
dX=dX,+ an+m=§Cd£p+G(§)dsp. (20)
Here, we assume that the back stress increment is the sum of
a classical term which corresponds to the behavior of the
austenitic phasdX, and a new term related to the presence
of martensite in the austenitic matridX . ) -

The BCC

A simple linear kinematic hardening law may be used to model

For isotropic material, the elastic stiffness tengois ex-
pressed in the form:

the plastic behavior of the pure austenite phase:

2
E=3kJ+2uK (14) dXa9=73 CodeP. (21)
with HereC, represents the hardening modulus for the austenitic phase
1 without the presence of martensite. For the biphase material, the
Jij =3 8% hardening modulu€, is replaced by the modulus. The coeffi-
3 (15) cientC is higher thanC, because of the interactions between the

1
K=1=3 and ljj=5 (8% + &b

and whereu=E/2(1+v), k=E/3(1—2v) are shear and

dislocations in the austenite and the martensite inclusions. Gener-
ally, a functiong(¢) is defined:

C=Cop(§) for O=é=<é (22)

bulk moduli, respectively. To simplify the equations, we asyith ©(0)=1 (see Fig. 3

sume that the elastic properties of the biphase material
not modified by the martensitic transformatidihe elastic
properties of the martensite and of the austenite are quite
similar). Nevertheless, the elastic properties of the austenite
+martensite structure, i.e., the elastic coefficients, can be
obtained by homogenization.
4. The yield surface is defined as

aror the sake of simplicity, the functiop(¢) has been linearized
nd takes the form:

p(§)=hé+1 (23)

whereh is a parameter that depends on the material. The function
(&) represents the part of the hardening process that is related to

the increase in volume fraction of martensitic inclusions and en-

hanced probability that a dislocation will be stopped by an inclu-

sion. Here, the martensite platelets are regarded as infinitely rigid

f(o,X,R)=J,(6—X)—0,—R=0 (16)
where
3
J(o—X)= VE(S_X):(S_X) a7

Journal of Applied Mechanics

small objects, embedded intephase, that act as the stoppers of
motion of dislocations. Thus, the amount of plastic work corre-
sponding to the same total strain considerably increases. Thus, the
back stress increment can be subdivided into two components:

NOVEMBER 2002, Vol. 69 / 757



[Enr+E*]71= ) f[E+E*] (31)
i=am
where f; denotes volume fraction of the constituarit and E*
stands for the Hill influence tensor.
Finally, the following equations are derived:

P 2 3kyy 7+ 3K* [ 1=¢ ¢ r
ure =
austenitic . 3(kiatk*) " 3(km+k*)

hase _

i 2upt+2 *=[ 1€ + ‘ } l (32)

T 4 BT 2(at ) 2t )|
4 9k, +8

Fig. 3 Evolution of the hardening modulus as a function of the K*=-u, and 2u*= M (32)
martensite content 3 3(kiat2/41a)

In what follows, it is assumed that the strain increment is
mainly due to the plastic strainde=A&eP. Thus, Eq.(27) be-
comes

2 2 .
dXa=dX a0+ dXae=3 Code?+ 5 Cohéde® (24) Ao=(Eyr—Ep:Aeh. (33)

As the plastic strains are represented by a deviatoric tetis®r
wheredX,; corresponds to the interaction between the disloc@ace is equal to J0then
tions into the austenitic matrix and the martensite inclusions.
For the pure austenitic phase, a linearization of the constitutive J:Ag?=0 and KiAzP=AeP.

equations of plastic flow in the vicinity of the current state leads to Finally, the hardening due to martensite formation becomes
the following formula(provided that the process of plastic flow is

active Ao=2(upTt— i) AEP. (34)
Ao,=E;Ae (25)  Inorder to obtain a sound response under cyclic loads, harden-
) ing has to be expressed in terms of plastic variabRss the
whereE, denotes the tangent stiffness tensor. isotropic hardening parameter addis the kinematic hardening

If the same strain increment is applied to the austenitgjack stregs
martensite structure, the stress increment is obtained by homogif pure kinematic hardening is considered, the increment of the

enization: back stress due to the mixture of martensite and austenite fraction
Ao, =EqAe. (26) (biphase materiglis obtained by
The increment of hardenindor the biphase materjaimplied by AXagrm=Ao (35)
the presence of the martensite is given by which leads to the equation
Ao=A0y.m—A0,=(Ey—Ep:Ae. (27) dX s m=2(mr— ia) d€P. (36)

The homogenization theory has been developed for elastic maif pyre isotropic hardening is considered, the increment of the

terials (matrix and inclusions ([14]). The matrix is considered nardening parameter is obtained by the second invariant of the
isotropic. In the domain of plastic deformati¢active processes stress tensor:

the linearization in the vicinity of the current state allows us to
apply the homogenisation technique. Thus, over one load incre- AR=AR,;m=J2(A0)=3(mr— Hia) AP (37
ment the matrix(y-phas¢ is represented by the correspondingyitp

tangent modulus:
2
Eia=3kKiad+ 211K (28) Ap= \/§Asp:A£p.

Hence, one obtains

where

-5 P M dR=dR,. n=3 d 38
Iu’ta_z(l_,’_v)l Ia_3(1_2v) an El_m R= Ra+m_ (MMTill’la) p ( )

i d that the inclusi iSotroni d elastic. T This formulation is valid exclusively for a small martensite
IS assumed that the Inciusions are 1sotropic and efastic. BSntent (at the beginning of the strain-induced transformation
corresponding modulus of elasticity is given by

Since the region Il at cryogenic temperatures corresponds ap-
Em=3kmnJ+2umK (29) proximately toeP<0.2 and the saturation level of the martensite
content is reached, a more general formulation of isotropic hard-
ening has to be applied. The generalization leads to the following
E E model:
Em=505y) M km=3@To, dR=(R.(£)—R)dp. (39)
Furthermore, the inclusions are supposed to be spherical artels approach is compatible with the model of isotropic hardening
uniformly distributed in the austenite matrix. The Mori Tanakavith a saturation leveR., included, as proposed by Chaboche
homogenizationit is assumed that the interactions between incly16]. The linearization of Eq39) in the vicinity of the initial state
sions are reduced to a homogeneous strain field in the inclusideads back to Eq(38). The contributions from kinematic and iso-

where

reads([14,15) tropic hardening are controlled by the Baushinger paramgter
_ _ defined by 6=8=<1.
En=Eur=3kurd+2uurK (30) Therefore, for mixed hardening, the following model is postu-
with Ey obtained from lated:
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» Kinetics of the martensitic transformation:

E=AT,e")PH((P— P (£L—6)) (45)
* The constitutive law:

o=E:(g— P — &' ££"9) (46)
» The yield surface:

flo,X,R)= \lg(s—x):(s—x)—oy—RZO 47)

P * The normality rule:

3 s—X

&2 io—x) "

(48)

* The hardening laws:

.2 _
. . . _ X=§(C+33(1_§)(MMT(§)—Ma))8p
Fig. 4 lllustration of the unloading and the reverse loading (49)

processes R=(1-&)(1-B)(3(ur(&)— ma) —RIP

4 Implementation of the Constitutive Model

dX=2b(&)B(pmr— mia)de (40) 4.1 Numerical Versus Experimental Results. The model
dR=b(&)(1—B)(R..(&)—R)dp. (41) has tieen_ impleme?tec_zl in a finite element code. The method of the
) type “radial return,” originally proposed by Wilking19], is used
Or in expanded form to integrate the constitutive equations for an active plastic process.
dX=28(1— _ deP 42y The radial return algorithm is based on the elastic-plastic split, by
A= O (mur— pa)de (42) first integrating the elastic equations to obtain an elastic predictor,
dR=(1-&)(1—-B)(3(umt— ta) — R)dp. (43) which is used as initial condition for the plastic retfg0]). The

Here, the termb(¢)=1— ¢ is added in order to compensate fOrnumerical algorithm can be illustrated in the following way:

the strong assumption that the martensite inclusions are elastic. It current state variables at the stepoy,, €7, X,, Ry, &,
tends to O for high content of martensite. In reality, the martensite .
inclusions shall rather be considered elasto-plastic. Therefore theit e|astic predictofiteration 0 for the step+1) obtained from
contribution to the hardening of the biphase material is slightly
smaller. Also, it is assumed that whér1 (y phase entirely re- o o
placed by thea’ phase the process of hardening linked to the =Ry, &nv1=&ns Pne1=Pn-
phase transformation is terminated. For the sake of simplicity the® test if the new state is elastic or not.
relevant functionb(¢) describing these effects has been linear- * if not (f¢  >0), the incrementd p andA? are computed.
ized.  the incrementA é=AAp is calculated.

The experimental curves, obtained under kinematically con-« the state variableg={o£",X,R,&,p} are updated from the
trolled cycling ([2,17]) show that, for symmetric strain loading,  eyglution law ai=ql,,+Aq).
the compressive stresses are higher than ter)sﬂe. .ThIS indicates the conditiong'nills ¢, is checked. |f§'n++11>§L. no further
strong Bauschinger effect that can be described in terms of the accumulation of martensite takes place
parameter introduced by ZyczkowsKl8]. The parametep is . : i1 '
related to the stress level at unloadifig) and the stress level * the iterative process stops fbgnﬂso.
associated with the reverse active procaess (), see Fig. 4. Itis

. 0
a total strain incremenio®, ;, €7, ,=¢€", X2, ,=X,, R,

For initial validation, the model has been compared to the ex-

defined by the following formula: perimental results obtained on 304L samples tested at 7af.K
o' +o'~ Morris et al.[1]) under tensile monotonic loadingig. 5). Iden-
B= m. (44) ftification of the material parameters is based on two curves: stress
— 0o

versus strair(tensile testand volume fraction of martensite ver-
It varies between 0 for the isotropic hardenifip Bauschinger sus plastic strain. The first curve is obtained from a simple tensile
effech and 1 for the kinematic hardeningerfect Bauschinger test at a given temperature. Simultaneously, the magnetic perme-
effect). Thus, it allows to describe the ratio between isotropic arability of the sample is measured under a predefined magnetic
kinematic hardening. This parameter has to be determined expéigid. A correlation between the volume fraction of marten&ite
mentally (see Table L martensite is ferromagnejiand the magnetic permeability of the
. o . ) sample provides the necessary information for construction of the
3.3 Final Set of the Constitutive Equations. The final Set  gacong curve: volume fraction of martensite versus plastic strain.
of the constitutive equations rgduc_es(tncremental formulation ~ the numerical simulation is terminated just after having
has been replaced by time derivatives reached the strain level 0.2 which—in this case corresponds ap-
proximately to the martensite content saturation leeeld of re-
gion 1l). Figure 6 shows that the model is equally applicable to
Table 1 Set of data for the 304L at 77 K (* obtained from Su- cyclic loads, even if the full set of experimental data allowing
zuki's data ) determination of the material parameters is not yet available. The
results presented in Figs. 5 and 6 were obtained from the follow-
E v ay 0 h A P & B Av  ing set of datgTable 1.
[GPd [(MPa]  [MPa] Next, the model has been compared to the experimental data of
190.0 0.3 580.0 750.0 1.9 423 0.004 0.9 0.45 o0.04wamoto et al[21]. Figure 7 shows the comparison between the
numerical and experimental results for monotonic loading of
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Table 2 Set of data for the stainless steel 304 at 128 K (corre-  SUS304 samples, tested at 128 K. Here, inelastic strain corre-

sponding to Iwamo@o’s data ) (T stands for tension and C sponds to the plastic straiP and the bain strah&sbs.

stands for compression ) The results shown in Fig. 7 were obtained from the set of data
o, H B C, Av & A pA%) [nTable2. . . .

[MPa] [MPa] In both casegFig. 5, Fig. 7 the numerical model shows good

correlation with experimental data for total strain not exceeding
T C T C g5

190.0 0.3 600 1.8 0.45 1200 0.05 0.98.3 6.3 2.8 0.5

E v
[GP4

4.2 Application: LHC Bellows Expansion Joints. The
model has been used to determine the evolution of martensite
content and its impact on the behavior of thin-walled corrugated
shells (316L bellows expansion jointsused in the mechanical
compensation system of the Large Hadron Collid@ERN,
Geneva. These cryogenic bellows are subjected to particularly
severe thermomechanical loa@®oldown/warmup between 293
K and 1.9 K and pressure logdénalysis of evolution of marten-
site content in the initially austenitic structure turns out to be of
particular importance for the bellows remaining in direct proxim-
ity of the beams of particlegprotons, ions or close to the ex-
tremities of the supraconducting magnéis their stray field.
Since thea’ martensite is ferromagnetic a massive phase transfor-
mation (above 50% may have a serious impact on the magneti-
zation of these thin-walled components. Therefore, failure of the
expansion joint is related on one hand to the state of inelastic
strain in the convolutions, evolution of damage and propagation of
Fig. 8 Model of half-convolution of a cryogenic bellows a macro-crack. On the other hand, magnetic permeability exceed-
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Fig. 9 Accumulated plastic strain along the half-convolution of cryogenic
bellows (at 77 K)
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ing a predefined level is also classified as a magnetic failure. Facknowledgments
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Using a Creep-Rate-Dependent
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. _ Enginegring, An analysis of the frictional mechanics of a steadily rotating belt drive is carried out
United States Military Academy, using a physically appropriate creep-rate-dependent friction law. Unlike in belt-drive
West Point, NY 10996 mechanics analyzed using a Coulomb friction law, the current analysis predicts no adhe-
e-mail: im8022@usma.edu sion zones in the belt-pulley contact region. Regardless of this finding, for the limiting

case of a creep-rate law approaching a Coulomb law, all predicted response quantities
(including the extent of belt creep on each pulley) approach those predicted by the Cou-

. T. M WanV lomb law analysis. Depending on a slope parameter governing the creep-rate profile, one

Advanced Science and Automation Gorporation, or two sliding zones exist on each pulley, which together span the belt-pulley contact
113 Derosa Drive region. Closed-form expressions are obtained for the tension distribution, the sliding-zone

_ Hampton, VA 23666 arc magnitudes, and the frictional and normal forces per unit length exerted on the belt.

e-mail: tamer@ascience.com A sample two-pulley belt drive is analyzed further to determine its pulley angular velocity

ratio and belt-span tensions. Results from this analysis are compared to a dynamic finite
element solution of the same belt drive. Excellent agreement in predicted results is found.
Due to the presence of arbitrarily large system rotations and a numerically friendly
friction law, the analytical solution presented herein is recommended as a convenient
comparison test case for validating friction-enabled dynamic finite element schemes.
[DOI: 10.1115/1.1488663

1 Introduction belt drives under steady operating conditions. A comprehensive
view of studies on belt-drive mechanics after Grashof and up to
C : : o 81 is given by Fawce[8]. The aforementioned studies of Euler

elements. Common applications include drives transmitting po S‘Qd Grashof developed the classical creep theory of belt-drive

from electric motors to rotational elements in home applianc - ;
such as washing machines, vacuum cleaners, and tape drif)seratlon. In this theory, a Coloumb law governs the belt-pulley

from gas engines to cutting elements in lawn and garden equ %ctlonal contact, and the belt is treated as a string which adheres

Belt drives are widely used to transmit power between machi

 the pulley in an initial adhesion arc, and creeps against the

ment such as lawnmowers, rototillers, and snow blowers; agéjlley in a subsequent slip arc. Classical creep theory was re-
from the crankshaft pulley to accessory pulleys in automobil wed by Johnsoiid], and recently updated with new inertial

and other transportation vehicles, where the accessories incly X A
. L ' eftects by Bechtel et al5]. Other studies have considered the
alternators, air conditioning compressors, and power steerif chanics of the belt-drive with belt shear effects, including Fir-

pumps. The life of the belt drive in all these applications depen . .
critically on the tension magnitudes in the belt spans and the _nk[6_] and Gerb_er1[7,8]. Gerbert[?,s] z_ilso_ |ncluded_ seating/
Unhseating and radial compliance effects in his analysis. Townsend

tent of belt creep on the pulley. . . . .
Even in a belt drive transmitting a constant torque betweearpd Salisbuny9] derived the power loss expression and the effi-

machine elements, the translating belt is subjected to cyclic tefls oY limit of a belt drive assuming the validity of the classical

sion variations as its tension transitions from a larger to a small%rrelv(leﬁcthhergrcﬁm emphasis of belt-drive studies has been on the
tension on the driver pulley, and then from a smaller to a larg P

r : : . .
tension on each driven pulley, before returning again to the driva gzrgfcir; ?i%?]nssee?f;}ut;ggqggﬁe(;ﬁ\elggniﬁbéledtdgrgﬁsaa?()%gglé' ten-
pulley. As a result, fatigue of the belt, and the subsequent perms oner which aftem Ft)s to take up belt slack in the drive system
nent set and loss of compliance, is a large consideration in b P P y :

drive design. Additionally, the belt is subjected to sliding wear a ese studies have considered both the rotational response of the

the belt creeps against the pulley during tension transitions. T};ﬁglleys, and/or _the transverse response of the_ axially moving belt,
wear can have a detrimental effect on the belt's friction chara(:teai’.r-]d have S|mpllf|ed the belt-pulley contact to Ilnear_ stretchl_ng and
istics as the belt surface deteriorates, and can lead to gross g%Cu(I)tl:r? dffgpﬁ'rr;g irc;]g(rj]e:f\éBaircke%te?lltsixdlmvgr?lt-g[rgﬁ Stteun(;leogs
and noisy operation. These considerations motivate the need f g P! 9 ’ 9 .
thorough understanding of belt-drive mechanics, and the need r periodic rotational response of the serpentine belt drive, and
belt-drive models which can accurately predict belt-span tensio glchman et all12-14 studied the couplgd rotatlonal_ and trans-
and belt creep. Verse response of a three-pulley prototypical serpentine belt drive.

The earliest studies of belt-drive mechanics include Leonalﬁ:amy et al[15,1§ included a Coulomb dry friction damper to

cules stay([1) of & belt wrapped around a fd puley on, > "<TET 1T element &nd iso e re serentine e
capstan, and Grashof's study?]) of the frictional mechanics of  resp : Y
the tensioner arm and developed a complex modal approach to
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF analﬁlze the drive’s r?tatl?jr.]al respons(ej. b Iv belt-dri
MECHANICAL ENGINEERSfor publication in the ASME GQURNAL OF APPLIED ME- The two groups of studies reviewed above, namely belt-drive
CHANICS. Manuscript received by the Applied Mechanics Division, May 30, 2001mechanics studies and serpentine belt-drive dynamic response
final revision, Sept. 25, 2001. Associate Editor: R. C. Benson. Discussion on tgeudies, have had little connection to each other due to the lack of

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Depfsnamic excitation in the belt-drive mechanics studies, and the
ment of Mechanics and Environmental Engineering, University of California—San

Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months af@fK Of true frictional belt-pulley modeling in the serpentine belt-
final publication in the paper itself in the ASMBURNAL OF APPLIEDMECHANICS.  drive studies. Leamy et a]18—2Q attempted to bridge this gap
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Fig. 1 Friction laws used in the belt-drive analysis: (a) Coulomb law, (b) creep-rate-

dependent law. The three linear regions of the creep-rate law are referred to as the
left-most, middle, and right-most sliding regions.

by studying simplified dynamic models for sm§lL8]) and large explored for several values of the friction profile parametgr
([19,20) rotational speeds. These studies considered individuBhe resulting sliding regions, their tension distributions, and their
pulleys only, and did not calculate the global response of tlecations on the pulley are discussed. Comparisons to the dynamic
entire belt drive. Furthermore, the case of medium rotationfihite element model of21] are made.
speeds was not addressed.

A true modeling of the belt-pulley contact and the rotational
response of a two-pulley spring-supported belt drive has recengly ; ; ;
been completed by Leamy and Was$84]. In the latter study, a y . Rewew of Mechanics Resulting From a Coulomb
dynamic finite element model of the belt drive was develope%l”Ct'on Law
using truss elements for the belt, rigid constraints for the pulleys, Before focusing attention on the creep-rate-dependent friction
and a penalty formulation to model the belt-pulley contact. Niaw, belt-drive mechanics associated with the Coulomb friction
restrictions on the rotational speed were made. The model is géaw are reviewed first. A steadily rotatingconstant applied
eral enough to consider arbitrary excitation at the pulleys, andtmrques and angular velocitleBelt drive with belt-pulley contact
capable of capturing rotational pulley and belt transverse rgeverned by a Coulomb friction law develops a singtéhesion
sponse. A trilinear creep-rate-dependent I@22—-24]) shown in andslip zoneon each pulley. Together, the adhesion and slip zones
Fig. 1 and defined in Section 3, was chosen to govern the contaptin the entire belt-pulley contact region. As depicted in the ex-
friction due to its physical relevandg23]), particularly for small ample two-pulley belt-drive of Fig. 2, the uninterrupted adhesion
sliding velocities([22]), and its numerical friendliness. By appro-zone begins at the point of contact of the pulley with the incoming
priate choice of a friction profile parameteg, this law can be belt span, and terminates at the beginning of the slip zone. The
made to approach a Coulomb friction law. slip zone then extends to the point of loss of contact between the

The present study considers the belt drive studied by Learbglt and the pulley. As the name suggests, the belt adheres to the
and Wasfy[21] and analyzes itsteadyoperation(constant angu- pulley throughout the adhesion zone. The arguments for the exis-
lar velocities and constant applied torque&n exact belt-drive tence of only a single adhesion zone and not multiple, as well as
solution for the trilinear frictional creep-rate law is developed, anfdr its location at the inlet, are discussed[#.

Slip Zone
Adhesion
Zone
ﬁ \ ﬁriven k
’}i (DDriver Q
Slip Zone Adhesion
Zone

Fig. 2 Location of adhesion and slip zones on the driver and driven pulley using a Coulomb
friction law
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C.v.

Fig. 4 Control volume of driven pulley in the deformed con-
figuration

Fig. 3 Belt element with control volume

If the pulley is assumed to be rigid and the belt stretching is —un(s); slip zone (driver
assumed to be isothermal, the adhesion condition implies the belt _ . ; ;
must maintain a constant strain in the adhesion zone. This further f(s)=1 wn(s); slip ZF)ne (driven), (4)
implies that the belt tension is also constant throughout this re- 0; stick zone
gion, and thus no frictional forces are supported by, or exerted Qfnere ;, denotes the coefficient of friction. A linear constitutive
the belt. In contrast, the betteepsagainst the pulley in the slip |a relates the belt tension to the straifs)
zone as its strain increaséw decreasgsand the tension transi- '
tions from low (high) to high (low) tension. Coulomb’s law dic- T(s)=Ke(s), (5)
tates that, for a nonzero creep rate of the belt relative to the pull
equal and opposite fully developed frictional forces per unit b
length of the formu* n act on the belt and the pulley, where
denotes a coefficient of friction anddenotes the normal force per
unit belt length.

The steadily rotating belt drive has recently been re-addres
by Bechtel et al[5] and their analysis has updated the known T(s)
analytical solution to include previously undocumented effects U(S):Uref<1+8(s)):"ref(1+T)' ©)
due to belt velocity changes in the slip zone. Their work, which ) ) ]
assumes a Coulomb friction law, is reviewed here before analy¥bile conservation of linear and angular momentum yield the re-
ing the belt drive with a creep-rate-dependent friction law. Th@tionships

ereK=EA, denotes the belt modulus alddenotes the belt

aterial elastic modulus.

Conservation of mass applied to belt material entering and leav-
ing the control volume in Fig. 4 yields an expression for the belt
S\{eeclocity in terms of the tension,

review analysis differs from Bechtel et 5] in that a spring T = Ty+k(lg—A)=—G(v_ +vp) @
support has been added to the driven pulley, and a more exact belt ’
length compatibility relationship replaces their assumption of an (Th—TOR+GRv_ —vy)=M, (8)

equally distributed tension differenceT in the belt spans.

The tension distributiof(s) at any distance along the pulley
arc can be derived using the element control volume shown in F
3. A momentum balance in the tangential and normal directio
yields the relationships

where subscriptk andH refer to quantities evaluated for the high
i’:\nd low tension spand/ denotes the externally applied moment
8h the pulleysk denotes the support spring’s stiffnegsdenotes
e initial spring deflection, and denotes the displacement of the
driven pulley’s center from its initial position. A physical initial
d d state, denoted by subscript 0, corresponds to the initial belt drive
—T—f(s)=G—=-v(s), (1) configuration of zero belt velocity, zero belt strain, zero applied
ds ds moment, and initial spring deflectidg. Due to the presence of
T(s)— Gu(s) Iy, this state _isnot an e_quilibrium state.
=—" __— 2) The adhesion condition at the inlet of the belt-pulley contact
R region leads to boundary conditions relating the pulleys’ angular
velocities to the span tensions,

n(s)

wheref(s) denotes a friction force per unit length(s) denotes
the belt velocityn(s) denotes the normal force per unit lengih, V= Ropiver=0 e 1+ T K), 9)
denotes the pulley radius, and

v =Ropiven= Ve 1+ T /K), (10)

@) wherewpyiver, ®priven denote the driver and driven pulley angular

denotes the belt mass flow rate. The quantities) andA(s) refer Vvelocities, respectively. A final relationship equates the reference
to the belt density and cross-sectional area, respectively, whildelt lengthL " calculated from the geometry of the defornted
subscript ref refers to a convenieffictitious) reference state de- operating configuration to the geometrical belt length in the un-
fined as quantities evaluated at zero belt strain. The friction forceformed initial staté.5°",

per unit length exerted on the belt is governed by a Coulomb law

(see Fig. 1 evaluated in conjunction with the isothermal adhesion ( fﬁ di _ Lbelt) = (2LSP™ 27rR=L2°" (11)

and slip zone conditions, 1+eg(l) T '

G=p(S)v(S)A(S) = pre reirer= CONStaNt,
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wheredl is an element of length in the deformed configurationwhereT,, (I;—A,), andv, are the span tension, spring deflec-
and L¢P denotes the initial span length. The deformed spdion, and belt velocity in aequilibrium configuration correspond-
length LSP"js related to the initial span lengthg®® through the ing to zero applied moment and nonzero belt velocity. Equation

driven pulley displacement, (17) is an assumption stating that the applied external moment
causes a redistribution of tension such that the required tension
LoPan= | EPAN- A (12) difference is split equally between the high and low tension spans.

. . . . . Equation(18) follows from Eq.(7) evaluated for the equilibrium

and is used in the calculation of the closed integralliy. Equa- : . . - .

tion (11) is an exact relationship not utilized by Bechtel et[&l, configuration, while Eq(19) follows similarly from Eq.(6). This .

and together with Eq(8) replaces their assumption that the ten-somt'or.‘ is also explored numerically with the example belt drive

sion differenceAT required to balance an externally applied m09f Section 4.

ment on the pulleys is distributed equally to the low-tension and

high-tension belt spans. 3 Mechanics Resulting From a Creep-Rate-Dependent
Evaluation of Eqs(1)—(6) leads to an expression for the driverFriction Law

pulley belt tension in the slip region ) ) ) . ) )
An analysis of the belt drive depicted in Fig. 2, using a piece-

KPrerrZefAref wise linear creep-rate friction law, as shown in colutbpof Fig.
m 1, retains most of t_he gove_:rning equatio((E_qs. (1-3, (5-98),
(11), (12)) derived in Section 2. In addition, the creep-rate-
where 0<s<R¢, and where Eq4) has been evaluated using thegependent friction law replaces the Coulomb friction &g
driver-pulley slip-zone expression and arc meassifgas been (4)),
taken to be zero at the start of the slip arc. The integration con-
stantC, can be obtained using the boundary condifiG,e(0) ( mn(s)

=Ty, while the slip arc metrigs can be obtained with the bound- —un(s), Vrel= Vs

ary conditionT pive(R®) =T, , yielding un(s) un(s)
< ,

Toriverl(S) = + Cle_(#/R)S: (13)

THK*PrerrzetAref(TH+K) —(ulR)S KPreferefAref f=q Vst - Vg Urel s (20)
Toriver(S) = 2 e t
K= preft rerPref K= preieiAret un(s)
(14) un(s), o
B 2 \ s
b= ML pmfvfzefAVEf(THJrK) _ (15) Whereu denotes the slope of the friction profile for sliding ve-
2o\ TLK = pre reAref( TL+K) locities v, Near the origin. The sliding velocity, for the belt
A similar procedure yields thdriven pulley slip arc tension, drive is defined as
Ve=v(S)— Ro, (22)

TLK_PrerrzefAref(TL+K) (WIR)S KPrerrzefAref _ ) )
K— pre oA € + mv where w takes subscripts Driven or Driver. Note that the contact
refrefref refre “316 boundary conditions of Section 2, Eq®)—(10), are no longer
valid for the present analysis due to the absence of an adhesion
where thedrivenpulley slip arc metric is again given l5). The  zone (for reasons to be shown beldwn the driven and driver
adhesionzone expressions for each pulley are simply given asulleys.
Toriver(S) =T and T iven(S) =T, for —R(7— ¢)<s<O0. . o
D}r{vr?éw)ing the beItD’gverTe(fe)rencLe densitgprgf), )reference cross- 3.1 Single Sliding Zone on Each Pulley—Smalb,. For
sectional areak ), and modulugK), the spring’s constantk) small values of the friction slope parametey, the velocity dif-
and initial deflection ), as well as the externally applied torqueference between the belt and the pulleys for any arc measite
(M), the pulley radiugR), the operating speed of the driver pu"e)}le in the middle zone of the friction profile. Thus, for all
(@oriver), the friction coefficient(,), and the initial span length f(S)=v We=vs(v(S)— Rw). (22)
(LEP*), the unknown quantities remaining to be found consist of . ) ) ) )
the span tensionsT( ,T,), the driven pulley’s angular velocity Two possibilities exist for the existence of adhesion and slip
(wprver), the reference velocityv(e), and the spring displace- arcs: (1) a first pOSSIbIIIty ane_llogous to the state arising in the
ment (A). Specifying numerical values for the known physicapoulom_b analygls—an adhesmnlarc starts at the inlet of_thg con-
quantities described above, a numerical solution of Egjs.(7— actregion and is followed by a slip arc, @ a second possibility
12), (14-16 yields the remaining unknown quantities. Thesé! Which a single slip arc spans the entire contact region. A third
equations are easily reduced to a single equationTigr for possibility in which a slip arc begins at the contact region inlet
which a root solver can be employed. This solution strategy #d is followed by an adhesion arc cannot occur since increasing
followed for an example belt drive in Section 4. Note that 8q) = &€ metrics always results in movement on the friction profile
is an Eulerian description of belt compatibility, and requires a@way from the origin, and thus away from the possibility of hav-
integral calculation over the entire closéeformecbelt length. As g an adhesion arc. This is true regardless of the magnitude of the
such, Eq(11) includes terms arising from the belt spans, the sliffiction slope parametes. The aforementioned movement con-
zones, and the adhesion zones. traint can be seen most clearly by _ex_ample: if th_e belt is moving
A second model can be developed when Egs.and (11) are slow_e_r[fasteﬂ_ than_ the pulley, the frlc_tlon force will be negative
supplanted by the approximate equations used by Bechtel et[EPS'“V‘B]I which will tend to decreasgincreasg the tension and
[5]. Their equationgadapted to the spring-supported belt drive ifhUS decreasgincreasg the belt velocity by Eq(6), which will

Toriven(S) =

this study are as follows: ultimately result in a more negati\[po_sit_ive] velqcity difference
ve @and thus movement along the friction profile away from the
M K origin.

Ti=Tem SR’ Tu=Tet SR’ Te:LSTnAe’ 17) The first of the two adhesion/slip arc possibilities would appear
0 to be most likely since the creep-rate law shares with the Coulomb

—2Tetk(lg—A)=2Guv,, (18) law the same zero friction point at zero relative velocity. This

would allow the belt to move in the adhesion zone with the same

vo=vod 14 E) (19) velocity as the rigid pulley, and thus to maintain a constant strain
e Tref K/’ and to experience no friction forces, as in the Coulomb analysis.
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To examine this possibility, Eqg1-3), (5), (6), (21), (22) are 3.2 Single Sliding Zone on Driven Pulley, Dual Sliding
evaluated for the driver pulley in order to determine the drivefones on Driver Pulley—Moderatevs. At larger values of the
pulley’s tension distribution in the slip zone: friction slope parametew, the transition from high to low ten-
sion on the driver pulley cannot be compensated for by a single

Ranver_ 1) 23) sliding zone, and movement along the friction profée arc met-

U ret ' ric sis increasegresults in development of a second sliding zone
. . . composed of fully developed frictional forces lying in the left-
whereC, denotes an integration constant. The arc metdan be most zone of the friction profile. The driven pulley boundary con-
chosen to be zero at the start of the slip zone, without 10ss gftions, angular velocity, and tension distribution of Section 3.1
generality. Thus, using the boundary conditions (Egs. (29—(31)) remainvalid. A further discussion on the above

Tomed 0)=Th UDriver(O):Uref(1+TDriver<o)/K):RwDri\(;r is given in Section 3.4. The tension distribution for the driver

Toriver(S) = Cqevsvret/(K=Cures.y K

pulley must here be divided into a distribution for the middle
sliding region, represented By 1(s), and a distribution for the

to calculateC; andv,f, it is found that left-most sliding region, represented Byg »(s). Solution of Egs.
K R (1-3), (5), (6) (20) results in the driver pulley tension distribu-
_ @Driver T @priver _ tions:
vref——(l+TH/K) , Ci=Ty—K —Uref 1) 0, (25)
. - . [vg0ref/ (K= G en)]s Rawpriver

with the result thafl 4.(S) =Ty throughout the sliding region. Tor(s) =Coetsrel Kl — 1)

As a result, the tension is a constdit over the entire belt-pulley ref

contact region, and hence an unacceptable prediction is made that 0<S<Répri, (32)

no torque is transmitted by the driver pulley, violating Eg). A

similar violation occurs for an analysis of the driven pulley, and KGu (et
more generally, for any proposed solution which includes an ad- TpraAS)=5—F<—
hesion zone anywhere on either pulley. Therefore only solutions ' K= Guyer

proposed with no adhesion arcs appearing on the pulleys Hhere to reduce complexity, the arc metsics initialized to zero

valid—an unexpected result considering the existence of adhesiany o «iart of each sliding region, and whedgyf; , dpr,) denote

arcs i.” the Coulomb e_malysi_s. . . slip arc magnitudes for the two distributions. The updated bound-
In light of the previous discussion, only the second pqss'zgry conditions for the driver pulley are expressed as
solution remains plausible, and is examined next. The tension dis=

+Cae MRS 0<s<Re¢pre, (33)

tribution given by Eq.(23) now holds for the entire contact re- Tori(0)=Th, ToriRépr1)=Tor1
gion, 0<s<R, with boundary conditions: ' ’
=Tpr20), TpraARPpr2)=TL, (34)
Torive0)=Th, (26)
vg(v R —Rwpyiver) = — un R , 35
TDriver(RW):TL- (27) s( DR,l( ¢DR1) Drlver) M DR,l( ¢DR1) ( )
Satisfaction of Eq(26) gives an expression fa€,, and thus the borat Pora= T, (36)
tension distribution: where Eq.(34) represents tension boundary conditions Jag,
R denotes the tension at the transition between the two sliding re-
TorvedS)=| Tu— K(i"e’_l) elvsvrer/(K=Guyep]s gions, Eq.(35) expresses a friction force matching condition, and
Uref Eq. (36) insures that the two sliding regions span the entire con-

tact region. Satisfaction of Eq$34), (35) yields the integration
(28) constants C;,C3) and final expressions for the tension distribu-
tions, the transition tensiofipr,, and the slip arc magnitudes

Satisfaction of Eq(27) also gives an expression for the referenck®or1: or2):
velocity v, but not in a convenient closed form. This expression

Rwpriver

+K 1].

Uref

- . A . Rwpyi
will be evaluated numerically for an example belt drive in Section Tori(S)=|Ty— K(m— 1) elvsvret/(K=Gurepls
4. ' ref
A similar analysis for the driven pulley with the boundary con- R
ditions K| e l) : (37)
Uref
Toiven(0)=TL,  Torven(RT) =Ty (29)
. . T . KGu res KGuyet | _ /Rs
yields the tension distribution and the driven pulley angular ve- Tpr2AS)= WJF Tori— K—Go_I¢ RS (38)
locity Uref Uref
2
Rwpyiven - K[vsR*@priver— v sRU et £ GV ref]
) = — K| ==V [vsvref/(K—=GuyeIs Tori= 39
Tomer)=| o K( 1] le ORI~ Ropert K~ Gy (39)
Rwpyi T
K| e 1) ., 0<s<Rm, (30) B Rwpriver— Ure| 1+ —o=
Uref K—Gu s K
PpR1= 0RO In T , (40)
_ Uref T +K T Ropriver— Uref( 1+ -
wDriven_KR(e[”svref/(K*GUref)]ﬂ'Rf 1) [( I—+ ) K
X elvsvrer/(K=GuredITR_ (T, 1K), 31 Gures
_ (T )] N (31) Tor1— Gurer— TreTDRl
Expressions for the normal force and belt velocities for each pul- dpro=—1In S 41)
ley (nDriver(S)rnDrive.n(S)variver(S)variven(S)) follow from EC]S. K T, —Gv ffief'r
(2) and (6), respectively. L etk Ot
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The final boundary conditiofEq. (36)) is evaluated numerically 3.4 Discussion on the Existence of Multiple Sliding Zones.

for an example belt drive in Section 4 in order to determine th&s mentioned in Sections 3.2 and 3.3, a second sliding zone ap-
reference velocity ;. pears on the driver and driven pulleys for larger values,0fThis
value ofvg can be analyzed for each pulley from closer inspection
of Eqgs.(35), (45).

Specifically, the critical value af ¢ for which a second sliding

3.3 Dual Sliding Zones on Each Pulley—Largevs. For
still larger values of the friction slope parametey, the driven

pulley also develops a second sliding zone composed of fu : :

developed frictional forces, similar to the driver pulley of Sectiog%,nse?t?npge er 02 reaggvre]gt?#getﬁgf ?hté?Tdete(rgwme)d:f? m:rs]g'
3.2, but with frictional forces lying in the right-most zone of the * ° )iva PRIVYDRLIT L
friction profile. The driver pulley boundary conditions, slip arc PR *PRY ™~ 7L:
magnitudes, and tension distribution of Section &2s. (32)—
(41)) remainvalid. The tension distribution for the driven pulley oriver #(TL=Goy)
must here be divided into a distribution for the middle sliding Us,cr " R(Rwpriver— VL)’
region, represented bypy 1(s), and a distribution for the right-

most sliding region, represented @y s). Solution of Egs. ; " . .
(1)—(3), (5),9(6),%20) resSIts n the drﬁgﬁ(ptlley tension dist?ibu-""here v2We" denotes the critical profile slope required for the

(52)

tions: existence of two sliding regions on the driver pulley. Similarly, an
expression for the critical value of; for the driven pulley results
G Rwpyiven from settingpni =, Tpn(don1) =Th andvpy 1(dpnt) =vn
Ton () = C,elsrer/K~Crens 4 K v—f—l , in Eq. (45),
res
0<s<R¢pn1, (42) oriven. #(Th—Guy)

T —w— (53)

S R(vy— Rwpriven) ’

Uref

Ton2AS)= K—Go - +Cse RS 0<s<Repp, (43)

f i . " .
© where v 2" denotes the critical profile slope required for the

where the arc metris is once again initialized to zero at the starkexistence of two sliding regions on the driven pulley. Due to the

of each sliding region, and wherepfy:,¢pn2) denote driven appearance of in the numerator of Eq(52) versusTy, in the
pulley slip arc magnitudes for the two distributions. The updatgqmerator of Eq(53), a smaller value ob 2" than v oLy is

S,Ccr

boundary conditions for the driven pulley are expressed as  generally required for two sliding regions to exist on the driver

Tona(0) =T,  Ton(Rébpny) =T pulley as opposed to the driven pulley. The denominators of Eqgs.
DN.1 L+ DN.IATHIDNLI™ TDNL (52), (53) are close in magnitude due to the need to transition over
=TonA0), Ton2ARPoN2)=Th, (44) the same tension difference, and to thus occupy nearly equal rela-

tive velocity domain measures on the friction profile.
vs(von,1(Reon1) — Ropriven) = #Npn,1(Rébpna), (45)

don1T Pon2= T, (46) . . .
_ N 4 Results and Discussion for an Example Belt Drive
whereTpy; denotes the tension at the transition between the two

sliding regions. Satisfaction of Eq&44), (45) yields the integra- A sample two-pulley belt drive, as defined in Table 1, is ana-

tion constants C4,Cs) and final expressions for the tension dis_lyzed further to determine important system parameters such as

tributions, the transition tensiofipy;, and the slip arc magni- 1€ high and low belt tensions, the number of slip arcs present on
tudes @ ' Bonn): ' each pulley and their extent, the friction and normal forces per
DNL»¥DN2/- unit belt length, and the driven pulley’s angular velocity. Although

Rwpriven the analysis considers a two-pulley belt drive, the solution proce-
Tona(s)= TL_K(—_]-) elvsvrer/(K=GurepJs dure is easily generalized to consider multipulley drives with an
Uref arbitrary number of pulleys.
Rwpriven As discussed in Section 3, the magnitude of the friction profile
+ K(—* 1), (47) parametew determines whether or not multiple slip zones exist
Uref on each pulley. Each of the three possible slip-zone combinations
K G e K G e (Sections 3.1-3)3are illustrated by evaluating solutions fog
TonaAS)= ———+| Toni— >——=—|eR9, (48) =4.0E+3,1.0E+58.0E+5, respectively. In addition to the
' K= Guer K= Guyer closed-form expressions for most of the response quantities given
o2 in Section 3, the conservation of angular momentum yields a
TDN1=K[ VSR wprivent VsRUert GV rel] , (49) closed-form expression for the low tension:
VRO e~ K+ G e
Tonz ~ RTH(K—=Gue) KM -
K= Gy | R Vref 1+ T) T RK— Gy &9
don1= 0RO o In T, , (50)
s Rwpriven— Urefl 1+ K The only remaining response quantities to be determinacheri-
cally) are then Ty ,v,ep) in Section 3.1, computed using Ed.1)
Gu et and the final unevaluated boundary condition, &7); (T4 ,v e
Ty—GUre— —— T in Section 3.2, computed using E@ll) and Eq. (36); and
bona=—In K (51) (Ty ,vref» @priver) iN Section 3.3, computed using Ed4J), (36)
bN2 GU et and Eq.(46). A numerical solution of the Coulomb law example is

Ton1=Gorer™ —— Tont also evaluated using the solution procedure Tqrdescribed in
Section 2. Results are given in Table 1 and Figs. 5-6.
The final boundary conditiofEg. (46)) is evaluated numerically  The friction forces and normal forces per unit length are com-
for an example belt drive in Section 4 in order to determine theared in Fig. 5 for each value af;, and the computed driven
driven pulley angular velocitypyiven - pulley angular velocities are given in Table 1. For convenience,
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Table 1 Left two columns of table: parameter space assigned to the example two-pulley belt
drive. Right five columns of table: computed drive parameters using the creep-rate law and the

Coulomb law.

Belt Drive Assigned Belt Drive

Coulomb

Parameter Value Parameter vs=4.0E+3 vs=1.0E+5 vs=8.0E+5 Law

Pret 1036 kg/mi T, 165.18 168.3 169.57 169.47 N
Ay 1.0E-4 nt T 719.1 722.2 723.48 723.38 N
K 80.068 kN ©briven 106.63 119.09 119.177 119.177

rad/s

k 150 kN/m U ref 9.1564 9.659 9.66269 9.66270

m/s

lo 0.01m Vi 9.175 9.679 9.68315 9.68315

M 45 N-m vy 9.24

m/s
9.746 9.750 9.750 m/s

®priver 120 rad/s A 4.22E-3 4.19E-3 4.176E-3 4.177E-3

“ 1.2 & N/A
R 0.08125 m bor1 N/A
Lgpan 0.5105 m bor2 N/A

$on1 N/A
PNz N/A
G

m
N/A N/A 1.247 rad
2.516 2.013 rad N/A
0.624 1.128 rad N/A
N/A 2.033 rad N/A
N/A 1.108 rad N/A

0.985 1.0006 1.001055 1.001056

@priven
Wpriver

kals

0.8886 0.9924 0.9931 0.9931

\\

T

60 120 180 240 300 360

n (kN/m)

0 60 120 180 240 300 360
0 (Degrees)

(@) Driver Pulley

0 60 120 180 240 300 360

n (kN/m)

0 60 120 180 240
8 (Degrees)

(b) Driven Pulley

Fig. 5 Friction and normal forces per unit belt length for (a)
driver and (b) driven pulleys. Values of v represented: 4.0E +3
(_), LOE+5 (* * * *), 8.0E+5 (— — —). The Coulomb law solu-
tion is represented by (—+—+—+— ).

Journal of Applied Mechanics

the pulley location is given by an angfemeasured counterclock-
wise from the right-horizontalor three o’clock position on each
pulley. For small values obg, represented by =4.0E+ 3, the
friction and normal force profiles have a nearly constant slope
over the entire belt-pulley contact region. As the valuevgfis
increased, these forces become increasingly more exponéntial
appearangeand begin to approach the profiles for the Coulomb
law analysis, as expected. Note that #Q=8.0E+ 5, the profiles

are nearly identical to the Coulomb profiles, even though no ad-
hesion zone exists on the pulley and the first sliding-zone arc
measures over two radiafseegpg, in Table 1. But, the relative
velocities are small enough for the friction forces to be near zero
throughout this entire zone, as shown in the figure. Also, as the
slope profile parameter is increased, the driven pulley’s angular
velocity increases, until it is nearly equal to that using a Coulomb
law. Smaller values ob4 require a large amount of initial slip
between the belt and the pulley in order for the friction forces to
transition the tension front to Ty .

Using the belt-drive parameter space of Table 1 and Ejs.

(), (9), (10, (17)—(19), the assumption of a constant tension
differenceAT in each belt span can be evaluated for its appropri-
ateness. A numerical solution yield§=500.8 N, T, =223.9 N,
Ty=777.7N, v,=9.716 M/s, v=9.656 M/s, v =9.683 M/s,
vy=9.75m/s, andA=A,=3.148E-3 m. Based on the above
computed parameters and those computed for the Coulomb analy-
sis (Table 1), for this belt drive the assumed tension difference
results in tension errors of 7.5 percent for the high-tension span
and 32 percent error for the low-tension span. It is not shown here,
but it is remarked that these errors decrease with decreasing ex-
ternally applied torquéM. Based on these results, it is suggested
that the more exact compatibility relationship be used for belt
drives transmitting large external torques.

A final comparison is made between the analytical solution pre-
sented herein and a finite element solution of the same drive, as
detailed in[21]. Figure 6 depicts the friction and normal force
distributions of both solutions for each valuewaf. For compari-
son’s sake, the distribution is shown as nodal forces, where the
analytical force per unit length is converted to the necessary nodal
force through multiplication with the numerical model’s element
belt length. As evidenced by the figure, a high degree of correla-
tion between the two solutions is found, confirming the predic-
tions of the analytical solution.
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Fig. 6 Comparisons of analytical and finite element predicted frictional and normal forces at

belt nodes for several values of the slope profile parameter Vs . Results are for a discretiza-
tion of 100 belt elements per half pulley. In all plots, the finite element driver solutions are
represented by (_), finite element driven by (- * - *), analytical driver by (— — —), and ana-
lytical driven by (—+—+—— ).

5 Conclusions [2] Grashof, B. G., 1883Theoretische Maschinenlehre, Bdlzopold Voss, Ham-
burg.

Belt-drive mechanics associated with a physically appropriate[3] Fawcett, J. N., 1981, “Chain and Belt Drives—A Review,” Shock Vib. Dig.,
creep-rate-dependent friction law have been analyzed. The analy- 135 pp. 5-12. ) ) o
sis shows no adhesion zones can exist on the pulleys, in contra&t ff’h“so'?‘ K. L., 1985%Contact MechanicsCambridge University Press, Lon-

N . . X ! . on, Chap. 8.
to the emst_eryce of adhesion zones n belt-drive analyses_ W|th 5] Bechtel, S. E., Vohra, S., Jacob, K. I, and Carlson, C. D., 2000, “The Stretch-
Coulomb friction law. Two types of slip zones have been identi-  ing and Slipping of Belts and Fibers on Pulleys,” ASME J. Appl. Me@7,
fied, and the existence of one or both slip zones on the pulleys hﬁ% EPBNZ—TZO(?- 1970, “Mechanics of the Belt Drive. Int. 1. Mech. S
been shown to depend on the magnitude of the friction profile ]135§E1’063 » 1970, "Mechanics of the Belt Drive,”Int. J. Mech. Sz, pp.
slope_vs. C|03€d-f9fm expressions have been gene'fated for th@] Gerbert, G. G., 1991, “On Flat Belt Slip¥ehicle Tribology(Tribology Series
location and magnitude of the slip zones, the associated tension 16), Elsevier, Amsterdam, pp. 333-339.
distributions, and the frictional and normal forces per unit length(8l fleébe”vgze-gsg%' Belt Slip—A Unified Approach,” ASME J. Mech. Des.,
; ; pp. 432-438.

exer_ted on the belt by the p_uIIeys. The analytlcal solution Wa_ 9] Townsend, W. T., and Salisbury, J. K., 1988, “The Efficiency Limit of Belt and
applied to an example belt drive and then compared to a dynamic " cable Drives,” ASME J. Mech., Transm., Autom. Desi0, pp. 303-307.
finite element solution of the same drive. Excellent agreement wd$o] Barker, C. R., Oliver, L. R., and Brieg, W. F., 1991, “Dynamic Analysis of
found when predicted quantities from each solution were com- Belt Drive Tension Forces During Rapid Engine Acceleratid®{E Congress

Detroit, M, Paper No. 910687, pp. 239-254.
pared over a large range OE' [11] Hwang, S. J., Perkins, N. C., Ulsoy, A. G., and Meckstroth, R. J., 1994,

“Rotational Response and Slip Prediction of Serpentine Belt Drive Systems,”

ASME J. Vibr. Acoust., 116, pp. 71-78.
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A Possible Limiting Case
- . ensencer | BENAVIOK for Brittle Material
oo | Fracture

Livermore, CA 94550;

and Stanford University, The self-consistent scheme is used to model the state of an elastic material with a very
Stanford, CA 94305 high density of nearly connected cracks. Then fracture mechanics is used to pose the
problem of the complete and final failure of the material under uniaxial and eqibiaxial
tension. These failure states are taken to be those of the extreme case of brittle fracture. A
specific form for the resulting extreme brittle failure criterion is given.
[DOI: 10.1115/1.1483835

This communication is concerned with the type of homogé¢5]. Crack problems of this general type were very extensively
neous, isotropic materials that exhibit highly brittle behavior whetneated by Kachano{a], including the two-dimensional case of
stressed to failure. The limit of extreme brittle behavior is taken t@ndomly oriented cracks modeled by the SCS as well as by other
be that of fracture when the elastic material is so heavily damagextthods.
by a concentrated distribution of cracks that it is near to causing aThe problem of interest here is that of the two-dimensional
state of disintegration under load. The problem will be studied icracked medium modeled by the SCS. Following Kacharidy
the two-dimensional context, although three-dimensional behavibie solution for the effective isotropic propertiEsnd » are given

will be inferred. by
Classical fracture mechanics was first developed to treat the
failure inducing behavior of a single isolated and thereby nonin- E p
teractive crack in an elastic medium under load. The methodology En ~ po @
was enormously successful and much effort has been given over
to solving more complex problems involving crack interactions, v p
both for determining the effective elastic propertig&chanov V—=1— — 2
[1]) and for the overall fracture-induced failure probl€ian- m Po
ninen and Popeld®]). If the behavior of the single, isolated crackwhere the crack density is given by
represents one limit of the fracture problem, the question arises as
to what the appropriate characterization may be for the other pos- 1 )
sible limit of the fracture problem involving a dense population of p= KZ l; 3

highly interactive cracks. The self-consistent sche®€S will

be used to deduce possible fracture behavior at this other limit cracks of lengths B within area,A. At a crack density op
condition. =p, the cracks form an interconnective network and material

The SCS for isotropic cracked media has been criticized @g|lapse occurs. The SCS solution gives the crack density at ma-
being too severe compared with other crack models that give tgia| disintegration as

effective moduli as vanishing only when the crack density be-

comes unboundedly large, the SCS does so at a finite value of the

crack density. However, there probably is no single crack model po=-=0318 4)

appropriate for all purposes. In any case, the SCS is ideally suited

for the present purpose of studying behavior as the crack densififere perfectly elastic deformations have been assumed. The

severely degrades the elastic properties approaching the statgrgperties(1) and(2) are for two-dimensional plane stress condi-

vanishing properties. tions. For plane-strain conditions these properties must be reinter-
The SCS for cracked media was developed by Budiansky apgkted as the corresponding plane-strain forms.

O’Connell [3] in the three-dimensional isotropic context. In this Not only are the expressiond)—(4) the correct forms for a

method a single crack is embedded in a medium of the unknowiflute distribution of cracks, they are rigorously the full range

elastic properties which are to be determined. In the limit of vaform obtained from the SCS idealization and solution.

ishing crack density the effective properties must revert to the|t is interesting to compare the crack density at collapbe

properties of the given starter material. The problem is well pos@gth the corresponding crack densities for a regular pattern of

and yields an explicit result foE and », the effective isotropic connected cracks forming hexagonal and equilateral triangular

properties as a function of the crack density and the base or maiils. The latter two values are given by

material propertiess,, and v,,. The problem was further consid-

ered by Laws and Brokenbroug#], and two-dimensional prob- 1

lems of certain crack types were considered by Gottesman et al. pH=ﬁ=0.289 (hexagonal (5)

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF and
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, January
2, 2001; final revision, October 19, 2001. Associate Editor: K. Ravi-Chandar. Dis- .
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, PT=% = 0.866 (triangulay. (6)
Department of Mechanical and Environmental Engineering University of California—
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until foyr . .. - -
months after final publication of the paper itself in the ASMEURNAL OF APPLIED ?Jfomparlng(4) and(5) itis seen that the SCS is in close proximity
MECHANICS. to the response expected from a hexagonal network of cracks.
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Fig. 1 Uniaxial stress fracture pattern

While such a pattern and corresponding behavior is highly idedhen the strain energy per crack is
ized, its relationship to the SCS may be helpful toward the present

objective of modeling brittle fracture. 0= 7732‘751 (15)
Take the case of single size cracks and witha establishing N :
the crack connectivity network. Thegnand p, become 4 E) Em
2
p= 1 @ Now consider the surface energy needed to cause total material
A fracture under stress,;. Take the fracture pattern as shown by
and the dashed lines in Fig. 1. This pattern is that suggested by hex-
agonal symmetry, with three initial cracks near to joining at 120-
na’ deg angular intervals. The fracture pattern is taken as that which

Po="p" (®) presumably has the greatest strain energy release rate as the frac-
) ) ) ture process commences. This involves crack opening under nor-
wheren is the number of density of the cracks. With and(8)  mga) stress components, leading to complete material disintegra-

there results fronf1) and(2) tion. The surface energy or work to create surface energy per
E v 12 initial crack follows from Fig. 1 as
—_— —— — —_ = 9
Enm ¥m a © W=4v3T'A (16)
Let A be the gap size where wherel is the surface energy per unit length for each surface of
l=a—A (10) the newly created cracks.
_ ] ) _ ' _ o Take the classical fracture condition such that the strain energy
ThusA is the dimensional size needed to establish continuity st balances the surface energy gained by the fracture process.
the cracks. With(10), (9) takes the form Then equating15) and (16) gives
E_ = 2 - (11) 4(3)} A E.l
—_—= = — — | — 4
Em vm @ a ou=—rt|2 % 17
Initial consideration here will be with the fracture behavior for (m)2

uniaxial tensiongy; . Interest here is in the case akfa) being  the result(17) in addition to requiring the characteristic crack
very small because fracture behavior near the condition of malg;e |= 4, also requires the relative crack size for ultimate crack

rial collapse is what is being sought. Thus, only the first term i@onnectivity specified throughA(a).

(11) need be retained as Now consider the state of egibiaxial tension;= o,,= . Ac-

E v A A\2 cordingly, the propertieE and » must be converted to the proper
=, 2|—=|+0 —) ) (12) two-dimensional bulk modulus form. The identity for this conver-
m  Vm a sion is given by
The strain energy density is conveniently expressed through the
effective property(12) as K= E (18)
2 2(1-v)
011
U=—3x7— (13) whereK is the two-dimensional bulk modulus. Usirig and v
4 —|Epn from (11) in (18) and keeping only the lowest order term /@)
a h
gives
The strain energy per crack is needed at this point. From the K A A2
definitions ofp and thereby, and the value op, from (4), the —=|Z]+0[ = (19)
area per crack is given by Em la a
A=7a’, (14) The strain energy density = ¢?/2K then becomes
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o2 released is half as much for the uniaxial case as for the eqibiaxial
AT (20) case at the same stress levels, thus giving a lower fracture stress
2(_) En for the egibiaxial case.

It is not implied that brittle fragmentation occurs in the highly
idealized hexagonal pattern. The SCS and its relationship to the

Now using(14) the strain energy per crack is given by - t !
hexagonal pattern case merely provides a convenient mechanism

~ malo? for examining brittle behavior. The significant thing here is not the
U= A (21) explicit formulas in(24) but rather that their ratio leads t@5).
2(—) En There probably would be other mechanistic ways to approach this
criterion rather than through the SCS, but it is possible, but not

The hydrostatic tensile stress state has the maximum degregufven, that all physical methods would approach the same limit
symmetry. In coordination with this, take the resulting fracturéorm. Further research in this area would be of considerable inter-
pattern as also having the maximum possible degree of symmetst. Although the present results are for the two dimensional case,
and similitude. Specifically for the region of initial crack confluthe same general theme would appear to apply in three-
ence in Fig. 1, take the three cracks as co-linearly extending iimensional form although the SCS in that case is more complex.
ward by distance\ to the joining point, causing crack continuity The very brittle material fracture criteriof25) sometimes has
and material collapse. The work to create the surface energy peen used on an ad hoc basis for generally brittle materials. The

initial crack is then given by present derivation, however, shows that it should only be used

_ with considerable caution. It is intended to represent limiting case

W=A4T'A. (22) behavior, whereas most brittle materials would not be near the

Forming the energy balance by equati@d) and(22) gives the limit condition and would require a more comprehensive fracture
egibiaxial stress to cause fracture as criterion.

"™ . If[ .is conceptually interesting that in the present treatment, the

:2(3) Al [Enl (23) imiting brittle behavior for homogeneous isotropic elastic mate-

o T a a ’ rials (under positive normal stresgds fracture type, dilatational

L . .. stress controlled. In the limiting ductile case, it is well understood
The two fracture criterid17) and (23) for uniaxial and eqibi- that the controlling mechanism is of the yielding type, distortional

axial stress states are thus given by stress. Thus, stress related behavior at one extreme is here sug-
A E,[ gested to be distortionally limited while the other extreme is dila-
o= 2.97({ —) —_ tationally limited. These two opposite extreme cases would com-
a a prise a mechanistically balanced and complementary behavior.
and
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Scattering From an Elliptic Crack
by an Integral Equation Method:
rk.sana | NOrmal Loading

Department of Mathematics,

Surendranath College, The scattering of normally incident elastic waves by an embedded elliptic crack in an
24/2 M. G. Road, infinite isotropic elastic medium has been solved using an analytical numerical method.
_ Calcutta 700 009, India The representation integral expressing the scattered displacement field has been reduced
e-mail: tksaha@cubmb.ernet.in to an integral equation for the unknown crack-opening displacement. This integral equa-
tion has been further reduced to an infinite system of Fredholm integral equation of the
A. ROV second kind and the Fourier displacement potentials are expanded in terms of Jacobi's
Department of Applied Mathematics, orthogonal polynomials. Finally, proper use of orthogonality property of Jacobi's poly-
University of Calcutta, nomials produces an infinite system of algebraic equations connecting the expansion
92 A.P. C. Road, coefficients to the prescribed dynamic loading. The matrix elements contains singular
Calcutta 700 009, India integrals which are reduced to regular integrals through contour integration. The first
e-mail: aroy@cucc.ernet.in term of the first equation of the system yields the low-frequency asymptotic expression for

scattering cross section analytically which agrees completely with previous results. In the
intermediate and high-frequency scattering regime the system has been truncated properly
and solved numerically. Results of quantities of physical interest, such as the dynamic
stress intensity factor, crack-opening displacement scattering cross section, and back-
scattered displacement amplitude have been given and compared with earlier results.
[DOI: 10.1115/1.1483834

1 Introduction of long-wavelength scattering. Most of these works were con-

cerned with scattering from an elliptic cra¢k.g., see Roy4,5],

Lin and Keer[6], Hirose[7], and Shifrin[8]). But Visscher{9]

concluded that only very accurate experiments can distinguish a
at crack of general shape from a penny-shaped crack by long-

avelength elastic-wave scattering. Hence the need for mid and
h-frequency scattering solution. Recently the numerical bound-
integral equation method has developed into a discipline of its
n and a surge of interest has been seen for solving problems of

gh-frequency scattering by planar cracks applying this method.

Quantitative nondestructive evaluati@GdDE)/quantitative non-
destructive testingNDT) is becoming the state of the art in de-
tecting and locating cracks in material structures by the obser
tion of the crack’s effect on an externally applied ultrasonic fiel
To promote this to a full-fledged technology requires the soluti
of the direct scattering problem, i.e., calculating the response
to applied dynamic load on the structure with a known crac
embedded in it. But except for highly idealized cases it is aIm0ﬁ

impo_ssible to obtain a_nalytical sol_utions to _the probler_ns. Th ther numerical methods, like the boundary element method,
handicap has resulted in the evolution of various numerical Mo jational-difference method, etc., have also been applied in par-
eling technlqut_as for solving scattering problems. Such techniq | to solve such problems. In the recent past few work in this
have befen rﬁwewed by_ B(l)rﬁﬂl]. kI)DIe HooprEZ] has ?ls_o noted tgat field has been reported in the literature and these works involve
except or the cannonical problems whose so ution can € §¥5th scattering from elliptic and rectangular cracks. For details
pressed in terms of analytical functions of a not too complicateg,o may refer to Budreck and Achenbad®], Nishimura and
nature, and for gnalytlc approximation technlqges, wave propa Sbayashi11], Zhang and Grosi 2], Alves and Ha Duong13],
tion and scattering problems in elastodynamics have to be agshafbuch et a[14], Itou [15], Guan and Norri§16], and Glush-
dressed with the aid of numerical methods. Here we will presegg,; anq Glushkov#17] for the solution of scattering from elliptic
an analytical-numerical technique for the solution of the titlg,q rectangular cracks. Also one may refer to Bostrom and Eriks-
problem which may be treated as a benchmark to test all numetin 18] for the solution of crack scattering in anisotropic and
cal methods when applied to such problems of scattering frquered media.
elliptic cracks. , In the present study our interest is confined to problems of
Scattering of elastic waves from an embedded planar crack @fattering from embedded elliptic cracks only, and here we
ten occurs in ultrasonic nondestructive evaluation. But there &fesent an analytical-numerical method which is best suited to
only a limited number of rigorous solutions and these have beggye such problems in mid and high-frequency regime. A recently
obtained almost exclusively for the special case of scattering fr%veloped integral equation method of Roy and Chatterj&é
penny-shaped cracks. For a brief review of the previous works,s heen used here for the present method. The method is to
related to scattering from a penny-shaped crack, one can refegdgce the integral equation obtained from the representation in-
Martin and Wickham[3]. For planar cracks other than pennyyeqra| expressing the scattered displacement field into an infinite
shaped cracks, previous works were mostly restricted to the casiem of algebraic equations by the judicious expansion of the
- _ o Fourier displacement potentials in terms of Jacobi's orthogonal
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF polynomials and the application of the orthogonality property of

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- bi’ | ial he fi fthe fi . £ th
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ber 22, 2000; final revision, October 22, 2001. Associate Editor: A. K. Mal. Discusnfinite algebraic system does yield the low-frequency asymptotic
sion on the paper should be addressed to the Editor, Professor Robert figr a scattering cross section which has been evaluated analyti-
McMeeking, Department of Mechanical and Environmental Engineering Universi ”y and these results agree completely with the existing results

of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepge . . . .
until four months after final publication of the paper itself in the ASMEJBRNAL OF e algebraic system is then solved numerically for the expansion
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matrix contains an improper integral with singularity which isvheren is the unit normal vectorr{)) is the incident stress field
reduced to a more suitable integral for numerical computatiQthgs*, S~ are the two opposite faces of the elliptic crack.
through the contour integration technique of Ni20] and Krenk  gince the material is isotropic the elastic tensor is given by

and Schmidt[21]. The complex valued expansion coefficients
have been computed for a normally incident plane longitudinal Cijki = N 6jj 0+ (i 51 + 61 Sj) (5)

wave in the mid and high-frequency regime. The quantities Whereéij is the Kronecker delta.

physical interest, namely, the dynamic stress intensity factor,the scattered displacement field for a crack of general orienta-
crack-opening displacement, and scattering cross section are Cgly can be expressed by the following representation integral
puted for both an embedded penny-shaped crack and elliptic Cr?%rtin [24)):

and are compared with previous results given by 2], Krenk
and Schmidf21], Martin and Wickhani3], Keogh[23], Budreck ) )

and Achenbachi10], Zhang and Grosfl2], and Alves and Ha uk(xq):f L”i(X)Tifjk(X’Xq)”JdS_f J'SGifk(X’Xq)Tii(X)nidS
Duong[13]. The convergence of the system has been tested by (6)
increasing the order of the truncated matrix step by step startin

with a fourth-order truncated system and going upto a 12th-ord&herex, is the position vector of the observation pointienotes
truncated system. The crack-opening displacement for a particulae position vector of the source point, aﬂﬁ is the stress tensor
crack with incident wave having a fixed frequency have beeatorresponding to fundamental Green’s ter@érgiven by
computed with results from these different truncated systems and

L, &
the plots of these results reveal the convergence of the system. Gifj(x;xq)zlul{ 5V +k; Zax-ax- (\I,q))} @)
107
. eikiR eikaR
2 The Integral Equation d=—\, U=—, R=|x—x @8)
. . L . . 47R’ 47R’ avr
Consider a homogeneous, isotropic, infinite three-dimensional
elastic solid containing a finite planar craSlof the elliptic shape auy(x)
embedded in ifFig. 1). The crack occupies the region Tij(x):CijkI&—Xk 9)
X2 2
S:7+y7s1, z=0 (1) and
ac b f oy
, it Lo I . ¢ G| (X;Xq)
where @ and ‘b’ are the semi-major and semi-minor axis of rijm(x,xq)zcimT. (10)
k

the elliptic crack, respectively. Suppose a time-harmonic plane
longitudinal wave, of angular frequenay, is the incident nor- Now, sincer;; , Gifj , Tijfk are continuous acros we get

mally on the crack surfac& The time-harmonic factor is omitted

throughout this paper. Let; and 7; be the scattered displacement _ _ T oy _

and stress field, respectively. Then we are to determine the scat- U Xq) S[u'(x)]T”k(X’xq)anS (11)
tered displacement field satisfying the elastodynamic equation

of motion where [u;(x)]=u;"(xX)—u; (x) is the crack-opening displace-
. . - ment.
k; ® grad divu—k; curl curl u+u=0 (2)  Applying the boundary condition then reduces the determina-
where the wave numbeks andk, are defined by tion of [u;(x) ] to the solution of the following integro-differential
equation:
pw?=(\+2u)k;= uk €)

) d
and\, u are Lameconstantsp is the density of the medium, and _nkT{(IR(X,):nkalman f[ui(x)]r“fn(x;xq)njdﬂxq:X’.
the boundary condition on the crack faces are m s 12)

— I +
;70 = =7 () Vxe S “) Equation(12) is valid for any arbitrary crack surfac but we are
interested in scattering from elliptic cracks only. In this case Eq.
(12) partially decouples and the normal displacement discontinu-
ity satisfies the following integro-differential equatioRoy [5]):

#? % \? PP [u,] . .
4 2( 4 L7zd ikiR_ AikoR
(aszr ay? +k2(ﬁx2+ ayzﬂf S47TR(e F-etds

N\

(1)

[uZ] i 7-ZZ
4 ikiRyq—
/'usc +sz L‘WRe as o (13)
Now, we have the well-known integral representation:

S
g ikiR i ' H ’
> e’ 1 (= [~ exdié(x—x")+in(y—y')]
y — = dedy
R 27 ) ) _o v;
\ (=12 (14)
where
R=[(x=x")2+(y—y")?¥?
X and
(242 212 , P

Fig. 1 Scattering geometry of an elliptic crack.  u' is the inci- =€+ k)™, Rey)>0(j=12). (15)
dent displacement field and ~ u*° is the scattered field. Substituting(14) in (13) we get the following integral equation:
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J J f J (2NG—k2)*—aNGriv, [Wo(p),Wn(p)]=p ALt Dp(),Do(D};p]  (26)

2”1 and
Xexgi{&(x—x")+n(y—y")}]dx' dy'dédy [Dn(1), Do) ]=t"A L ™Wn(p),Wa(p)}it] (27)
27 7(X,Y) where
—( Y (16
M f f(t)dt
where Anl(
No=(&2+ 7)1 (17) and
Now, we introduce a normalized crack-opening displacement A Ug(p):t]= PQ(P)dP
related to[ u,(x’,y’)] through the relation 9(p) (p —1°)
w(x',y")=k5(1— o) uy(x",y")] (18) Using standard results on Bessel functigR®y and Chatterjee,
where [19]) one finally obtains the following sets of Fredholm integral
equations of the second kin#s=0,1,2 ..., (n+s) even;
ky, ¢ 0,1
o= k_l - C_2 (19) ¢elodl B
2 M Ps(6) In,s®n(t)
where ¢, ¢, are theP and S wave velocities, respectively, D (&) 2 ns(f IS o (t) dt
given by ° nes 'nsPn
N+ 2| 12 AL * @ (1) )
Cl:( ) | c2=(— | (20) 2( Knd @ 1) ( 45) o8
p P =0 | Knd®@a(01) |Fe(d)
We get the integral equation in the form where
ijx Jw f J“’[”F@'””W(X"y') 05| = Lis i [T (1-K cog 22 Cosnxcossx)d
m) ) ) Js 15 2 o 0 05 X sinny sinsy | X
xexpli{é(x—x')+ n(y—y")}]dx'dy’ déd (29)
. b2
2w X.Y) ko=|1- (30)
== (21)
M
where Ln,s(fit):(gt)llzf KJn s 1 Kt)Isy 1o(kE)dk (31)
(20§ K32 = 4Ngr1v, ’
1+F(&n)=— . 22
)= 1 097, (22) ( Kn,s[fbnun)_ LI f f f -
Knd®a(H)]) 2

3 Fredholm’s Integral Equations of the Second Kind

_K2 12
Fredholm’s integral equations of the second kind are obtained X F(k,x)(1—kg cos )

following the reduction procedure of Roy and Chattelfj&8]. %] Kt)J K
The Cartesian coordinate system is transformed to cylin- n+ 12 KOs+ 1,2(KE)
drical polar coordinate system through the following set of d,(t)cosny cossy
transformations: a(t)sinnxsinsx dtdydk (32)
n
(X,y)Z(aI’ coséh,br sin0) Fs(f) B be pst1 ( s(r) 4 a3
(X',y")=(ap cosg,bp sinh). (23) Fuo)~ (gz A 1yn)4- B3

We assume that the normalized crack-opening displacement . . )
w(x',y") and the prescribed stressi)(x,y) have complete 4 Reduction to Algebraic Systems of Equations
Fourier series expansion of the form Part of the reduction follows from Roy and Sahas].
The displacement potentials are expanded in term of Jacobi poly-
nomials as

[WOX'y ), 752Xy ") 1= 25 [W(p) talp) Joosnd ]
[@n(1),Dy()]= >, [WI, WPt IPIs 1201 2t2). (34)
i=0

+ 2 [Wa(p).ta(p)Isinne. (24) _
n=1 Then following Roy and Sah@5], Eq. (28) reduces to

The following transformation is also made: Vs=0,1,2...,%, (n+s) even; &re[0,1]
(éa,npb)=(kcosy,ksiny) (0<k<oo;0<y=<2m). (25) o o M Wn D (1)
. . X E S+1P(S+1/20) l 2 2 +2 ns[ ( ]
Use of standard representation for exp{cosé) in terms of <& N Wn 3 i~ (5= mial &) 2 D(t
. . . . =0 j= n=0 ns[ n( )]
Bessel function and application of the orthogonality property of
trigonometric functions then gives rise to infinite systems of inte- Fo(&)
gral equations involvingv,(p), W,(p). Further reduction is af- = F(g) . (35)
fected by relatingv,(p), W,(p) to displacement potentiafd(t), s .
d,(t) through the following Abelian transformations: For K, J.] andK, J.], the following transformation is made:
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(k cosy,ksiny)=(aucosy,businy). (36) 8j+n-sizm

_— . (43)
Then, writing (4m+2s+3)
. For w<x one must interchange andx in (43).
p=(1—-k§sir? ¢, (37) Substituting(43) in (40) and noting that
and after making use of the following resul&radshteyn and Eis(—i)”iz 2”(1_k2 Sir? )32
Ryzhik, [26]) 2 a |, 0 U4
1 .
f t”+3’2P}”*1’2'°)(1—2t2)Jn+1,2(aput)dt:M, cogn tan }(2tany) Jcog stan X(2tany)
apu X
0 P (38) sin ntan (2 tany) Jsin s tan (2 tany)]
both sides of35) are multiplied by¢P($*29(1—2¢£?) and inte- _ ( IE"S (44)
grated with respect t@ between 0 and 1 and the following or- Ins
thogonalit_y property of Jacobi's polynomial is us@@radshteyn Egq. (40) may be written as
and Ryzhik,[26]): Vs=0,1,2 ... (n+s) even andVm=0
1 S
25+2p(s+1/2,0 1 _ 912\p (ST 12,01 _ 912\ 4+ ik
L t2s*2p (1-2t%)P§ (1-2t)dt=5 g Z Z _( 1)3n+92> f
39) "7
to obtain the following set of algebraic equations: W cogn tan” (2 tan lﬁ)]COiStanl(gtanlﬁ)])
Vs=012 ..., (n+s) even W' sin{n tan1( 2 tany) Jsin{ s tan (£ tany) ]
- ! Fs(&)
o [ eWnisme|  [1EWa) S (15 W o X ChS(y)dy= f fS“Paf“’Z”)(l—sz)(—s dé  (45)
S /M s \W/S 2 S /M F (f)
n=0 In,sz+(s—n)/2 ls,s m n=s+2 In,sz—(n—s)lz
WhereC”S(z/x) is obtained from(43) by deleting the last term and
< n mfe L replacmg the values ofv and x. The detailed calculation of
+(4m+25+3)n§:0 JZO _' (=" pu Cim() is given in the Appendix.
5 Low-Frequency Asymptotic for Scattering Cross
XF(U)J2j 4 n+32@PU)Jomy st 32(2PU) Section a y Asymp ¢
WJn cogn tan’l(gtan l/x)]cos{stan’l(gtan )] In the_present and subsequent discussions \_Ne_take the incident
V_VT‘ sir[ntan’l(Etanz//)]sir{stan’l(gtanw)] stress field corresponding to the normally incident pldhe
wave as
Fs(&) =ik (A +2u)A (46)
=(4m+2s+3 S+1P(S+l/20) 1-2 2 S d 40 zz 1 0
~(ames )f& ( 5>F(§) ¢ (40) so that

to(r)=ika(N+2u)Aq

(2u2_k§)2_4u2(u2_k%)l/Z(UZ_kg)UZ ts(r):t_s(r)zovszl' (47)

F(uy=—1— . (41) Hence, in the present situation
W 2uIQ(1— 0?2 (WP — K2 (1) P

where

W'=0vn=1 and j=0, (48)
Let so there is no contribution to the physical quantities from the
2 second algebraic system of E@5). All subsequent results are
" (uz— —kg) obtained under this incident field withy= 1/ik; .
|:J _ 3_ 4 2 (U2—K2)12 Here we obtain an analytical expression of the low-frequency
ol U 2k3(1-0?)? [ uP(u?—k))? 2 asymptotic for scattering cross-section.
Puttings=0, m=0, n=0, j=0 in the first algebraic system of
X Jy+yA@pu)dy+(apuydu (42) Eq. (45 we get
wherew=2j+n+1 andx=2m+s+1. 1 b? _ 0 b w20 ,
This integral can be recast into a form more suitable for nu-2 52 0 P *WoCodl ¥)di= 0 EPG2O(1-262)Fo( £)dE.
merical integration. The principle is to extend the integrand into (49)

the complex half-plane Re}=0 and to use contour integration. . .
The procedure is taken from M&20] and Krenk and Schmidt USiNg the expression fdg(r) from (47) we get

[21]. ) ) wh 2(1—v)
Forw=x, the result is right-hand side 0f49) == == 7 =575 (50)
1 i(20262—1)2 For the left-hand side of49) we retain terms irC39( ) up tok?,
I= 1= 07)? 2E(1— 52)1/2Jw+1/2(apk1§) (i=1,2) only because thk;s are small. Hence, after some sim-
0 plification we get
1 Swx 2i 1 a 2p242(2— 402+ 30) + a2p?kia?
xH? (apk dé+ 00 1 2
iy apkié)+ m(2w+1) (1— 52)1/2 &+ (1— 022 Coo(h)= 3002(1=0?)2
1 3,313 - 2 4 3,313 .2
x f (1-£)22,,. sl aplo HE A aphot) de PR e il e LYY
0 135m0%(1—0?)? '

778 /| Vol. 69, NOVEMBER 2002 Transactions of the ASME



Substituting this value o€39(¢#) at the left-hand side a#9) and back-scattered displacement amplitude for an elliptic crack in the
noting thatWy is complex valued we obtain, after separating th81d and high-frequency regime in terms of the unknown displace-

real and imaginary parts from both sides(d8), and solve ment coefficientd\] .
37b 2 6.1 Dynamic Crack-Opening Displacement. Using the
real part 0fW8= — —5——| 5 E(Kp) following results(Gradshteyn and Ryzhik26])
40°E“(ko) |3
. 3
b k3(2— 402+ 3% + ka2 (N+1200 1 _9:2y— (—1Yig| i 2 _i11-12
{ki ‘ )k }F(ko) 52) P (1-2%)=(=1)F| j+n+5,—i1;1-1?] (61)
150°(1—0°)
and and
1
37ab’; |8+ 150—400°+320° J (1—x) %" 1F(a,,a,:v;
. . _ - 1,87;v;ax)dx
imaginary part ofw3 AKX Ky 1350 (1—02)2 0
3) I(wT(»)
Now, a scattering cross section is a measure of an obstacle’s abil- = T(uty) F(ay,az;putvia) (62)
ity to scatter the incident field. Following Budreck and Achenbach
[10] the normal displacement of the far-field scattered longitudinal (Reu>0,Rer>0 and |a]<1)
wave has the form
ikt whereF(.,.;.;.) is thehypergeometric function, the normalized
eXpUIK,r dynamic crack-opening displacement for an elliptic crack is ob-
SC, —_ . -
U3 (X)~u(y) Aar as r—e, (54) tained from(18) as
where is the angle of observation in the (,x3)-plane(a=1,2) w(x",y" ) =w(p, )
as measured from the;-axis, |x|=r and . .
. 2 .
u(y)=—iky[20% cog y+(1—20?)] == 2 p"1—p? 2 (—1iw!
T n=0 j=0

XCOSlﬂf f exp( —iky sing)w(x’,y")dS.  (55)
S

XF cosne. (63)

. 3 3 )
Jtnt .= 5il=p
For normal observationy=0, so that

Now applying the resulGradshteyn and Ryzhik26))

u(O):—iklf Lw(x’,y’)ds (56) )\ (—1)"2t 3
For an elliptic crack Con+a()= Bn+D) F( —nn+a+1io0t ) (64)
4ab whereC)(.) is the Gegenbauer polynomial aBd.,.) is thebeta

f Lw(x’,y’)d8= T\Ng (57) function, and noting that fog even,n is even, we get

Now, the scattering cross section is given by w(x.y")=w(p, )

1
Zp=Reu(0)]. (58) E jir| 2m+ 3
Hence the dimensionless scattering cross section for an elliptic =— 2 E szm
crack is T m=0 {=0 -3
r 2m+] + E
Sp 4 We
7ab Rq 34 KW (59) XCHMA(1-pH) M) p?mcos Mg (65)

which is also the expression of dimensionless scattering cross s&bich coincides with the result for static crack-opening displace-
tion for a circular crack. Hence applying the expression for th@ent for an elliptic crack given by Martif29], except for a con-
imaginary part of/3 from (53) in the above expression we get theStant.

low-frequency asymptotic for the dimensionless scattering cross! he normalized dynamic crack-opening displacement for a cir-
section as cular crack is given by

S, ab’kj(8+ 150 —400°+320°) 2 5 . 3 3
L ’ N — 1 _— _ ] C H o je_ 1 _ 2
mab 1357'(1*0'2)2E2(k0) (60) W(X Y ) - 1 P 120 ( 1) W?F J+ 2 ) 2 1 P

which agrees exactly _with _the same _expressions_, given earlier by (66)
Roy [4]. Puttinga=b in this expression and noting thE(ko) It must be noted thatv" are complex valued so that(x',y’) is
=7r/_2 for a=b we get back the re_sult of t_he scattering Crosggq so. !

section for a penny-shaped crack given earlier by Robefl88h — rp¢ gyact solution of the static crack-opening displacement for
and Piau[28]. Thus we conclude that the present method does qircijar crack has been given by Snedd80]. So that the

yield the known asymptotic approximation analytically. dimensionless dynamic crack-opening displacement for circular
crack is

(1-2v)w

) lw(x",y")]. (67)

6 Quantities of Physical Interest = =
da(l—v

We give here the formulas for computing the quantities of
physical interest, namely, the dynamic crack-opening displacgimilarly the dimensionless dynamic crack-opening displacement
ment, dynamic stress intensity factor, scattering cross section, dadan elliptic crack is given by
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6.3 Scattering Cross Section and Back-Scattered Displace-
ment Amplitude. The expression for dimensionless scattering
cross section for both elliptic and circular cracks are given by the
wherew(x',y’) is given above, and now the exact solution of th&ingle expression of Eq59). _
static problem for an elliptic crack is obtained from MU@d]. The norm of the dimensionless back-scattered displacement

amplitude is given by

6.2 Dynamic Stress Intensity Factor. Following Roy and
Chatterjed 19], the dynamic stress intensity factor for an elliptic

(1-2v)E(ko)

2b(1—1) lw(x',y")| (68)

crack is given by u(0)
b
2# b 1/2
=" |Z 2 6irR b+ b? 14
Ki(6)= —ort| 2] (@i g b2 o ) |
ie.,
x| D ®,(1)cosng+ >, D, (1)sinng| (69)
n=0 n=1 4ikl
ich i — - W, (74)
which in the present case reduces to 37
2# 1/2
K(p)= ~1-bla (a?sir? ¢+b?cod )Y whereA represents the area of the crack surface.
XD, >, (—1)IW! cosng. (70)
n=0 j=0 08
. . _ _ ¢ * * Budreck & Achenbach
The corresponding expression for a circular crack is .
0.7 -
2u - : * o
Ki(¢p)=———= —1)iwe, 71 i L4
¢ w(lfv)\/ajzo( : () 06 o . ° b
]
Hence the nondimensional dynamic stress intensity factor for an '_ch 0.5 - @
elliptic and circular crack, obtained by dividing the norm of w;
Ki(¢) by the corresponding static vall&, are respectively, = 04 4 s
P B
(1—2v)E(kg) : =
—1)’W! cosn 72 0.3 o
1) EOJEO< )'W! cosn (72)
. °
(1-2v) - . 0.1 °
— 1) W,
2a(1—») ,20 (-, (73 ®)
0.0 T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10
(@ p
2.0 06
o) Al ABMudreck & Achenbach e_e_e Budreck & Achenbach ]
1.8 e o o Mal
[
1.6 054
o 141
I S 04 -
— 1.2 S
S @
104 2
= 03
2 5 B
0.2 -
0.6 <
0.4 -
0.1
0.2 4
0.0 T T T T T T T T [ 0.0
0.0 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
P (b) P

Fig. 2 Present method (lines), BIEM (triangles ), and Mal (bul-
lets ) nondimensional dynamic crack-opening displacement for
circular crack for k,a equal to (a) 0.0; (b) 1.4; (¢) 3.2; (d) 4.4,
and (e) 6.0.

780 / Vol. 69, NOVEMBER 2002

Fig. 3 (a) Dimensionless crack-opening displacement of an
1:1/v2 elliptic crack with  k,a equal to 4.5. (b) Dimensionless
crack-opening displacement of an 1:1  /v2 elliptic crack with  k,a
equal to 5.5.
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7 Numerical Results through a numerically particular example. The data plotted in Fig.

. . - . . b) are replotted in Fig. 4 forp)=0 deg and¢$=90 deg after
Numerical results of various quantities of physical interes ( : S :
which are given in the previous qsection are pg)re)éented for bo&mcatlng the infinite system to a fourth order, sixth order, and

5 " . - g ight-order matrix equation, respectively. It is obvious from the
E:;}nmyeshaped and elliptic cracks in the mid and high frequeng}gmng that the present scheme does converge.

Figure 5 shows the same quantity plotted againas in Fig. 3
7.1 Dynamic Crack-Opening Displacement. Figure 2 except that now the plotting is for two distinct frequency viz.
shows the ratio of the norm of the complex normalized crackoa=4.5 and 5.5 with the elliptic crack having aspect ratio 1:1/2.
opening displacement for a circular crack and the correspondifije markings in Figs. @) and (b) represent data betweef=0
(i.e., due to the same stress amplitudtatic crack-opening dis- deg and$=90 deg, i.e., along the-axis andy-axis, respectively.
placement evaluated at the crack’s center. The results are for Pdise dependence of the crack-opening displacement on the shape
son’s ratio 0.25 and fok,a=0.0, 1.4, 3.2, 4.4, and 6.0. of the crack and on the frequency of the incident wave
The dimensionless crack-opening displacements for a circui&rclear from the figures. The highest value of the crack-opening
crack computed by the present method are compared to theésplacement is attained along the major axis. Also the general
presented by Ma[22] and Budreck and AchenbadhO]. It is trend is the higher the frequency lower the crack-opening
seen that the present results match well with the results of Mdisplacement.
[22] and Budreck and Achenba¢hQ]. Oscillations in the curves 7.2 Dynamic Stress Intensity Factor. Figure 6 shows the
;ﬁt;nrlr?réizgug;cll\ﬁasl[lgg]l.cff {gvlf,ltlffé%lzzf#e(;i,“?r?: Q;r;%?ntitecﬁ;iﬂf fsults of a nondimensional dynamic stress intensity factor for a
opening displacement is greater than that for the static case but at
mid frequencies this goes down below the static crack-opening

displacement. 0.8
In Fig. 3 the same quantity of Fig. 2 has been plotted against
for an elliptic crack of aspect ratio 1¥2. It shows plottings for 0.7 -
two distinct frequencies viZk,a=4.5 and 5.5. Due to the sym-
metric nature of the crack-opening displacement with respect to 6
thex andy-axis in this case, results are presented for only the first =0’
quarter of the crack. The lines markéa and (b) represent data -
for =0 deg andp=90 deg, respectively, and these are compared T 95
with those presented by Budreck and Achenbgd¥. The plot- 'g
tings given by us and Budreck and Achenbatf] differ signifi- = 04
cantly. This may be due to the fact that the data of Budreck and 3
Achenbach10] were obtained at the centroid of each element into 0.3
which the crack was meshed. The question that now naturally
arises is whether the present scheme converges or not. A theoret 02 4
ical discussion regarding the convergence of the present scheme it ’ P
out of scope of the present study. We expect to persue it later. 9
However, for the present we verify the convergence of the scheme 917
0.0 T T T T T T T T T
00 01 02 03 04 05 06 07 08 08 10
(a) p
0.6
=0°
0.5
=z o 0.4
1
S : T
z { < 03
0.15 \ 2
0.10 \ 0.2 7
2
900
0.05 01 -
0.00 ; T T T T T T T
00 01 02 03 04 05 06 07 08 09 10 0.0 L
00 01 02 03 04 05 06 07 08 09 10

p

Fig. 4 Dimensionless crack-opening displacement of an 1:1 w2
elliptic crack with  k,a equal to 5.5 (a) fourth-order system ¢=0
deg; (b) sixth-order system ¢¢=0 deg; (c) eighth-order system
&$=0 deg; (d) fourth-order system $=90 deg; (e) sixth-order
system ¢=90 deg; (f) eighth-order system ¢$=90 deg

Journal of Applied Mechanics

b
(b) o

Fig. 5 (a) Dimensionless crack-opening displacement of an
1:1/2 elliptic crack with  k,a equal to 4.5. (b) Dimensionless
crack-opening displacement of an 1:1 /2 elliptic crack with  k,a
equal to 5.5.
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20 Table 1 Dimensionless scattering cross section for normal in-
cidence of a longitudinal wave on a penny-shaped crack as
computed by [21], [23], [3], and [10] and the present method

e o o Zhang & Gross
AAA Mal

Krenk and Keogh Martin and Budreck and Present
koa Schmidt[21] [23] Wickham[3] Achenbach10] Method

1 0.214 - 0.214 0.262 0.224
2 2.894 3.066 2.895 3.066 3.030
w - 3 1.910 1.836 1.910 1.904 1.999
X 4 1.655 1.612 1.600 1.649 1.673
= 5 2.106 2.364 2.314 2.342 2.422
X 6 1.801 1.851 1.877 1.890 1.969
- 7 1.987 1.770 1.831 1.920 1.887
8 1.941 2.212 2.208 2.207 2.341

Gross[12]. Here the stress intensity factor has been computed at
0.2 - the two points¢=0 deg and¢$=90 deg of the crack edge. For
results of the 1:1/2 elliptic crack, comparison with results pre-

0.0 * T T ' ' ' ' sented by Zhang and Gro§$2] shows that there is almost no
Y 1 2 3 4 5 6 7 8 difference in the two results. The peaks of the curves are related to
k,a resonant frequencies. It is observed that maximum amplification
of the stress intensity factor is attained at the edge of the minor
Fig. 6 Present method (lines), Zhang and Gross (bullets ) and ~ @Xis and hence crack propagation, if initiated, will initiate at the
Mall (triangles ) nondimensional dynamic stress intensity factor blunt edge of the elliptic crack. Also it may be noted that the
for a circular crack for »=0.25 narrower the crack, the higher the frequency required to reach the

maximum amplification.

7.3 Scattering Cross-Section and Back-Scattered Displace-

circular crack with Poisson’s ratio 0.25, and these results are COfant Amplitude. Another important parameter is the scattering

pared with the existing results of Mg22] and Zhang and Gross ¢ section of the crack. Table 1 lists the dimensionless scatter-

[12]. The results are seen to match well with the existing re_sultiﬁg cross section for normally incideRtwave on a penny-shaped
except at the peaks._The peaks are attained at frequekges crack as computed by Krenk and Schnfi#it], Keogh[23], Mar-
=1.5, 4.25, 7.25 which are nearer to the resonant freq_u_enC{%s and Wickham[3], Budreck and Achenbacfil0], and the
kpa=1.44, 4.33, 7.22... . . Theresult reveals that the amplifica- yesent method. The computations are donefe.25.

tion of the stress intensity facto.r IS W|thk3a:Q andk,a=2. For. In Fig. 8 the nondimensional scattering cross secherA (A

the rest of the higher frequencies the result is only that of shielfain g the area of the crack surfates been plotted as a function
ing, although it is of oscillatory nature. Hence the crack, if propgss he dimensionless wave numbes. Figure 9 shows the results
ga't:|_ng W”l?Stﬁrt its pk)]ropagaltlonffor thed\_/alue lofa r;%ar L5, of the norm of the dimensionless back-scattered displacement
__Figure 7 shows the results of a nondimensional dynamic strgagy given by |u(0)/A| plotted against the dimensionless wave
intensity factor for elliptic crack with aspect ratios 1:1/2 an mber. Both the results of Figs. 8 and 9 have been compared
1:1/5. The Poisson ratio is now taken to be 0.3 for the sake Ok exi.sting results of Budreck énd Achenbalct0] and Alves
comparing the present results with those presented by Zhang agdh 13 puong13]. It is found that the present result matches

well with both the results of Budreck and Achenbddi®] and

1.9
1.8 - ® e ¢ Zhang & Gross 32
1.7 ’ Budreck & Achenbach
1.6
1.5 - 28 4
1.4
1.3 - 2.4
1.2
o 11+
2.0
X 10 e
= 094 <
X 454 16
0.7
0.6 12
0.5
0.4 0.8 -
0.3
0.2
0.1 ® 0.4 -
0.0 T T T T T T T \ \ A HaD
00 05 1.0 15 20 25 30 35 40 45 50 0.0 —Alves & Ha Duong
kza 00 05 10 15 20 25 30 35 40 45 50
k,a
Fig. 7 Present method (lines) and Zhang and Gross (bullets )
nondimensional dynamic stress intensity factor for elliptic Fig. 8 Scattering cross section of  (a) 1:1; (b) 1:1/V2; (c) 1:1/3,
cracks with aspect ratio (a) 1:1/2, =90 deg; (b) 1:1/2, ¢=0 and (d) 1:1/5 elliptic cracks under normal incidence of a longi-
deg; (c) 1:1/5, ¢=90 deg; (d) 1:1/5, ¢=0 deg. »=0.3. tudinal wave
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35 = udreck & Achenbach computational _Work as required by the other_m_ethods. T_he prob-
lem of scattering of shear waves by an elliptic crack is under
30 4 “ consideration and will be communicated shortly.
. A
2.5 -
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Appendix
10 We demonstrate here the evaluationfi(¢) in Eq. (45). For
this we begin with Eq(42).
05 | Alves & Ha Duong
1 2
o u2_ 5 kg
0.0 L |:f S 212 14 27 | 202 2k2 o (U= kY2
00 05 10 15 20 25 30 35 40 45 50 ol U 2k(1=09" [u(u"—ky
k.a XJwir@apudy, p(apudu (A1)
Fig. 9 Back-scattered displacement amplitudes of () 1:1; (b) Wherew=2j+n+1 andx=2m+s+1.
1:1v2; (c) 1:1/2; (d) 1:1/3, and (e) 1:1/5 elliptic cracks under We have(Gradshteyn and Ryzhik6])

normal incidence of a longitudinal wave

= 1 Swx
0—aJW+1/2(apu)Jx+1/2(apu)du=—m. (A2)

Alves and Ha Duong13]. The peaks of the curves in the figures o the remaining part ofAl) we extend the argument of the
are related to resonant wave motion on the faces of the crack. Thggrand to the complex half-plane Reu=0 and follow the
interesting features of the figures are that the first peaks becofggowing steps.

lower as the crack becomes narrower starting from the penny-| gt

shaped crack, and also the narrower the crack the higher the fre-

guency required to reach the first peak. 2

1
(22— k3
2 21 2\12
G(2)= 72 (27— k5) M~ (A3)

8 Conclusion (22— k9)

The problem of the scattering of the normally incident comFor w=x, we write
pressional wave by a plane elliptic crack has been solved in an
analytical numerical way in the intermediate and high-frequen
domain. An infinite system of algebraic equations is obtaine W*le(apZ)‘]X*l/Z(apz):E‘]WH/Z(apZ)
each element of whose coefficient matrix contain a singular inte-
gral which is converted by contour integration into a suitable form X[HY (ap2+HPZ (ap2)]. (Ad)
amenable for numerical computation. The expression for low- . . . .
frequency asymptotic of scattering cross section has been obtai eEihe” we have the following asymptotic relationszs0 (in
analytically, which agrees exactly with previous known resultd!® complex plange
The system has been truncated suitably for computational work. (1)
Results have been obtained for the dynamic crack-opening dis- G2 w+1dap2HiyAap2)
placement, dynamic stress intensity factor, scattering cross sec-
tion, and norm of the back-scattered displacement amplitude for =(ap2gV ¥
both circular and elliptic cracks of various aspect ratios. The com-
putational work has been carried out with the help of a perso . .
computer. Even retaining only six ternis=0, 2, 4,m=0, 1,n r\ﬁherecj are constants. Similarly,
=0, 2,4, andj =0, 1) in the truncated system has yielded results  G(z)J,,,,(ap2H?,(ap2)
which are accurate enough to match with the existing results by
the boundary integral equation method. The convergence of the
results has been tested numerically and this has been demon- =(ap2"™*
strated by plotting results of the crack-opening displacement for a

order truncated systems, respectively. This method may be lookgehmidt[21] and noting that the larger quarter-circles and the
upon as an alternative to the boundary integral equation methga|| semicircles make no contribution to the integral in either

for solving three-dimensional scattering problems. We do nghse we find that as—0 the only contribution from the smaller
claim that this is the best method or the most general methodd@arter-circles is due to the ter(aincew=x, the only contribu-

solve such types of problems, but its importance lies in the fagn is for w=x)

that it is an analytical method. The solutions obtained from this

method may be used to validate the various numerical methods _2(2x=1)!! k3 W2

which are used by most of the researchers to solve such a type of F Am2wi D K, ap)" 'z - (A7)
elliptic crack problems. The method can be easily extended to a

variety of problems including crack interaction problems undéfience, the second part of the singular intedraéduces to the
dynamic loading and solutions can be obtained without hea¥gllowing regular integral:

%

2(2x—1)11 k3 1 . J. 5
Anewr Dl K, 2 2 6% 89

22x—1)! k3 1

7 L |
dr2wr Dl K, zz+;) ¢z (A)
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1 2
-2
1 2

0 u

0

K G
2k, (2wt 1)e

where € is the radius of both the smaller quarter circles of the

contours choosen.
Making the transformatio

=k,£& in the second integral and noting by Krenk and Schmidt

1 fl
lim —=
c.0 Ki€ 0

[21]

we finally get(43).

Now, replacingw by (2j+n+1) andx by (2m+s+1) and

2107 (U2=K3)¥21 3,1 1(@pu)dys 1(@puydu
1

Ju+1apuH?; (apuydu

ko
—i j (k3—u?)*2,, 1 (apuHE (apu)du

(A8)

na=k;¢ in the first integral andi

dé

K- )

substituting this result 0f43) in (40) and noting the resui{44)

and the following result,

( I E’S\ﬁln)
IhsW)'

2m+s |c n
n,s''m-(n-s)/2
5i+(n—s)/2,m= E (Is N )1 (A10)
n

m—(n—s)/2

we ultimately get the Eq(45) with the expression foCjii(#)
obtained from(43) after deleting the last term.
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The present paper examines the large deflections of a clamped circulate thin plate for
pressure sensor applications and establishes a simple solution using the singular pertur-

W. Huang bation technique. The perturbation solution for the slope of the lateral deflection is in a
Assistant Project Scientist, closed form in terms of the load-induced radial stress resultant. The nonlinearity has a
Department of Bioengineering, strong stiffened effect. The nondimensional load-induced stress resultants are functions of
University of California, San Diego, the nondimensional initial stress resultant, lateral load, and Poisson’s ratio.
La Jolla, CA 92093-0412 [DOI: 10.1115/1.1507767
1 Introduction no=No/(EP?a?h)* s,=S, /(EP%a’h)'?,
Silicon-based thin films are frequently used in microelectronics s,=S,/(EP2a2h)¥3

for the measurement of pressure, temperature, and other physical

quantities. The film is often under initial tension and its thickness Pa’

is of the order microns. The tension can be as large as 1([@Pa ~ P= gz le=V1A1-v )p*3, k=pMJ12(1-17)n,,
Sheplak and Dugun[i2] examined the large deflection character-

istics of circular_ plates in d_etail by integrating the full set (_)f the ke=p312(1—1?)[Nno+s,(1)],

nonlinear equations of motion. The present paper re-examines the . )

problem and establishes a simpler solution using the singular p&ereS; ,S, are the in-plane stress resultants induced by the lat-
turbation technique. The results compare well with those of She@j@l load that

lak and Dugunji(2]. S;=N;,—Ng, S,=N,—Nj. (4)

2 Basic Equations Only two of the parametenso, p, &, k, andke are independent.

] ] ) ) The value of the different parameters controls different character-
~ Consider a circular plate of radius and thicknessh under jstics of the plate and thus are used for the specific circumstances.
initial tensionNy. The plate is stretched initially by a uniform  The present definitions of the nondimensional stress resultants
load N, and then subjected to a uniform pressBreThe equilib- s s, differ slightly from that of Sheplak and Dugurij2], who

rium equations ar¢2,3]) defined them ap?s, ,p?3s,. The choice here is for mathemati-
dN, N,—N, cal convenience. However, it does make the physical interpreta-
+ =0, (1) tion of s,,s4,ng somewhat indirect as they involve both stress
dr r resultants and lateral load. The present definition leads to constant
dN, N,—N, Eh/dW\?2 asymptotic values fos, ,s, at higher values op as shown later
—_ —(—) =0, (2) in the results. The definitions fqy andk are the same as those
dr r 2r \ dr of [2].
dBW  1d2W 1 dW dwW Pr In nondimensional form, Eq$1)—(3) become
ar Tr A 2 dr) Negr =72 ®) ds. s—sg
—+ =0, (5)

whereN, ,N, are the in-plane stress resultantgs the radiusW dx X

is the lateral deflection, and 2
dsy, s,—sy 60

5 Eh® ax x a7 (6)
v
_ T a2 1de 6 1
is the bending rigidity withE, » being Young’s modulus and el 7=+ - == — | ~[No+S(X)]6=5x. 7
h ; : . dx* xdx x 2
Poisson’s ratio, respectively.
We define The boundary conditions are
N, (r)=Ng+Si(x), Npy(r)=Ng+Sy(x), =0, s,=s, atx=0, (8)
and the following nondimensional quantities: 9=0, s,—vs,=0 atx=1. 9)
w= V_V X= r P_a“ " = d_W The governing equations depend on the non-dimensional initial
h’ a’ Eh* dx’ stress resultanhy and e. Poisson’s ratio appears only in the

boundary condition.
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We first construct the outer solution that is valid everywhere S0=5;(1)
except neak=1. The zeroth-order outer solution féiis obtained

from Eq. (7) by neglecting the terms proportional 43, i.e.: and the common part of the inner and outer solution$ i

1 " & (1 ) er 1 Y
= 2 T Ak A — V) .
P 2ngrs 0] O (10) 262 b " "/b

for sufficiently smalle (or largeks). Thus the uniformly valid solutioifthe sum of the inner and outer

In principle, we can determine the zeroth-order solutionsfor Solutions minus their common pafor 6 is thus
ands, from Egs.(5) and(6) by numerical integration subjected to X eke(x—1)
the boundary conditions Eqé8) and (9). The solution depends  ¢g,=— +
only on the nondimensional parametgy and Poisson’s ratio. 2[No+s1(x)] 4b
Unfortunately, the outer solution fardoes not satisfy the bound- 1= ) (1=x)(1=x)k.+11s
ary condition Eq(9) atx=1. The integrated, will give incorrect X1 3—x+ (1= »)( I ket 1] ro] +0(&?).
result atx=1. Thus the solution is not good near the boundary, 2b

but valid everywhere else. This is also the reason éhgiven in  Thjs solution does not equal zero @t0 but is exponentially
Eq. (10) is called the outer solution. small for smalle. Without invalid the solution, we may add a

Let us construct the solution valid near=1 and call it the small term to6, making it exactly zero at the origin. Thus
inner solution. We introduce the inner variable

X gkex—1)
=¢g(1- =— +
Y=e(1=%) (11) Ou 2[Ng+5s,(X)] 4b
and the perturbation solution in the form
(1=v)(1=x)[(1=X)ke+ 1]srg
0(x)=0p(Y)+e0,(Y)+0(e?) X{3—x+ 5 +c(x—1)
Sr(x):SrO(Y)J’_SSrl(Y)J’_O(SZ) (12) +O(82) (18)
S9(X) =Spo(Y) +£S41(Y) +0(£?) where
nearx= 1. Substituting the perturbation solution into E¢S, (6), o ke (1-1)(Ke+ 1)s
and (7) and collecting terms of the same orderspfwe find the c= - Tl tel TR0
zeroth-order equations 4b 2b
d d The deflectiorw is obtain by integrating Eq18) with respect to
gy Sro(Y)=0. 25Sw(Y)=0, X:
) w 1 xdx c(1—x)?
& g+ $10(0)] o= =——— P ) Angrs 0] 2
dYZ 0 r0 0 2[n0+sr0] ’ X r
and the first-order equations 1 138Q-wso 1 gl

T abk | 20k, 2 k| Tabk

d d 1
Wsrl(Y):Sro_SBOr Wsal(Y):Sao_Sro"‘ 5 6%,

1 1 ) 3| (1-v)sg
X13=X+——=| (1=X)Ke+3(L—X)+ — | ———.
2 ke 2 Ke b
d<6, dg, 1
W—[no"‘sro(o)]elzsrleo"‘W_EY- (19)
The zeroth-order solution is Thusw is proportional top'?® for ng,s; being of the order 1. For
small ratio of s,(r)/ng, the induced stress resultant can be
Sgo= VSrg= V'S;p= Cconstant, (13) neglected to give the linear solution fov and 6. We obtain
the linearized solution fow by settings,=s,q=0 andk.=k in
1-exp(—\bY) Eq. (19):
00: - T, (14)
_ o w1 [1-x* 1 1+ek(H>3 L1
and the first order solution is pTg— 2—no S Tk 2T T X K
Si1= (1= v)Si0Y (15) 3ek
_yv\2
1 2 1 3 + 7 (1—x)°|. (20)
Sp1=—(1-1)S oY+ o5 | Y+ —=e PY— —e 20— —— ) ] ) ]
8b Jb 2\b 2\b We may obtain the uniformly valid solutions sf ands, as that

(16) for 6. However, it will be more direct to integrate the following set
of equations:

) 1 1(1 : Y2+Y) .
15715 " op (=S| =T/ (8 ds, s—s
4o 2b " Jo b O (ST _g 1)
dx X
B PR (I 17) d 02
s|(1-v)— - Sy S—S
2 b b X 2y Moo, (22)
dx X 2Xx
where
We shall change the independent variabl®
b=r‘|0+S,0.

We shall first establish a uniformly valid solution féx By y=1=x

matching the inner solution given by E@.2) and the outer solu- and integrate the equations with respecytis from 0 to 1 with
tion given by Eqs(5), (6), and(10), we can show that the boundary conditions
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s,=vs, aty=0, (23)

S,=s, aty=1. (24)

The reason for starting the integration frop=0 (i.e., x=1)
rather thany=1 (i.e., x=0) is becausd&),, depends explicitly on

the value ofs, aty=0. =
Equations(21) and (22) have a removable singularity gt=1. &
We can numerically integrate the equations only to a pagigt, & -
which is close 1. Thus we have to modify the boundary conditiong
Eq. (24) as 5
(1-y9)® % .
Sy=S— =—— aty=yp, 25) g
0 r 64( n0+ Sr) y yO ( ) ioj) log[sr(o)]
which is obtained by expanding Eq$21) and (22) around | /7  ______. log[s (1)]
y=Ygy. We normally choosg,=0.99. We integrate Eq$21) and i ! |
(22) by the choosing appropriate value gf at y=0 to satisfy
Eq. (25). /
4 Results 5 41 '2 43 L s
The solution depends of three nondimensional parametei., log(p)

namelyng, p, andv. All results given are fon=0.3. Figure 1 _ )
. ; . . Fig. 2 log[s,(0)] (solid curve ) and log [s,(1)] (dash curve ) ver-
gives the induced radial stress resultant ragas, at the center sus log () for k=5 10, 20 r

and at the boundary versurg. The solid and dotted curves are

s,(0)/ng,s;(1)/ny, respectively, forp=1000. The _points o

ahnd “%”)/are sf((:f)))/noasf(l)/no for_gI: 100.' The flgur_thshows The top three curves are fo,=0.0 and the lower three fam,
thats,(0)/ng,s;(1)/n, decrease rapidly ag, increases. The mag- _ . . ) _

nitude of the ratio is an indication of the importance of nonIineaa—oo(')%ow'trgs;célgtji’vggt .?Eg f(g?rsnf;rcg;\gees cmiggﬁ dtgt%()) ai%d

ity. For small ratio, we can approximate the solution by Iinqu ~7.2,17.6, 39.6 and the latter case correspondk=d0.8
=72, 17.6, 39. -8,

approximation. The values c(0)/no,s;(1)/no for p=100 are 23.4 50.3 anck,=11.6, 25.5, 53.4. The two figures show the

smaller than those fop=1000, an |nd|cat|or! of less no.n“nearinfluence of initial stress resultant on the induced ones. Generally
effect as p reduces. Results of the nonlinear solutions f

. Othe smaller the initial stress resultant, the larger are the induced
:%?EE‘LOS)] 5'30“2% ;brlreveis gr? ilr?%[:?f(l)él %’Vaesgegu{&\éirsaﬁjéogf; stress resultants for the same lateral load. The top three curves are
o 4,93 9. 2 r for k=0, which compare well with those of Sheplak and Duguniji
are proportlonal tg™* at low loadings _an_d _approaches 0.43 anfg] in Figs. 13 and 14.
0.331, respectively, ap approaches infinite. Thu$,(0) and Figure 5 denotes Igg(0)] versus logg). Curves are the present

S.(1) are proportional tp? at smallp and top?® for large p, Its fork=5 (solid). 10 (dob. 20 (dash: point from Ref
which are the same as those of Sheplak and Dud@hji higher results for (solid), 10 (dob, 20 (dasf); points are from Ref.

value ofk delays the transition.
Figures 3 and 4 plos, ands,, respectively, for differenp. 05

8 1 | | __p=10000, ny=0

~~~~~
-~

p=100, n,=0

Normalized Radial Stress Resultant s,

Stress Resuitant Ratios s,(0)/ny and s,(1)/n,

] 02 =
] _ £=_10200, 1e=0.5 p=1000, r,=0.5
— 0.1 p=100, ;=05 T
0 1 I | l
e 0 0.2 04 0.6 0.8 1
02 04 06 0.8 1 Normalized Radius r/a
Initial Stress Resultant n, Fig. 3 Induced stress resultant s,. The top three curves are
for ng=0 and the lower three for ny=0.5 with p=100 (solid ),
Fig. 1 Induced radial stress resultant to initial stress resultant 1000 (dot), 10000 (dash), respectively. The former case corre-
ratios at x=0 (solid curve ) and 1 (dot curve ) for p=1000; cor- spondsto k=0 and k,=7.2, 17.6, 39.6 and the latter case cor-
respondingly points *  O”and “ O” are for p=100 responds to k=10.8, 23.4, 50.3 and k,=11.6, 25.5, 53.4.

Journal of Applied Mechanics NOVEMBER 2002, Vol. 69 / 787



0.5 T T T T
_ p=10000, nj=0
04~~~ —
~ - -
T~
~~ \
p=1000, n=0 ~ . >
AN
SN
o\

p=100, n,=0

Normalized Circumferential Stress Resultant s,

0.6
Normalized Radius r/a

0 0.2 0.4

Fig. 4 Induced stress resultant s,. The top three curves are
for ny=0 and the lower three for ny=0.5 with p=100 (solid ),
1000 (dot), 10000(dash), respectively. The former case corre-
sponds to k=0 and k,=7.2, 17.6, 39.6 and the latter case cor-
responds to k=10.8, 23.4 50.3 and k,=11.6, 25.5, 53.4.

[2] for k=5(O), 10(+), 20 (O). At low loadings andny>s;,

20 T

. —— nonlinear

Normadlized Deflection w
o0

04 0.6
Normalized Radius r/a

(solid ) normalized deflec-
ny=0.5 and p=100.
ny=0.2 and p=10000,

Fig. 6 Linear (dot) and nonlinear
tions w. The lowest pair of curves are for
The top three pairs of curves are for
1000, and 100, respectively.

for ng=0.5 andp=100. The difference between the linear and
nonlinear solutions is minimum. The top three pairs of curves are
for ng=0.2 andp=10,000, 1000, and 100, respectively. The dif-
ference between linear and nonlinear solutions is much larger than

w(0) is linearly proportional tqo as given by the linear theory. the previous case of largeg. The difference is more pronounce

Note thatny,=k?/[12(1— v?)p?®]. For higherp andny<s, , the

for higher load(e.qg., the top pair of curvésThe top three pairs of

nonlinear stiffened effect from the normalized induced radigurves show, as expected, increasing deflection with increasing

stress resultarg, is significant andv(0)~ p*®

. A largek delays

load. Comparing the lowest two pair of curves, one sees that the

the transition from linear to nonlinear behavior. The results corilitial stressn, makes the plate stiffer. Similar characteristics can

pare well with those given by Sheplak and Dugugjj who inte-

grated the full nonlinear Eq$5)—(7).

Figure 6 illustrates the distribution of the deflection The

be seen in the slopes of shown in Fig. 7. In Fig. 7, the top pair
of curves is for the lineatdash-dox and nonlinear(solid) solu-
tions with ng=0.5 andp=100. The next three curves are fog

solid curves are the nonlinear solution and the dotted curves are

the linear solution. The lowest pair of curves are the defleation

log(w(0))

] ] | I |
-1 0 1 2 3 4 5

log(p)

-4

Fig. 5 Center deflection versus nondimensional pressure.
Curves are the present results for k=5 (solid), 10 (dot), 20
(dash); points are from Ref. [2] for k=5(0O), 10(+), 20 (O).
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0.6
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0.8

Fig. 7 Normalized slope 6. The top two curves are the linear

(dash-dot ) and nonlinear
=100. The next three curves are for

(solid ) solutions for

ny=0.5 and p
ny=0.2 and p=10000

(dash), 1000 (dot), and 100 (solid ). The lowest curve (dash-dot )

is the linear solution for

ny=0.2 and p=100.
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2 T T T T the nondimensional pressure lopdand Poisson’s ratio. We
establish the singular perturbation solution on the basis that
e[ = ng+s,(1)/k.] is small. For reasonably larde (see Fig. 6,

the slope of the deflection is dominated by membrane behavior
everywhere except the small region near the boundary. Using the
- singular perturbation technique, one first obtains a uniformly valid
solution for the slopd&,, in terms of the load-induced radial stress
resultants, . One then integrates numerically two simple first-
order nonlinear ordinary differential equations to determine both
s, ands, in terms ofé, . Sinced, depends explicitly on the value

of s, at the boundary, it is more convenient to integrate the equa-
tions for s, ands, from the boundary X=1) to the center X

=0) of the plate. The uniformly valid perturbation solution fer

— can be integrated directly from, . The perturbation solutioffig.

2) shows thats,(0) ands,(1) are proportional top*® at low
loadings and approach 0.43 and 0.331, respectivelyp agp-
proaches infinite. In other word&;(0) and S,(1) are propor-
tional to p? for small p and top?”® for largep. The perturbation

log(ky)

06 ! ! ! ' solution(Fig. 5) shows also that is proportional tap’® for large
0 1 2 3 4 > pand proportional tg for smallp. The nonlinear effect generally
log(p) stiffens the plate. A higher value d&f delays the transition. The
] results compare well with those of Sheplak and Dug{@jiwho
Fig. 8 log (ke) and log (p) for k=5, 10, 20 obtained the solution by integrating the full set of nonlinear dif-

ferential equations Eq$5) and(7) for k.>5 (Fig. 5.

=0.2 andp=10,000(dash, 1000(dot), and 100(solid). The low-

est curve(dash-dox is the linear solution fomy=0.2 andp

=100. The slopg is very much like a linear line except near theacknowledgment

boundary where the slope changes rapidly to become zexo at _ .
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Thermomechanical Buckling of
Laminated Composite Plates
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Associate Professor

e-mail: desai@civil.iitb.ac.in A novel, analytical mixed theory based on the potential energy principle has been pre-
sented in this paper to investigate buckling response of laminated composite plates sub-

Department of Civil Engineering, jected to mechanical and hygrothermal loads. Two sets of higher-order mixed models
Indian Institute of Technology Bombay, have been proposed on the basis of an individual layer as well as equivalent single layer
Powai, Mumbai 400 076, India theories by selectively incorporating nonlinear components of Green’s strain tensor. Dis-

placements, as well as transverse stress continuities, have been enforced in the formula-
tion of models by incorporating displacements and transverse stresses as the degrees-of-
freedom. The modal transverse stresses have been obtained as eigenvectors and thus their
separate calculations have been advantageously avoided. Solutions from the models have
been shown to be in excellent agreement with the available three-dimensional elasticity
solutions. Few benchmark solutions have also been presented for the bi-axial
compression-tension loadingDOI: 10.1115/1.1490372

Introduction ling loads of laminated composite plates were also evaluated ana-
. . . L lytically by Doong [6], Doong et al.[7], Ren and Ower{8],

Increasing use of composite materials in h'|gh-performaméavithri and Varadhan(9], Matsunaga[10], and Kant and

structures has created a need to understand their structural bel&zw

i_o_r underdiffergnt conditions. Mt_echanical buckling has b(_aen iden'Aalllmlﬂzthggil]t.heories mentioned above were displacement
tified to be a primary mode of failure for layered composite plat§s,seq, where one set of Cartesian coordinates was invariably lo-
subjected to in-plane compressive loads. Laminates may also gXted on the mid surface of the entire laminate and the global
perience thermal buckling due to change in temperature, and Rysplacement fields were assumed to be of first-order or high-
groscopic buckling due to change in moisture concentrations. order polynomial series, across the entire laminate thickness. Al-
Accurate prediction of the buckling response can be made fbugh the continuity of the displacement field through thickness
the three-dimensional elasticity analysis. However, solution efas satisfied, continuity of the transverse stresses at the interface
three-dimensional elasticity equations may be intractable, espeuld not be enforced. Thus, these theories may yield poor results
cially for thick plates with a large number of layers. Equivalentor thick or moderately thick laminates. Furthermore, pointwise
single layer(ESL) approaches using displacement-based highegecalculations are required by integrating the equilibrium equa-
order shear deformation theories, on the other hand, have bé&ens, to evaluate transverse stress distribution through the thick-
widely used for buckling analysis of laminated plates. Reddy argss of a laminate.
Phan[1], for example, presented analytical solutions for the plate Pagano[12,13 illustrated that the displacement functions of
buckling problem by using the higher-order theaf2]) with laminated platgs can_be represented by_piecewige continu_ous_high-
stress-free boundaries at the top and bottom surfaces of plaff§ler polynomial series, layer by layer, in the thickness direction.
Senthilnathan et a3] derived closed-form solutions for the plateSUPseduently, Wu and Chda4] proposed a local higher-order
buckling problem by using the higher order thedfg]) and by thec_nry to determme natural freque_nmes and buckll_ng_loads o_f
employing Von Karman nonlinear strains. Results for isotropi%?m'nated cqmposne plates. The Q'Splacemer.]t contmuny condi-
orthotropic, and two-layered antisymmetric crossgly deg/90 ions at an mterf_ace between Ie_tmlnae were introduced |nt_o _the
deg and angle ply45 degi-45 deg square plates under uniaxial Lagrangian functional of the laminate, by the Lagrange multiplier

. ted. Khdefi had al d Reddy’ method. However, the fundamental elasticity relations could not
compression were presented. Bl had also used Reddy's be satisfied exactly, as the stress fields were assumed independent

([2]) higher-order theory for buckling of crossply laminated plateaf the displacement fields. Further, analytical solutions to buck-

by adopting the Levy-type solutions of the governing equationgy,g proplems were presented only for a simple loading condition
Different combinations of simply supported, clamped, and freg ynj-axial buckling, except Khed[#], who presented analytical
boundary conditions were considered. Later, Kh@8]rextended spjutions for a bi-axial compressive loading condition. No analyti-
the work to consider antisymmetrical angle-ply laminates. Buckal solutions by using higher-order theories are available in the
literature, to the author’s knowledge, for buckling loads due to
bi-axial compression-tension loading, thermal loading, and also
E;T o W_TJom g%rfezpogdelncg '\sﬂhowd be élljdd_ressedﬁ“ © due to the change in moisture concentrations. The same has been
e ey Presented in his paper by employing a unified analytical approach
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 11Pased on mixed theory.
2001; final revision, Dec. 5, 2001. Associate Editor: M.-J. Pindera. Discussion on theMixed formulation has been developed by considering six

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmenb(égrees_of_freedom viz. three displacement components
Mechanical and Environmental Engineering University of California—Santa Barbara ! ’ b

Santa Barbara, CA 93106-5070, and will be accepted until four months after filﬁhd w (along thex, y and zdirections, respectivelyand three
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. transverse stress components,, 7,,, ando,. These transverse
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stresses have been invoked from the assumed displacement fields
by using constitutive law. Equilibrium equations have been de-

rived by using the minimum potential energy principle. Thus, the i | U2, va, Wa, (0202, (Txa)2s (122 1
method presented here differs from the higher-order theories |_ ____________ Prmp—— A
available in the literature in following ways:
? u,Vvi awla(cz)l’ (sz)la (T}'Z)l h]
(i) A novel analytical approach using mixed theory has been
presented that is based on minimum potential energy (@)
principle.
(i) Fundamental elasticity relations between stress and dis-
placement fields have been maintained at all points of an YaAV
elastic continuum. It is a distinct feature of the present
formulation that the stress-displacement relations are satis-
fied at the beginning of the formulation itself.
(i) The method explicitly satisfies the requirements of T,
through-thickness continuity of transverse stress compo-
nents and continuous displacement fields as both are incor- —» x.u
porated in the degrees-of-freedom. L, ?
(iv) Modal stressestransverse stress componenisive been ’I
directly evaluated as eigenvectors, as the same have been Plan
considered to be basic degrees-of-freedom.
Z, W
Two sets of mixed models HYF1 and HYF2 have been pre- A
sented in this paper by selectively incorporating nonlinear compo- s, V2, Wa, (s, (Tardas (Ty)a
nents of Green’s strain tensor. Individual layer models HYF1 have =
been formulated by considering a local Cartesian coordinate sys- H;

tem at the mid surface of each individual layer. Six degrees-of- e —————— Ay
freedom are assigned to the bottom as well as the top surfaces of H

each individual layer. Therefore, the total number of degrees-of- 2 H,
freedom in HYF1 always equal§N+1)x 6] for the N layered
laminate. On the other hand, the global mixed models HYF2 have
been formulated by considering the Cartesian coordinate system at
the mid surface of the entire laminate and by assigning six
degrees-of-freedom to the bottom as well as the top surface of the (b)

entire laminate. Hence, the total number of degrees-of-freedom ) )

always remains 12 in HYF2 models. The condition of the tractior’lz-'ggireéS (;af’:”'e'gggen? fo?lat?a) ?tiﬂgfet;yc’)f g?;’rﬁ:]”;f g pall;t?esinigi
free sur_face is not enforced in the case of_HYF2 for a consstﬁhiction with HYF1 model,  (b) laminated plate

comparison with the data available in the literature.

1
Ui, Vi, Wi, (02)17 (TXZ)I’ (T)’Z)l

Elevation

o i [ Cii Cip Cyz 0 o]
X
Formulation ay Co Cos 0 0
A rectangular laminated plate of plan dimensidnsby L, and 9z ( _ Css O 0 0
thicknessH has been considered as shown in Fig. 1. The plate is Txy Cuy O 0
composed of uniform thickness layers of homogeneous and ortho- Txz svm c 0
tropic material. Three-displacement componentgx,y,z), Tys ym. 5
v(x,y,z) andw(x,y,z) at any point in a lamina can be expanded L Ces
in terms of the thickness coordinate by using the Taylor’s series ey AT— B AMY |
expansion as 8*_ axAT—,BXAm
y~ %y y
g,— a,AT—B,Am (22)
s Yxy
i Yxz
U(Xy,2)= 2, Z4i(XY). (1) -
=
{o}'=[C]{e}". (20)

Here,{o}' and{e}' are stresses and the linear strain components,
Here,u, (k=1,2,3) represents three displacement componants respectively, referred to the lamina coordinates &g, (m,n

v, W, respectively, andy; indicate the generalized coordinates. =1.,2,3) are the elastic constants of thielamina. Furthery; and
Bi (j=x,y,2) represent the coefficients of thermal expansion and

Constitutive Law. Each lamina in a laminate has been concoefficients of moisture variations, respectively, in the three prin-
sidered to be in a three-dimensional state of stress. Constitutdipal material directions of aith lamina. AT and Am, on the
relations for a typicalith specially orthotropic lamina can beother hand, indicate changes in temperature and moisture concen-
expressed as tration, respectively.
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Green’s Strain Tensor. Components of Green’s strain tensorEg. (1). By solving two sets of equations simultaneously, the dis-

are placement field can be expressed in terms of degrees-of-freedom
as
Cou sy (du\? & v\ S5 aw)?
T2\ T2 ) T2l u
v =[N +[N "+[N *+[N . 4
_‘9_U+ﬁ &_U 2+é (9_1} 2+§ (9_W 2 w [ l]{q} [ 2]{q} [ 3]{q} [ 4]{qc} ()
"oy T 2 \ay 2 \ay 2\ gy

Here,[N1], [N,], [N3], and[N,] are 3x 12 shape function ma-

_ow N 1{éu 2+ 1{ov 2+ 1({ow\2 3 trices and are defined more conveniently in the Appendix. On the
827, T ol a2 219z 2\ 9z (33 other hand{q} and{q.} are
7(7U N Jv +s au ﬂu) dv dv (ﬁW ow {q}:{ur (Tx)r Wy () v, (Tyz)r Us (Txo)s Ws (02)s Us (Tyz)s}t
YT gy Tax U ox ay) T 2\ ax ay) T %3\ ox ay (54)
W . v . dudu  Jdu du  OW IW {QC}:[{QCr}t{qcs}t]zlxn)
Yogm—F —t — — e — — — —
Y2 oy oz 9y gz Jy gz dy dz {Ae ={aAT BgAm ay AT ByAm ay AT B ATH,
AU AW AUIU v d  IW W i=r.s. (5b)
Vim—F—F+ ——+——+ — — 1=r
29z X dx dz X Iz IX 9z

The prime(’) and star(*) appearing in Eq(4) represent deriva-

{e}={e} +{e}lnL . (3b) tives of vector{g} with respect to thex andy-coordinates, respec-

] o ] tively. Subscripts ands, in Eq. (5a) indicate the bottom and top
The linear part of strain-displacement relatiga$ has been used surface of theth layer in the HYF1 models. However, they rep-

to derive the lamina property matrices. On the other hand, th@sent the bottom and top surfaces of the entire laminate in the
nonlinear strain-displacement relatidregy, have been employed HYE2 models.

to derive the geometric property matrices of a lamina. #hare o ] o )

not included deliberately in the third, fifth, and sixth, of Ega) Strain-Displacement Relations. Substitution of Eq.(4) in
as laminates do not buckle under the application of externié¥e linear part of Eq(3a) yields the linear strain-displacement
stresses in the-direction (o,) and the transverse shear stressejuation

7y, and 7,,. Therefore, the nonlinear terms from the strains _ , "

7);22 andy;/yZ will not contribute to the work done by external {eh=[al{a}+[bHa}’ +[d]{a}"+[el{a}* +[fl{a}*
stresses. Different hybrid models are defined based on values of +loHat* +[tHac (6)
the Kronecker deltag; to 85 used in Eq(3a).

where[a], [b], [d], [e], [f], [g], and[t] are 612 nodal strain-

Variouls l\/cliixeth\/:]odelsd (é_ontlributions OI: nonlLinear strlains isplacement matrices. Nonzero coefficients of these matrices
terms related with the andv displacements have been neglecteflUo"cen presented in the Appendix. Equatiahs(s), and (7)

in most higher-order theories available in the literature to simpli re the general equations representing displacements, linear

analysis. Following HYF1 and HYF2 hybrid models have beefy ains “and the relevant nonlinear strains, respectively, at any

E’é?negs(f:’bggsﬁsgﬁglaéz g? ’thtg l‘;‘ﬁ#;tgsthe influence of theseyint in the laminatelq} in these equations represents the matrix

) ; . of the degrees-of-freedom given by Ega). By substituting Egs.
.HYEL? and lH\_(F23—aII nonlinear strain terms are incorporategy) i the nonlinear part of Eqg3a), the relevant nonlinear strain
in the Tormufation, terms can be expressed as

i.e., 5].: 62= 63= 1.
HYF12 and HYF22—nonlinear strain terms related withdis-

dUy 2
W) ~[{NuHaY + {Na{al + {Naa* 2

placements are neglected, (7)
. B e auy\? '
€. 5,=0, DUt 0= 05=1. (W) =T{Nud{a)* +{Nad{a} ™ +{Nad{a}™* 1
HYF11 and HYF21—nonlinear strain terms related wittdis-
placements are neglected, where{N;} (j,k=1,2,3) indicate the elements of théh row of

) the jth shape function matrix presented in the Appendix.
l.e., 5120, bUt 62: 63: 1.

HYF10 and HYF20—nonlinear strain terms related with bath

andv displacements are neglected,

|e, 61: 5220, but 53:1

It can be noted from Eq.(3a) that Von Karman strain- ) . ) i )
displacement relations are utilized in models HYF10 and HYF2®hereU' represents the strain energy stored in the laminavsihd
indicates the work done by externally applied stressey, and
3@' acting in thex andy-directions, respectively. By substituting
the expressions for strain energy and the work done inf&gqthe
potential energy of a lamina can be written as

Potential Energy of a Lamina. The potential energyl' of a
typical ith lamina enclosing a space volumg, can be expressed
as

Mm=u'-w (8)

Kinematics. The stress-displacement expressions have be
derived by substituting Eq(l) in the linear part of the strain-
displacement relations from Ea) and substituting the resulting
equation into the stress-strain relations from E2p). Conse-
quently, equations for the stress degrees-of-freedom can be de- 1 .
rived by substitutingz= *+ ¢ in the resulting equations. Hergjs == f {e}[[C]{e} dv—
half the thickness of théth lamina ) for all individual layer 2,
mixed models(HYF1), or half the thickness of entire laminate

+fo'

f(TQi(Sx)NLdU

(H,) for all HYF2 models. Similarly, the equations for displace-

. > for disp §'(sy)nLdu |. 9)
ment degrees-of-freedom can be derived by substitating: £ in
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Lamina Equilibrium Equations. The following trial solu- By substituting Eq.(10) by Eq. (9), the ensuing equilibrium
tions have been considered, which satisfy simple supp@tuation can be obtained by applying variational principle as
conditions.

Uj=A; COSA1XSiNN,y  (7y,);=B; COSAyX SiNA,y [[K]' ~ o} [Ke1] — o) [Kea] {dat =0 (11)
wj=C; sin\;x sin\,y (02);j=Djsin\;xsink,y (10) where
vj=E; sin\1X cosA,y (7y,)j=F; sin\1X COSA Y, t

i=r.s {9a}={A1B1C1D1E F1A;B,C,D,E,F 5} (129)

Here,\;=mw/Ly, A\,=nm/L,, mandn are the wave numbers The property matriy K]' and the geometric property matrices
indicating a specific buckling mode. [Kg1]' and[Kg,]' of theith lamina are given by

|
[Saal + Na([San] — [ Soal) = N[ Saal + [ Sual — [ Sool) + Mo([Sacl — [ Seal)

~N3([Sar) + [Sral ~[Seel) + A 1N a([ Sag) + [Syal = [Shel ~ [ Seo))
[KI=|  +\i([Sa] = [Soal) + NN o[ Sy] ~ [ Sogl +[ Sael = [ Seal) + N[ Saal (120)
+ NINS([Sor] +[Sral + [Sygl) + NN o[ Sagl +[Sgal) + N3([Srel —[Ser))

+ AN Sl ~ [ Sorl — [ Segl + [ Sgel) + NI Stel+ NA3([Stgl+[Syr])

K ]:i o xi[ebb,-]ﬂ‘l‘[eaaj]+x§x%[6ccj]+x§<[€m]1§aﬂﬂ

ST T+ NNA[Gebil—[Goei) + AN ([ Gacjl +[Geaj)) 12
® ]:é 5 x%[ebbj]+xixi[eaaj]+x;‘[ecc,-]+xlx§<[€m]—[§am}

e +A3([Gebil —[Gheil) T MM S([Gacil +[Geajl)

Layerwise property matricegS,,], [S.p], €tc., and geometric expansion or contraction. These stresses may be evaluated by sim-

property matrice§G,.l, [ Gapl, etc., are presented in the Appenply performing a prebuckling analysis of laminates with the help

dix. The signs of the few elements of the matrices would gef the nonhomogeneous equation

modified due to the substitution of E¢LO) into Eq. (9). Such

matrices have been represented with bars atop them. Further, su- [KItah={F} (15)

perscripti has been omitted in Eq§12) for convenience. where {F} represents the load vector associated with the given

change in temperature or moisture concentration. Because isotro-

pic and orthotropic laminates are in a state of plane stress due to

) ) temperature or moisture changes, oafyand 05 would develop
HYF1—Individual Layer Models. Matrices[K]' and[K]' of  at the supports. These in-plane stresses can be evaluated by using

various laminae are assembled by enforcing continuities of thtee plane stress-strain relations. Such an approach has been em-

displacements and transverse stresses at the interfaces of the lgioired for the first time here for thermal buckling analysis of

nae to form the global matricé&] and[ K] for the entire lami- laminated plates.

nate. The global equilibrium equations can then be written as

Laminate/Global Equilibrium Equations.

Shear Buckling. Laminates may also buckle under the action

[K]I=Ne[Ke]=[0] (138)  of externally applied in-plane shear stressés. However, the
where presence of derivatives, such&sv/gx3dy or 9*w/dxay® prevent
separation of variablefNarita and Leissd15]). Therefore, the

[Kel=0¥[Kgi]+ oj[Kez]- (130)  problem of shear buckling cannot be solved with the help of an

_assumed trial solution. Instead, the series solutions satisfying the
ing a generalized eigenvalue solver. Subsequently, the bucklihgundary condition can be used. Such solutions, however, have
stresses can be expressedslls =\ o, o? and o®, =\ 0P not been attempted here. Thus, the Kronecker deltas were not
X yer ety shown in the expressions for transverse strain components in
HYF2—Equivalent Single-Layer ModelsGlobal matrices of Eg. (3).
the entire laminate are evaluated by summing the respective ma-
trices of all the laminae for HYF2 models as lllustrative Examples

The critical buckling coefficienk ., can be evaluated by employ

N N Various mixed models were applied to compute buckling loads
[K]zz [K]' and [KG]ZZ [Kg]'. (14) of simply supported, isotropic, orthotropic, as well as laminated
i=1 i=1 plates. Discretization of each layer of a laminated plate into ten
sublayers was found to yield converging solutions for the HYF1
models. However, such divisions did not improve results when
HYF2 models were used. Critical buckling loads were computed
Hygrothermal Buckling. A general formulation was pre- for uni-axial compression, bi-axial compression, bi-axial
sented in the preceding sections for stability analysis of laminatesmpression-tension, and thermal and hygroscopic loading condi-
subjected to mechanical as well as hygrothermal loads. Whertians. Results were validated by comparing them with three-
laminate is subjected to change in temperature or moistudimensional elasticity and other analytical solutions available in
stresses are developed at the supports due to the restriction to fhexliterature.

By substituting these global matrices in Ed.3a), the critical
buckling coefficientx ., can be evaluated.
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Table 1 Various material property sets used in the

illustrative examples

Material

Set Properties

1 C,,/C1,=0.233190, C,3/C4,=0.010776, C,,/C4,=0.543103,
C,3/C1,=0.098276, Cg33/C1;=0.530172, C4y/C4,=0.262931,
Cg5/C1,=0.159914, Cg/C4;,=0.266810
(Source: Srinivas and Rd4.7])

2 E,/E,=3 1040, E3=E,, G,/E,=G;3/E;=0.60, G,3/E,=0.50,
V1= Vo3= v13=0.25
(Source: Nooff18])

3 E,/E,=40, E;=E,, Gi1,/E»,=G13/E;=0.50,  G,3/E,=0.20,
V1= Vo3= v13=0.25

4 E,/E,=15, E;=E,, Gi1,/E»,=G13/E;=0.50,  G,3/E,=0.3356,
vq,=113=0.30, v,3=0.49, a1 lag=0.015, ay/ag=az/ay=1.00
(Source: Nooif20])

5 Elastic moduli graphite epoxy lamina at different moisture concentrations

C (%),

E,=130 GPa, G;3=G;,=6.0 GPa, G,3=0.5G,,
(Source: Sai-Ram, and Sinha1])

0.50 1.
.0 8.75 8.5

B1=0 andpB,=B;=0.44.

C (%) 0.00
E, GPa 9.5

0.25
9.25 9

V15= V3= v13= 0.3,

0.75 00

o=
o N
=
]

Different material property sets considered in the illustrativels as the nonlinear strain-displacement terms related wiis
examples are tabulated under Table 1. Buckling loads have beegll asv displacements have been neglected in the HYF10 model.
expressed in terms of the following nondimensional parametd®wever, results from the HYF12 model are inferior to those

for facilitating comparison.
(i) A=H \/(chr)\%'i_o'ycr)\g)/’] (16)

where oy, oy represent critical stresses in the and
y-directions of a plate, referred in Example 1, apdndicates
normalization factor that is equal @ for isotropic plates an€,
for orthotropic plates.

2
chrLy

(ii) )\U:)\B:)\CT:W (17)

where\y, Ag, and\c7 are, respectively, the uni-axial, bi-axial,
and compression-tension bi-axial buckling stress parameters.

(i) (18)

where\; represents the thermal buckling parametgrindicates

Ar=agTe

from the HYF11 model for an orthotropic plate. Numerical experi-
mentation show that the difference in the results of two models
(HYF12 and HYF11 go on increasing as the degree of orthotropy
(E1/E5) increases, particularly for thick plates. Further, it has
been observed that the results from HYF12 and HYF11 models
are identical for an isotropic plate. However, these numerical re-
sults are not presented here for brevity. Thus, it can be tentatively
concluded that the contribution of nonlinear strain-displacement
terms related withv displacement is significant in buckling re-
sponse, probably due to the Poisson’s effect.

Variation of stresses and displacemefegaluated by using the
HYF13 mode) across a thickness for a homogeneous, orthotropic
square platéMaterial 1) are also in excellent agreement with the
three-dimensional elasticity results presented by Srinivas and Rao
[17]. However, the results are not presented for brevity.

normalization factor for the coefficient of thermal expansion, and

T., refers to the critical temperature.

Example 1—Orthotropic Plate Subjected to Uni-axial and
Bi-axial Compression. Buckling load parameters. for an
orthotropic plate(Material 1) for various values ofl(, /H) have

Example 2—Crossply Laminated Plate Subjected to Uni-
axial Compression. Uni-axial buckling load parameteds; for
crossply, antisymmetric laminated plat@daterial 2 have been
presented in Table 3. Results are compared with the three-

been tabulated under Table 2. The table is applicable for uni-ax@imensional elasticity solutions by Nofi8] and with the follow-

(eitheroy,=0 or oy,=0) as well as bi-axial loading conditions.

ing analytical solutions by using displacement-based higher-order

It can be observed from Table 2 that results obtained by using ttieories:(i) Putcha and Reddyl9]—higher order shear deforma-
HYF13 model are in excellent agreement with the thredion theory(HSDT); and (i) Wu and Cher{14]—displacement-

dimensional elasticity solutions presented[1®] and[17]. It is
evident from the table that the values nfestimated by the

based local higher-order shear deformation théaiySDT).
It can be seen from Table 3 that the HSDT overestimate buck-

HYF10 model are inferior to those estimated by other HYF1 moding loads compared to the results from the present study and the

Table 2 Buckling load parameters

\ for an orthotropic plate in Example 1

3D HYF1 HYF2
L,/H Elast? HYF13 HYF12 HYF11 HYF10 HYF23 HYF22 HYF21 HYF20
2.0 0.70338 0.70338 0.72473 0.70653 0.72879 0.70406 0.72553 0.70726 0.72965
2.5 0.51342 0.51342 0.52680 0.51676 0.53067 0.51368 0.52710 0.51704 0.53100
10/3 0.33200 0.33200 0.33858 0.33473 0.34153 0.33207 0.33866 0.33480 0.34161
5 0.16942 0.16942 0.17141 0.17070 0.17275 0.16942 0.17142 0.17071 0.17276
10 0.04742 0.04742 0.04760 0.04758 0.04776 0.04742 0.04760 0.04758 0.04776

aSrinivas and Rad17]
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Table 3 Buckling load parameter A, for square, antisymmetric crossply laminate in Example 2 when L,/H=10

HYF1
3-D

N E,/E, Elast® HYF13 HYF12 HYF11 HYF10 HYF23 HSDT LHSDT®
3 4.6948 4.6953 4.7385 4.7385 4.7824 4.6960 4.7749 4.6953
10 6.1181 6.1202 6.1881 6.1881 6.2575 6.1300 6.2721 6.1202

2 20 7.8196 7.8237 7.9128 7.9128 8.0038 7.8727 8.1151 7.8238
30 9.3746 9.3809 9.4867 9.4867 9.5949 9.4952 9.8695 9.3809
40 10.8167 10.8253 10.9454 10.9454 11.0681 11.0262 11.5630 10.8254
3 5.1738 5.1739 5.2139 5.2139 5.2545 5.1788 5.2523 5.1739
10 9.0164 9.0176 9.0858 9.0858 9.1550 9.0607 9.2315 9.0176

4 20 13.7429 13.7461 13.8405 13.8405 13.9361 13.8944 14.2540 13.7461
30 17.7829 17.7886 17.8993 17.8993 18.0114 18.0771 18.6670 17.7886
40 21.2796 21.2879 21.4089 21.4089 21,5313 21.7342 22.5790 21.2880
3 5.2673 5.2674 5.3067 5.3067 5.3466 5.2711 5.3420 5.2674
10 9.6051 9.6057 9.6724 9.6724 9.7401 9.6296 9.7762 9.6057

6 20 15.0014 15.0030 15.0949 15.0949 15.1878 15.0802 15.3520 15.0031
30 19.6394 19.6425 19.7489 19.7489 19.8565 19.7901 20.2010 19.6425
40 23.6689 23.6734 23.7881 23.7881 23.9038 23.9008 24.4600 23.6735
3 5.3159 5.3159 5.3548 5.3548 5.3943 5.3189 5.3882 5.3159
10 9.9134 9.9136 9.9794 9.9794 10.0461 9.9281 10.0560 9.9136

10 20 15.6685 15.6692 15.7593 15.7593 15.8505 15.7116 15.9140 15.6692
30 20.6347 20.6360 20.7398 20.7398 20.8446 20.7149 20.9860 20.6360
40 24.9636 24.9654 25.0763 25.0763 25.1882 25.0855 25.4220 24.9654

aNoor [18]
bPutcha and Redd}19]
“Wu and Cherj14]

LHSDT. The shortcomings of the HSDT can be attributed to twthese stresses are incorporated in the degrees-of-freedom. More-
facts: (i) the theory is two-dimensional equivalent single-layeover, in the HYF1 the transverse stresses are evaluated directly as
theory; and(ii) the nonlinear strain terms related wiitas well as eigenvectors. Therefore, pointwise recalculation of stresses is not
v displacements have been neglected while evaluating the exteguired in the present approach.

nal work in this theory. Thus, it can be summarized that the ESL
theories cannot predict buckling loads accurately for a large de-
gree of orthotropy and for large difference in material properti

of different layers in a laminate. Individual layer theories woul

certainly be required in such situations. Further, the nonllneE1/E2:4o) under bi-axial compressive loadirig®=1 and o®
strain-displacement terms related with at leastisplacement — L . y
1) are presented in Fig. 2. Results are compared with the ana-

Zggﬂ:gct;/e incorporated in the external work equations for bett1‘15’/'fical solutions by Khdeif4]. The minimum buckling loads in

. . table correspond to a buckling mode=1 andn=2. It is
Though the buckling load parameters obtained by LHSDT aﬁ € )
the present HYF13 model are the same, the present mixed 8 served that the results obtained by Khdeif (HSDPT) are

. Close to those obtained by the global HYF20 model and are higher
proach has many advantages over the LHSDT. The LHSDT is mpared to the HYF13 model due to the reasons cited above.

displacement-based layerwise theory while the present HYF1 i§ odal stresses and displacements have been plotted in Eids
layerwise theory that is based on the mixed approach. Continuit P P gs.

of transverse stresses between the laminae is to be specificalfy t© 3(f) for the bi-axial compressive loading conditidrr
satisfied through Lagrange multipliers in the LHSDT. However, i 1 anday=1) with E;/E,=40 andL,/H=10. Pointwise recal-

the HYF1 the transverse stress continuity is inherently satisfied @4ation of modal stresses and displacements is required when
ESL theories are used. On the other hand, the local mixed HYF13
model directly provides these parameters as eigenvectors, which
is a distinct advantage of the mixed theory presented here. Sound-
ness and applicability of the proposed formulation has been fur-
ther demonstrated through the continuity of the transverse modal
stresses and displacements.

Example 3—Crossply Laminated Plate Subjected to Bi-
ial Compression. The buckling load parametexg for a
uare, crossply0 deg/90 deg/0 dedaminate(Material 2 with

A 15

B
10

Example 4—Orthotropic Plate Subjected to Bi-axial
Compression-Tension Loading. Few analytical benchmark so-
lutions for the buckling load parametersct for a bi-axial
compression-tension loading condition have been presented in
Table 4 for an orthotropic platéMaterial 3. Buckling load pa-
rameters\; and\ g are also presented for comparison. Anglie
Table 4 represents the angle made by the fiber direction of the
orthotropic plate with respect to theaxis. It can be observed
from the table that the buckling parameteg; for thin plates is

> T T T T T o comparatively higher for bi-axial compression-tension loading
/H when the compressive load is applied along the fibers and the
Ly tensile load in the transverse direction. Such behavior can be at-

tributed to: (i) the restraining action provided by the applied ten-
Fig. 2 Variation of biaxial buckling load parameter Ap with  Sile stress in the transverse direction; and(itp the Poisson’s
L,/H for a crossply [0 deg/90 deg/0 deg] laminated plate con- effect. On the other hand, buckling load increases only marginally
sidered in Example 3 when the tensile load is applied along the fiber and compressive
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Fig. 3 Variation of normalized (a) transverse normal stress (0 ,/ 0, may); (b) transverse shear stress  (7,,/ 7y, max); (C) transverse
shear stress (7,,/7,, max): (d) transverse displacement  (w/wy,,); (€) in-plane stress (o /oy nax) and (f) in-plane stress (o, /o may)
for a (0 deg/90 deg/0 deg) crossply laminated plate in Example 3 under bi-axial compressive loading with P=P,=1

load in the transverse direction because the Poisson’s ratio in tieserved from Table 5 that the thin laminates buckle, as expected,
transverse directiorvg, ) is very small compared to the one in theat very low temperatures compared to thick laminates.
longitudinal direction ¢ 1). However, the value okt is com-
parable to\ for a thick plate regardless of the value @fton-
sidered in the present analysis as the applied tensile stress is i
significant to create an appreciable restraining action in the > : ; X
trgnsverse direction. Furtheﬁefhick plates buckle ign higher mod hi-axial Buckling Load. -~ Few analytical benchmark solutions

especially when thev are subiected to bi-axial compressiofid the effects of change in moisture concentrations on the uni-
ter?sioln I())/ac\jl\é. y ubJ axi P ! axial buckling load parametex,, of a crossply[ (0/90)] lami-

nated plate(Material 5 have been tabulated under Table 6. Re-

Example 5 Laminates Subjected to Thermal Loads. Ther- duction in material properties with the increase in moisture
mal buckling parameters; for a laminate having ten orthotropic concentratior{[21]) has been considered to evaluate the buckling
layers(Material 4 have been presented in Table 5. These resulsads. The parameterEg)._q 0 has been used to evaluate the
are also in excellent agreement with the three-dimensional elasticickling load parametex from Eq. (17). A obtained by the
ity results([20]) for thin as well as for thick plates. Critical tem- HYF13 model for different, /H ratios have been plotted in Fig.
peratures for the laminate corresponds to the buckling nmde 4. It can be seen from Fig. 4 that the buckling parameter reduces
=1. n=2, because laminates subjected to change in temperattapidly in thin plates compared to thick plates. However, the re-
are essentially subjected to the biaxial loading condition. It can ldeiction is almost linear for thin as well as thick plates. Further,

rF:xample 6 Effect of Change in Moisture Concentration on
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Table 4 Buckling load parameters for an orthotropic square plate in Example 4

L,/H=100 L,/H=10 Ly/H=2
0 Theory Ay \g Net Ay g Net Ay \g Net
HYF13 35.5487 10.7932 173.2168 20.2128 6.5163 43.2361 1.9515 0.7395 1.9875
HYF12 35.5516 10.7968 173.2310 20.3521 6.6562 43.4668 1.9710 0.7486 1.9880
0 HYF11 35.5516 10.7941 173.2703 20.2632 6.5308 43.2983 1.9520 0.7397 1.9877
de HYF10 35.5549 10.7977 173.2845 20.4032 6.6713 43.5298 1.9716 0.7489 1.9882
9 HYF23 35.5487 10.7932 173.2168 20.2163 6.5177 43.5593 2.0043 0.7610 2.0056
HYF20 35.5545 10.7976 173.2845 20.4068 6.6728 43.8604 2.0282 0.7748 2.0066
(mn) 19 1.2 2.9 1D 1.2 (.1 3.1 5 (19,1
HYF13 13.0327 10.7932 14.6617 7.6985 6.5163 8.6608 0.7582 0.7395 0.7649
HYF12 13.0337 10.7941 14.6629 7.7133 6.5308 8.6774 0.7583 0.7486 0.7650
HYF11 13.0422 10.7968 14.6725 7.9603 6.6562 8.9553 0.7649 0.7397 0.7709
90 HYF10 13.0433 10.7977 14.6737 7.9762 6.6713 8.9732 0.7651 0.7489 0.7710
deg HYF23 13.0327 10.7932 14.6617 7.7017 6.5177 8.6644 057904 0.7610 0.7996
HYF20 13.0433 10.7976 14.6737 7.9797 6.6728 8.9772 0.7999 0.7748 0.8016
(mn) (3.0 2,9 (3.9 (3. 2,9) (3.9 9.9 (5.9 (141

*indicates(m=7, n=1) and "indicates(m=6, n=1).

Table 5 Thermal buckling parameter (Ar=a,T.,) of a square orthotropic plate in Example 5 when N=10, and m=1, n=2

HYF1
L,/H 3-D Elast? HYF13 HYF12 HYF11 HYF10 HYF23
100.0000 0.7463<10°2 0.7463<10°2 0.7466<10°2 0.7464< 1072 0.7466<10°2 0.7463<10°2
20.0000 0.1739%x 10 * 0.1739%<10°* 0.1752x107* 0.1742x10°* 0.1755< 10 * 0.1739% 107!
10.0000 0.5782x 10! 0.5782x10°* 0.5926x10°* 0.5805x 10 * 0.5951x 10" * 0.5782x10°*
6.6667 0.1029 0.1029 0.1073 0.1034 0.1078 0.1030
5.0000 0.1436 0.1436 0.1515 0.1442 0.1522 0.1438
4.0000 0.1777 0.1777 0.1886 0.1783 0.1894 0.1782
3.3333 0.2057 0.2057 0.2187 0.2063 0.2194 0.2066
aNoor and Burtor{20]
Table 6 Effect of moisture change on critical buckling load parameter Ay of a square, [(0/90),] crossply laminated plate in
Example 6
HYF1
L, /H C (%) HYF13 HYF12 HYF11 HYF10 HYF23
40 0.0 14.4529 14.4602 14.4600 14.4673 14.4627
0.5 10.0180 10.0254 10.0254 10.0324 10.0278
1.0 6.0708 6.0781 6.0778 6.0851 6.0805
1.5 1.9523 1.9596 1.9593 1.9666 1.9620
20 0.0 13.6835 13.7106 13.7070 13.7342 13.7180
0.5 12.5247 12.5517 12.5517 12.5752 12.5591
1.0 11.4879 11.5147 11.5112 11.5381 11.5221
15 10.4582 10.4851 10.4816 10.5085 10.4924
10 0.0 11.3466 11.4275 11.3956 11.4772 11.4362
0.5 11.0183 11.0990 11.0671 11.1485 11.1076
1.0 10.7205 10.8009 10.7691 10.8502 10.8093
15 10.4631 10.5435 10.5117 10.5928 10.5519
0.0 6.9932 7.1383 7.0279 7.1746 7.1092
5 0.5 6.8911 7.0365 6.9257 7.0726 7.0069
1.0 6.7963 6.9420 6.8309 6.9781 6.9121
1.5 6.7320 6.8776 6.7665 6.9138 6.8477

Fig. 4 indicates a trend that thin plates may buckle without arthat the stresses need not be evaluated separately. Further, a
external forces, solely due to small change in moisture concentsiample approach has been presented for thermal buckling analysis
tion. of laminated plates. From the extensive parametric investigation,
the local higher-order mixed modé@HYF13) has been found to
) yield results that are in excellent agreement with the three-
Conclusions dimensional elasticity solutions as compared to the commonly
A novel, analytical mixed formulation has been developed bysed displacement-based equivalent single-layer, higher-order
using the minimum potential energy principle for stability analysitheories. It is recommended that, at least, the nonlinear strain-
of laminated composite plates. Continuity of displacements &isplacements terms related with in-planelisplacements should
well as transverse stresses through the thickness of a plate bagncorporated along with those terms related without plane dis-
been explicitly satisfied in the formulation. The modal transverggacement to evaluate the potential energy functional, i.e., in Eq.
stresses and displacements have been obtained as eigenvectof3as@t leasts, along with §; shall be taken as unity.
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s
Cl3

A, Ni35=fs Nu36=fs NuB37)= 5 fai
33
13
Ni(38)= = Ta;
C3s C3s
N4(3,9):C—§3f4 N4(3‘10)=C—§3f4

Na(3,1D="f,; N4(3,12=f,.

Superscriptsr and s indicate, respectively, the bottom and top
surfaces of théth lamina for all HYF1 models. Therefore=s
=1i. On the other hand=1, s=N for all HYF2 models.

Strain-Displacement Matrices. Nonzero elements of %12
strain-displacement matricga], [b], [d], [e], [f], [g], and[t]
appearing in Eq(6) are

0 T
0.0 0.5 1.0 1.5

Moisture concentration C%

Fig. 4 Effect of moisture change on uni-axial buckling load - f3 . - a )
parameter A computed by using the HYF13 model for a square a(33=f;; a(34= cr. a(3,9=f,; a(310= cs.
[(0r90) ;] crossply laminated plate in Example 6 33 33
_ B _ .
a(5,)=f;; a(5,2= o a(5,7=f, a(59= o
55 55
Appendix T -
=f. -2 =¥, =4
Shape Function Matrices. The shape function matrices a69=f; a(66= CLy’ a(61)=f; a(6,12 [
[N;], [N,], [N3], and[N,] of Eq. (4a) are of size 3k 12. These
matrices can be written rowwise as follows: b(1,D)=f;; b(1,2=N(1,2; b(1,7)=f1,;
[NjI=[{Nji} {Njob {Nj3Hl' j=1,234. b(1,8)=N;(1,8);
Nonzero elements of shape function matrices are presented ma- Cly— CS—
trixwise as follows: b(3,)=——=fs b(37=——=f4 e(4D="1;
‘ Css Ca
3
Ni(1,D=f;; Ny(1,2= C_r? Ni(1,7)="f5; e(4,7="1,;

55

b(4,59=f;; b(46=Ny(2,6; b(41D)=f;;

fa
N;(1,8)= ce b(4,12=N4(2,12;
. —f—Fa 8H=N,(3.4); =f,—fy
N Nl(z,e):_f; 21Dt b(53=f;—fs; b(549=Ny(3,4); b(59=f,—f,
Ces b(5,10=N,(3,10;
Ny(2.12 éi: d(1,3=—f5; d(1,9=—f,; d(51)=Ny3,1);
66 d(5,7)=Ny(3,7).
f
NiBI=fa; NiBA= 2 NaBI=1s; e29=f1; e28=b(48; e21h=f,;
e(2,12=h(4,12);
f
N1(3,10)—C—§3. Chy— 28—
3, :——rf; 3,1 :__Sf;
e(3,5 c, e (3,1 s,

e(4,2=0b(1,2; e(4,89=hb(1,9;

Cls Cis
NABD=—5r fai Na(30=- 5 Ta. e(6,9=b(53; e(64=b(54); e(69=b(59);
N3(2,3=—f3;, N3(2,9=—1, e(6,10=Db(5,10;
r s cf23
N3(3,5)=—C—,23f3; N3(3,11):—C—§3f4 f(2,3=—fg; f(2,9=—fy; f(6,5)=—c—r33f3;
33 33
13 Cls _ C3
NyB D= fai Na(82=r fas f(6,11)= Cgau
33 33
N(3.3) r23f' NA(3.2) C’23f 9(4,39=—-2f3; 9(49=-2f,4 9(55=1(65);
! Ch > ° Ch ° 9(5,1)=f(6,1:
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9(6,1)=d(5,1); g(6,7=d(5,7)

t(3,)=—-Db(3,1); t(3,2=-b(3,D;

(3,39 =—e(3,5; t(3,9=—-e(3,5;
t(35="fsz t(3,6=fs t(3,7=-b(3,7);
t(3,8=-b(3,7);

t(3,9=—e(3,1D; t(3,10=—e(3,1D;

t(3,1)="f, t(3,12=f,.

Here,f,, f,, f5, andf, are the interpolation function§;, T, T3,
andT, being their derivatives with respect to thelirection. The
interpolation functions are

1 1
f1=7(2-3¢+8%) f=7(2436-89)
(A2)
g 2 3 g 2 3
famg (1= 848 fo=g(-1-¢+8-8).
Here,é=2/{ and{=h,, for the HYF1 models and=H; for the
HYF2 models.
Property Matrices. Different property matrices in Eq12b)

for a lamina can be evaluated as

hy
[Sapl= fﬁh [a][Cl[B]dz (A3)

where[«],[ 8]=[a],[b].[c],[d].[e],[f].[g].[t].

Geometric Property Matrices. Various geometric property
matrices in Eq(12c) can be obtained from

hy
[Gaﬁj]:fih {N.yj}t{Nm’}dZ, j:1,2,3, a,ﬁ:a,b,c.
1 (Ad)

Here, @=a,b,c for y=2,1,3, respectively, an@g=a,b,c for 7
=2,1,3, respectively.
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On the Singularity Induced by
Boundary Conditions in a
Third-Order Thick Plate Theory

C.S. Huang This paper thoroughly examines the singularity of stress resultants of the fotfy6)

Associate Professor, for 0<é<1 as r—0 (Williams-type singularity) at the vertex of an isotropic thick plate;
Department of Civil Engineering, the singularity is caused by homogeneous boundary conditions around the vertex. An
National Chiao Tung University, eigenfunction expansion is applied to derive the first known asymptotic solution for dis-

1001 Ta-Hsueh Road, placement components, from the equilibrium equations of Reddy’s third-order shear de-
Taiwan 30050, R. 0. C. formation plate theory. The characteristic equations for determining the singularities of
e-mail: cshuang@ce.nctu.edu.tw stress resultants are presented for ten sets of boundary conditions. These characteristic

equations are independent of the thickness of the plate, Young's modulus, and shear
modulus, but some do depend on Poisson’s ratio. The singularity orders of stress result-
ants for various boundary conditions are expressed in graphic form as a function of the
vertex angle. The characteristic equations obtained herein are compared with those from
classic plate theory and first-order shear deformation plate theory. Comparison results
indicate that different plate theories yield different singular behavior for stress resultants.
Only the vertex with simply supported radial edges (S§()) boundary condition) exhib-

its the same singular behavior according to all these three plate theories.

[DOI: 10.1115/1.1490371

Introduction and Sinclair[18] investigated the stress singularities at corners
- . . - l()jue to six sets of homogeneous boundary conditions by introduc-
Obtaining accurate numerical solutions to many elasticity prob- ial ined the sinaulariti
lems requires knowledge of the singular behavior of stress com @ stress potential. Huang et Fl9] examined the singularities
%Lmoments and shear forces at the vertex of a Mindlin sector

fhoener;gsbfgnﬁhﬁn%ee'?Zzﬂrsr;gg?agéflnggrlaéxi%mfematnha? g?nma(':rr‘a ate with simply supported radial edges, by establishing an exact
p ) Pe, yzing lution in terms of Bessel functions for the vibrations of such a

(or V-notch problems using finite element approaches usually i late. Recently, Huang20] comprehensively investigated the

volves shape functions to describe corre.ctly the singular behay fess singularities of moments and shear forces at corners caused
Of. stresses at the crack i, 2)). The aqmlssmle func_tlons of the_ by ten sets of homogeneous boundary conditions by adopting Xie
Ritz method include the corner functions that precisely descri ?\;d Chaudhuri's techniqugl]) to directly solve the equilibrium

. . . %uations in terms of displacement components. Comparing the
problems of thin plates with V-notches or with re-entrant corner sults with the exact solution given by Huang et[B] reveals

to accelerate convergence and increase the accuracy of the s Hi the singularity orders for moments and shear forces in Hua-

tion ([3,4). . . ng's results([20]) are consistent with those in the exact solution
Many papers have addressed the stress singularities at shgip, gimply supported corner, while the solution proposed by

comers based on plane elasticity thedrg., [5-8]) and thr'ee- Burton and Sinclaif18] is consistent only for moment singulari-

dimensional elasticity theor{{9,10]). However, the stress SiNGU- ias but not for shear force singularities

larities for different plate theories have received lesser attention.Comparing published work based on.classical plate theory and

Williams [11] first investigated the stress singularities due 18y, fisi order shear deformation plate theory reveals that different

boundary conditions in the angular corner of isotropic thin plates, :
) - - gularity orders for moments and shear forces are suggested by
under bending. Williams and Owefi2] and Williams and Chap- igterent plate theories. Consequently, this study aims primarily to

! ird-order shear deformation thick plate theory. This study ap-
- . . - plies Reddy’s refined plate theo(}21]). The theory is equivalent
ners for bi-material thin plates, and Ojikutu, Low, and S¢a8] 4, other third-order shear deformation plate theories proposed by
investigated stress singularities at the apex of a laminated co. shmidt[22] and Krishna Murty{23]. This work considers only
posite thin plate with simply supported radial edges. Huang et gle \jjliams-type stress singularities at a corner caused by various
[16] discussed the singularities of moments and shear forces at fig, jary conditions but does not consider logarithmic stress sin-
apex of a sector plate with simply supported radial edges in @fyarities as the former singularities are more often encountered
exact solution for vibrations of such a plate. Sinc(dir] consid- 5 the atter. The eigenfunction expansion methodology pro-
ered logarithmic stress singularities in thin plate theory. osed by Hartranft and Sif9] for three-dimensional elasticity
Based on the first-order shear deformation plate theory, Bu"gpoblems is adopted to determine the asymptotic displacement

Comributed by the Abpiied Mechanics Division ofiE A . field around the corner by solving the equilibrium equations in
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF : ; ) -

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- terms of dlsplaceme_nt_ compo_nents in Redd'y's reflne(_j plate
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July ll}heory- The characteristic equations fOI’_ determmmg the smgular-
2001; final revision, Feb. 28, 2002. Associate Editor: R. C. Benson. Discussion Hly orders of stress resultants are established for ten sets of bound-
the pa;;er shr(])uld ble ac(ijdressed to thelEditor, Prof. Robert M. l\/]chLT?king, Depagfy conditions around a corner. Finally, the singular behavior of
ment of Mechanical and Environmental Engineering University of California—San ; ; e i : ; : ;
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Basic Formulation

For a sector plate with cylindrical coordinates shown in Fig. 1,
the displacement field for the third-order plate theory proposed by

¥y of My, &, of M,,

— P 2 P
Reddy[21] is given as w or Q,+C; Tr+P”+ Fpre,a_ TH , andw, or P,.
4(z\2 (8)
u=2zl i — §(ﬁ) (¢r+W,r)}’ (1) The details of derivation for the equilibrium equations and bound-
ary conditions in Cartesian coordinates can be found in Reddy’s
4(z7\2 1 book [24]. The stress resultants in above equations are related to
V=2 hy— 5(5) Yot FW‘(,”, (2) stress components by
ol el
w=w(r = o dz, 9%
( !0)1 (3) (R,B “hi2 Bz Z ( )
where the subscript 4,” refers to a partial differential with re-
spect to independent varialjleu, v, andw denote the displace- Mgl hi2 z d %
ments of a pointr, 6, z) along ther, #, andz directions, whiley, Pg) 41/2033 2[9% (0)
and ¢, are the rotations of the midplane normal in the radial and
circumferential directions, respectively. This displacement field M, h/2 z
leads to zero shear stresses, and o,4, on the plate top and [ = ]=f Ur(}{ Ze,}dz. (9)
bottom surfaces. ro ~h/2

_ By using the vagatlona_l metht())d, %ne can (j;i‘.’e'op _trr;]e eqw!:_b- For an isotropic and elastic plate, the relationships between the
rium equations an hcon5|stent lolundz_ary con |t|0ns.f he €qullifess resultants and displacement components are established by
;gjsﬂltgﬂgsag?gs without external loading In terms of the stresx;ing strain-displacement and stress-strain relationships. They are

_ 2Gh 2Gh 1
2 Q Q=73 (WhtWo), Qp=—3—| ¥yt W,
Cl Pr,rr+Fpr,r+r_2P9,0t)_FP6,r+Fpre,r9+r_zprt),0 +T
1 R Ghs( +w,), R ik +1 )
— — =75 (Utw,), Ry=— ~W,|,
+Qrrt - Qu0=0, 4 =30 WVl Remgg | Yt W
o J1 1 1
_ M, M, 1_—  _ Miy=Gh’ 5| o= T ¥t T 0
Mert 7o 7 T M= =0, )
1 ( 2
_ ———| =y =Wty g 2W T ”
1_ N 2Mr9 . 60r 0 r ,0 r,o o o,r
FM0,9+Mr0,r+T_Qa:01 (6) 5
M Eh 1 1
Cy=4/3n2, C,=4h? M,,=M,,—CiP,,, Mz=Mz—C,Pp, 12|18V o

Qs=Qs—C;,Rg, his the thickness of plate and subscripte-
notesr or 6. Furthermore, the radial boundary conditiof 0

14
+
= a) should specify

r

1 1 1
1_5(l!fr+l/f9,9)_ %(W,ﬁ” FW,M)”:

¥y OF My, &, Or My, En® (1]1 1 1
B ) 1 w, My=1—217 E(lﬂr‘“ﬂa,a)—&) Wt W g
w or Q,+C; FP”,+2P”,J+FPHY6 , andT’ or Py. 1 1
@) +v 1_5‘//r,r_6_ow,rr )
The circumferential boundary conditiongat r=R) should 5
prescribe h

16 16 10 W,
Pro=1ggo| 160 T Yot T o™ 1| Weom 7| |

P,

_ Eh2 ’/’r,r_W,rr
(1-+7) | 105 336

vl 1 W 99
T %(¢r+¢e,9)—3—36 Voot e W+ —=] 11,

_ Eh® (11 1( W g9
Pa-m(; 105 ¥t Y00~ 33| Wit T)

7
lpl’,l’ W,rr
+v WS— 3_36 s (10)
where E is Young’s modulusG is the shear modulus, andis
Poisson’s ratio.
Substituting Eq.(10) into Egs. (4)—(6) with careful arrange-

Fig. 1 Coordinate system and positive displacement compo- ment yields the equilibrium equations in terms of the displace-
nents for a sector plate ment components:
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2 1 1 < Z
‘/’r,rrr+F‘/’r,rr+r7’r//r,r€9+r“§l/fr,997FZ‘/’r,r+F§‘//r+l75‘!f6,099 20 202 PAmtN=3 (N N+ 1)\If§f‘(,)g+()\m+n—l)z()\m+n+1)
m=0 n=0,2,
1 2 5
+F¢8,rr8_r_2‘//9,re 31/’93 Wrrrr+ Wrrr X\Ifgm)—i-CD%"ngW-i-()\m-ﬁ-n—1)2(135{’”9)—1—6[()\m+n—1)2
2 1 2
+ 2 Worrpp ™ 2 W~ r—gW,rgg*' r—3W,r+ 13 W.0000 + (Am+n+1)2WM 4 2((Ap+n)2+ 1)W 6+Wn 0000 )
4 21(1-v) 1 1 1 21— »
At +T(¢r B L + B S (0 D T W,
1
N r—zW,ea) o, 1) (At N+ 1)2WM =0 (15)
1 1-v 1 3-v1 1+1/1 mEOn i 2{ 2 qfi]m(39+[()\ - 1)}\1,““)
¢r,rr+ F¢r Zwr 00— Zwﬁt) r wﬁ,rﬁ
o 1+v 3—v m 4 )
4 1 1 1 ) + T()\m+n)— ‘Dn,e_1_7[()\m+”+1)
W+ =W, + 2W 00— 2 W, __3W,99)
17( A e X (At n=1) W+ (N p+n—1)W"),]
84(1—-v) 84(1—v
— 1z (rtw,)=0, (12) —%r*m+"{qf<nm>+(>\m+n+1)w<nm>}=o, (16)
® o 14
1+v1 3-v1 1- 1-v(1 pAmtn-2 (m) (m)
TF%”TF‘W l/,,m — (F"b") mZ:O ngz ” ()\ +n)+ > }‘I’na%bn 06
o
1 41 1 +2[(>\ +n)2-1) @(m)—i[(x +n+1)2Wm)
+r_2‘//e,ee_l_7 W gt 2Wr0+ 3 W.000 2 m noogq7em n.o
84(1—-v)
84(1—v 1 m) Amt (m) my
7%7)(¢6+FW,9 =0. (13) M,aae]} W n{q) +M\,9}_O- 7

Satisfying Egqs(15—(17) leads to the coefficients af with dif-
. . . ferent orders equal to zero. Subsequently, a set of recurrent rela-
Construction of Series Solution tionships amongV(™ , w(™ (™ and their previous values can
The eigenfunction expansion approach proposed by Hartrab# attained and expressed as
and Sih[9] for three-dimensional elasticity problems is adopted m
herein to find the solution of Eqg11)—(13). The displacement (Am N+ )W, ppt At N+ 12N+ 3) W+ D, 4
components can be expressed in terms of the following series:

+(Aptn+1)20(0, — 6[()\m+n+1)2(>\m+n+3)2
w(r, 9)—;0 HZ Pt WM g\ (14a) XWE, + 2( (At N 2)24+ D)W, ot WA, 4]
L = %_){(x +n+1) WM+ oM+ W,
pEO= 2 2, P A, () Ot DAV, (18)
" [<xm+n+2>271]\lf<n”1)2+1—%299 ?@&%,g
ZGUEDS Lm0, (14c)

m=0 n=0

14
+— (At n+2)®d\", — 7[(>\m+ n+3)2

where the characteristic valuas, are assumed to be constants
and can be complex numbers. Notably, did Eqgs.(14) will not X (NmF+n+ D)W, + (N y+n+1)W
produce any additional solution such that they are not considered
in Egs.(14). 84(1 v)
The real part ofA,, must exceed zero to satisfy the regularity 17h?
conditions at the vertex of the sector plate. The regularity condi-
tions require thaty,, ,, w, andw , are finite asr approaches
zero. As a result, the solution form given in E¢54) with the real
part of \,, less than one leads to singularitiesMf, M,, M,,,
P,, Py, andP,,, which is observed from the relationships be-
tween stress resultants and displacement components given in Eq.
(10). However, no singularity for shear forcé®, and Q,), R,
andR, will be produced from the solution. 84(1 v)
Substituting Eqs(14) into Egs.(11)—(13) yields T 1m?

+259]

[P+ (Aptn+1)WM™T, (19)

+v (m) 1- 2
T(}\m+n+2) \Ifn+29+ [()\ +n+2)°—1]

2

XD, + D, )y [(7\ +1+3)2WHT, o+ W, 49

——— (DM + W), (20)
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Furthermore, one can establish the following equations from tiselutions involving logarithmic function of leading to logarith-
coefficients of the lowest order ofin Egs.(15)—(17): mic singularities for stress resultants at the vertex of a sector plate,
which are out of the scope of this work and will not be investi-
At DU+ A= 12Nyt DYV + DT+ (A= 1)?DY  gated here. The readers who are interested in the logarithmic sin-
gularities may refer to Dempsey and Sinclait and Sinclaif17].

_ 2 _1)2 2\ (M) 2 m) (m) . . .
76l (Am~ D (At 1) WG+ 20N+ DWEG,+ WoBhool  characteristic Equations and Corner Functions
=0 (1) To determine Williams-type stress singularities at the vertex of

' a sector plate caused by homogeneous boundary conditions, one

3—v (1+v)\ only needs the asymptotic solution with the lowest order of
+

1-v
\NG—DwEV+ > Vo~ > DGy > Yy the series solution of Eq$14). Consequently, only the solution
with n=0 in Egs.(14) needs to be considered. Let
= L Ot D2 = WG+ (= DW=, Yoo =r @GV (0N ), yrg'=r WG, \y), and
(22) g™ = WG (0N ). (26)
1+ 33— 1- Furthermore, as well known, the stress singularities are affected
A 37V YN R Y NG ) by the boundary conditions along radial edges only.
2 2 )70 2 0m o o In the followin ll ider four t fh
g, we will consider four types of homogeneous
4 boundary conditions along a radial edge, #aya, namely,
— = [\t 1)2WeH+Wb,,1=0 23
7oL N+ 1)2WG + W1 =0, (23)

w
clamped: szr:%:T’{’:O, (278)

It is easy to find that the general solution for the set of ordinary
differential equations given by Eq&1)—(23) is

DI (0,\m) =Bo COI A+ 1) 6+ By Sif Ay +1) 6
+B,cog\,—1)0+Bssin(A,—1)6, (24a)

. _ 2 1
free: My=M,,=Q,+C; FPr9+2Prgyr+FP9y0):P0=0,
(270)
type | simply supportedw=,=M,=P,=0, (27)
WM (O,\ )= —B1 CO{\ y+1) 6+ Bg Sin(Ay+1) 6

_ type Il simply supported:w=M ,=M,,=P,=0. (27)
+A,COg N~ 1)+ Agsin(A,—1)6, (24b)

For simplicity, C and F are used to present the clamped and free

\/\/E{“)(G,)\m)=AO cog N\, +1)0+A;sin(A,+1)6 boundary conditions, respectively, whilgl5and Sll) denote
type | and type Il simply supported boundary conditions.
+ (kyAz+kaBs)cog Ny, — 1) 0 For the sake of demonstration, we will describe the procedure

for obtaining the characteristic equation fof,, and the corre-

(KiAg—koBy)sin(Ay—1)0, (24c) sponding asymptotic displacement field for describing the singular
where behavior of stress resultants in the vicinity of a corner. Consider a
sector plate with vertex angle equaldcand having clamped and
o 17 [(1+v)\y, N 3- V) free boundary conditions along two radial edges, respectively. For
1716n, 2 2 ) the free radial edge &= «, substituting Eq(26) into Eq. (27b)
and using the relations given in E(L0) leads to the following
Ko 17 ((1+ V) Am 3- V) equations for the lowest order of
2716\, 2 2 )

apAot+apAr+aishrtaAstaisBot aieBr taiBataigBs
andA; andB; (i=1,2,3,4) are coefficients to be determined from

boundary conditions. =0, (28)
To establish the complete series solution for equilibrium equay, A+ a,.A, + 2,58+ 8s,Ax+ areB+ 2,eB + a,-B,+ a,:B

tions (i.e., Egs.(11)—(13)), one has to determine,, and the rela- 2ot 8zh1t Bzfat Aadhat AzeBot AzeBat azrBa+ B

tions amongA; andB; in Egs.(24) from the boundary conditions =0, (280)

along radial edges. Then, one finds the solutionsifgP , w(™
azApta +a +a +azsBotazBi+asB,r+aszgB
and W™ with n>1 from Egs. (18—(20) and boundary ' ° 2t 8sfet Baat BggBot AscBy T AgBa T Aaefs

conditions. =0, (2&)

Notably, one may construct the series solution by starting with
assuming the following solution form: aAot At Aot asAst asBot asBit aBa T asBs

. . o0, (&)
w(r,0)= 2 > Wi, (2%)  where lengthy expression far; is given in the Appendix. Simi-
m=0 n=0.2, larly, one also obtains four equations f&¢ and B; from the
© o B clamped edge a#=0:
¢r(r,0)=mE:0 ngz PAmEntlapMeg \ ), (250) Bo+B,=0, (2%)
. — B, +A,=0, D)
Wy(r,0)= Eo 2;,2 Pt g N ), (250) Ag+kiAy+kyBs=0, 2%)
m= n=0,2,
AmT 1AL+ (A= 1) (kiAz—K;B5)=0. (29)

wherel; (i=1,2,3) can be arbitrary integers, but at least one of
them is zero. Following the above procedure, one will find the Equations(28) and(29) construct a set of linear homogeneous
solution form given by Eqgs(14) is the only one that may yield algebraic equations fok; andB;. To have nontrivial solution for
Williams-type stress singularities. Furthermore, there are possilfieandB; yields the characteristic equations oy, ,
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4—\2(1+v)?sir a less than those for rotation componetfs and ) andw by one

SiP Apa = EEEET (30a) and two, respectively. Consequently, the ragtof the character-
istic equations with a positive real part below one leads to singular
. 4—\2(1—v)?sir a behavior of moments ang, , P,, andP,,, described by *m~!
Sin’ \par= Brndl-») (3) asr approaches zero. Moreover, the singular behavior of stress

componentsg,, , 04y, ando,,, can also be found according to
Then, one can find the relations amofgandB; from Egs.(29) the relationship between stresses and displacement components in
and(28a)—(28c). Consequentlyy{?, ™, andw{™ in Eq.(26) elasticity. Notably, the characteristic equations listed in Table 2
are expressed as reveal that the thickness of the plate is unrelated to these charac-
teristic equations, and Poisson’s ratio is the single material prop-
m N B . erty that can affect the singularity order of stress resultants.
Yro (1, 0)=Bgrm -——=cogAy+1)6— 7, Sin(Ap+1)0 As stated earlier, the real part bf, (Re(\,,)) must exceed zero
" to meet the regularity conditions for the displacement compo-
nents, ag approaches zero. Figure 2 displays the minimum posi-
' tive values of Re,) versus the vertex angléx) for various
boundary conditions. These minimum values of Rg(were de-
(312) termined by solving the characteristic equations in Table 2 with
Am . equal to 0.3. Notably, some different boundary conditions around
7 SINAm+1)0— 7, COSAy+1)6 a corner produce the same minimum Rg(within certain ranges
of vertex angles. Boundary conditiongl 8 S(1), S(1)_S(II), and
) S(11)_S(11) give the same minimum Re(), while boundary con-
+SiN(Ay—1) 0+ 7, COI Ny — 1)9]' (1)  gitions SI)_F and $Il)_F yield the same minimum Regf) ex-
cept for 180degt «<270deg. Boundary conditions € and F_F

Am

— " "Cog Ny~ 1)+ 7, SiN(Ay—1) 6
Am—1

1+
w%)(r,ethrkm[ N

ky(1+Np) have the same minimum Re() whena exceeds 180 deg. Bound-
wy™(r,0)= B3r”m“[ ( N1 kZ) cogAyt1)0 ary conditions CF and C_S(Il) show the same minimum Ref)
(1-r) for « below about 128 deg. Whemis between 180 deg and 270
“Am _ . deg, boundary condition(§_C yield a minimum ReX,,) equal to
o K kem)Sinim 1) 0 that for S1)_F and C S(I).
Figure 2 indicates that no singularities of moments BpdP,,

( _ (1+Amky +ky|cog A, —1)60 andP,, occur if « is less than 60 deg, regardless of the boundary
Am—1 2 m conditions around the corner. However, such singularities are al-

ways present ifa exceeds 180 deg. A corner with(15 S(1),
+ (Ky 71— Ky 72) SIN(A = 1)9]’ (310) S(h_S(1), s(h_s(), S(1)_F, S11)_F, or S1)_C boundary con-
ditions exhibit a singularity whemx exceeds 90 deg. Boundary
; ; ; ditions C F and C _S(Il) cause the strongest singularity of the
where, and 7, are given in Table 1. Sincg™ , ™  andw{™ ©ON .
are the ;malleszt order ofin the series solutiegn gi\;gn in Eq(sf4) stress resultants at the vertex eibetween 60 deg and approxi-

for different\ ,,, they characterize the asymptotic behavior of thEnate_IY 105 deg; @—S(I)’ S()_S(ID), gnd 3”.)—8(”) boundary
series solution in the vicinity of the vertex. Furthermore, they afPnditions result in the strongest singularity for other vertex
the displacement field describing the singular behavior of stre&@gles. CC and F_F boundary conditions cause a singularity in
resultants at the vertex when the positive real park gfis less Stress resultants for exceeding 180 deg. This singularity is
than one. The asymptotic displacement field will be called as ca¥eaker than that due to other boundary conditions.
ner functions below. Figure 2 also indicates that singularities generally become more
By following the procedure given above, one can develop ti@vere as the vertex angle increases, except in those cases with
characteristic equations far, and the corresponding corner func-S(1)_S(1), S(1)_S(I1), S(1)_S(11), C_F, or C_S(I1) boundary con-
tions for different boundary conditions along radial edges. Tablgéions. For the CF and C S(Il) cases, the minimum positive
1 and 2, respectively, summarize the characteristic equations Re(\) increases withy for « between 122 deg and 130 deg in
Am and the corresponding corner functions for ten different comehich region the roots of the characteristic equations change from
binations of boundary conditions. To take advantage of the proteal to complex numbers. The minimum positive Rg( for
lem’s symmetry, the corner functions for the identical boundar$(1)_S(1), and SI1)_S(I) was determined from different charac-
conditions along two radial edges were determined by consideritegistic equations for different ranges @f That is, from Eqs(32),
the range,— a/2< < «a/2, which is also indicated in Table 1.  when a<, the minimum positive Ra(,) is determined from
Notably, using trigonometric identities, the characteristic equaos{,,+1)a/2=0, while for #<a<3w/2 and for 3r/l2<«
tions for S1)_S(1) in Table 2 are found equivalent to <27, the minimum positive Ra(,) is determined from coaf,
_ _ _ —1)a/2=0 and sink,,+1)a/2=0, respectively. Asx approaches
CosAm—1)al2=0 or coshpt1)al2=0, (322) 27, the singularity order for moments afj, P,, andP, , due to
and S(H_S(1), S(I)_S(I1), and SI1)_S(1I) boundary conditions ap-
sin\,— 1)a/2=0 or sif\,+1)a/2=0, (32) proachesr:l, while F_Fand C C bogndary f:onditions lead to an
) ) ) _ order ofr ~ 2. Other boundary conditions yield an orderrof*.
for symmetric and antisymmetric cases, respectively. Conse-\jost of the characteristic equations listed in Table 2 can also be
quently, the corner functions corresponding to the rootsofor  t4nd in either classic plate theofZPT) or first-order shear de-
(jlfferent equations are separately I|§ted in Table 1. Similar situgyymation plate theoryFSDPT). Williams [11] obtained those
tion also happens to the cases withl8.S(Il) and SI)_S(1)  cnaracteristic equations marked with a superscript, “#,” in Table
boundary conditions. 2, from the classic plate theory. Burton and Sinclgig] and
. . Huang[20] found those characteristic equations marked with su-
Singularity of Stress Resultants perscript *” in Table 2, based on FSDPT using different solution
The relations between displacements and stress resultants gigpproaches. The characteristic equations pertaining to th¢ S
in Eg. (10 indicate that the smallest orders offor moments boundary condition given in Table 2 cannot find the corresponding
(M, ,M,,M,,) andP,, P,, andP,, are the same, and they areones in classic plate theory because rit)Soundary condition
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Table 1 Corner functions

Boundary
Case No. Conditions Corner Functions
(1) for cosqy,—1)a/2=0
SO(r,0)=Ar*mcosppm—1)6, ¢ (r,0)=Bsr msin(\y—1)6, W(r,6)= (kA +k,By)r'm™ ! cosp,—1)6
(2) for cosp+1)al2=0
S(I)‘S(I) (m) _ (m) _ A i W(m) — Amtl
1 @ o (r,0)=—Byr*mcos@,+1)6, ¢y (r,0)=Byr*msin(\,+1)6, Wy (r,6)=Agr*m"* cos@,,+1)60
(_ Eg‘KE) (3) for sin(\,—1)a/2=0
S(r,0)=Agr msin\y—1)8, #(r,0)=B,r'mcospy,—1)6, W(r,6)=(kiAg+koBy)r'm* L sin(\,—1)6
(4) for sin(\j,+1)a/2=0
SO (r,0)=Bor*msini\n+t1)6, D (r,0)=Bor*m cospy+1)0, W(r,)=Ar*m*t sin(\,,+1)60
1+N\, . Am .
#Q)(r,0)=83rkm{)\ - CO Ay +1) = 7, SiN(\y+ 1)~ —— 1 cog\y—1)6+ 7, SiN\,—1) 0]
m
m) N A i
W(r,6)=Bgrimi — —7 SN\ +1)0= 7 COINy 1) 0+ SiN(\ gy — 1) 64 7, COS A —1) 6}
C-E ky(14+ N (1-Ny) (LA
2 (0=9=a) vvﬁ,m(r,ﬁ):Be,r”m*l[(ﬁ—kz cothyt 1)0+ S (i —kom)SinOn + 16+ | = S—7= !k, |cogA,—1)0
+ (k1 71— K2 72) Sin(\y— 1) 6}
O\t LG+ v+ WA= A CO A= Dt (1+ A ) (1= 1)COS N+ 1)ar]
T O = DB+ v+ Ay A)SINA— L) a— (1) (1— )Sin(Ayt 1))
_ BHvt Ny Np)Cog Ay D)at+(1+ ) (1-v)codp+ D
2= B vt Ay Ny SINOA = D a— (1= A)(1— 0)SiN(Ay+ L)
Amt
H(r,6)=B,r*m [773sm()\ +1)0+ sm()\ 1)6‘], H(r,6)=B,r*m! 75 cOS A+ 1) 0+ o\ — 1) 6}
S()-F A+ 1)k
3 (0<6<a) Wi(r,0) =B, X 7, sin(\p+ 1) 0+ %fkg}simhm* 1)0]
m
_ (B+v—Apt Ay SiINAp—L)a 17
BT T ) (A—1) SiMAg+Da’ H A+ 1) 3
sinApt+1l)a
m) — Ml g
S (r,0)=Byr {sm()\m+ 1)6— Sho—Da ———— sin(\y— ]
coq\p,t+1l)a
m) —R.rA\m _ m _
, S)-C S (r,0)=Byr {cos()\m+1)0 cosh,—Da cog\ 1)0]
(0=6=<a)
) ki sin\tl)a  kycogdhp,+1)a| .
m) —RB.Amtl M m L2 m B
Wo(r,6)=Bqr [7755|n()\m+1)0+ s —Ta ot =D Sin(\, 1)0]
ko(sin 2\ ,a—sin 2a)
5= kl_ Tein Oy o Lcin O
(sin 2\ ,a+sin 2x)
(1) Symmetric case
m) N 1+ m) A i i
H(r,6)=Bgr*m 7, O\, +1) 6+ i, cog\,— 10!,  Rr,0)=Bgr™m{— 7, Sin(\;+1) 6+ sin(\,,— 1) 6}
1+Apk
F-F wg"(r,0)= Bsr*m“[ 76 COS Ny 1) 0+ ((1_—;'91 + kz)cosxm—lw}
m
5 @ @
—Es <3 1779, 3+ v—NptAyv COgN,—1)al2

=418 T (14 ) (A1) COSNF a2’
(2) Antisymmetric case

S (r,0)=B,r m[— 79 SN\ +1)0+)\ 7Sy 1)6], HD(r,0)=B,r — 775 cOS A+ 1) 8+ Ccog\y— 1) 6}
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Table 1 (continued )

Boundary
Case No. Conditions Corner Functions
V\/g”‘>(r,6’)=Bzr"m*1[—ngsirl()\m-s- 1o+ %—kz SiN(\ 1)6]
m
B 17 _(3+ V—=NAmt VA ) SINN,—1)a/2
B A+ 1) 70 T TS (A y— 1) Sin(Apt D)al2
(1) Symmetric case:
cog\,+1)a/2
(m) - Aml| — ———m _
Yo (r,0)=Byr [ cog\yt+1)6+ cogny 1)01/2005()\"1 1)6]
sin\p+1)a/2
Mr 9)=R. r\m! i 2 \tmT e _
S (r,0)=Byr {S|n()\m+l)0 S, =) —5 Sin\n 1)0]
. ky(SiN\a+sin a) ki cog\y, +1)a/2 Ky sin(\p, +l)a/2
Cc-C m) R At 2 m - 1 2 —
6 @ a we(r,6)=Byr [ kot sinA\pa—sina COAm+1)0+ cod\y—D)al2  sinAy—1)al2 coshn—1)6
( -5 s0s 5) (2) Antisymmetric case:
Sin\y+1)a/2
m) = Ml i _ M T —
S (r,0)=Byr {S|n()\m+1)0 - 1)a/25'“0‘m 1)9J
cog\p,t+1)al/2
m), —R rA\m _ m _
S (r,0)=Byr [cos()\erl)a cosh,—D)al2 cos A, 1)0]
Ky(Sin\a—sina)| ki SinApt+1) /2 k, cogn,+1)al2
m) —R.M\mtl _ 2 m 1 2
We™(r,6) =Bl [kl sin\pa+sina ]Slm\m+1w+ sin(\p—1)a/2 co\y—1)al/2 SiNAm—1)6
(1) Symmetric case:
When cosk,,—1)a/2=0,
S(r,0)=Ar mcospm—1)6, ¢ (r,6)=Bsr *msinhy—1)6, WV(r,6)=(kiA+kBa)r'm* ! cosp,—1)6.
When cosk,+1)a/2=0,
S-S W(r,0)=—Byr*mcos,+1)6, 5(r,0) =B’ msin(\,+1)6, Wi(r,6)=Ag " cospy,+1)6.

; N o When\, sina+sin\,,«=0, the corner functions are the same as those for F-F.
(_ > <g< E) (2) Antisymmetric case:
When sin{,,—1)a/2=0,
B (r,0)=Agr'msin\y—1)0, HD(r,60)=Br'mcoshn—1)0, WI(r,6)=(kiAg—kB)r'm* L sin(\,—1)6.
When sinj,+1)a/2=0,
SO(r,0)=Bor msin\y+1)0, #(r,0)=Bor*mcosppmt+1)6, W™(r,0)=Ar*m* L sin(\,+1)6.
When\, sina—sin\,,a=0, the corner functions are the same as those for F-F.

C-S(Il) .
8 (0= 6=a) The corner functions are the same as those foF.C

When sin 20\ ;=\, Sin 2a, the corresponding corner functions are the same as thoséljoiFS

For cos 2\ ,,=—Co0sS 2,
S(H-S(11) when sinf,—1)a=0,
(0=6<a) e (r,6)=Agr*msin(\,—1)6,  YQ(r,60)=Bor'm coshy,—1)6,
WE(r, 6) = (kyAz—KoBo)r*m™t sin(h,—1)6;
when sini,+1)a=0,
(M(r,0) =Bor*msin\p+1)6, i0(r,6)=Bor*mcospmt+1)6, WEN(r,6)=A;r'* L sin(\,+1)6.

(Amt+1)cod\p,—1)a/2
= Dysinn,— a2 > M Am— DO

S (r,0)=Bgrm {mcos()\ +1)0+ 703 S+ 16— A +1cos()\ 1)6—

cosQ\m 1)al2

sin(\p,—1) /2
kit
A1

S(1)-F ¢#£>(r,0):83r“m{ 711 COSQm+1)0— 7, Sin(\y+1) 60— cosQ,—1)0+sin(\,— 1)0]

10 a a
(— 7=0= 5) Wo"(r,0)=Bar Y 195 COS N+ 1) 0+ 710 SIN(Apy+ 1) 0+( + kz)cos()\ o

cod Ny~ Dal2|  ki(Apt+1) )
SN - Dai2 | A1 SinAm—1)6
17 _(3+v+)\mV*)\m)COE()\m—1)a/2
A0t D) M T T (v—1)sin A+ 1) al2

+Ky
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exists in classic plate theory. This comparison concludes that dierner function with the smallest positive value of Rg( Fig. 3

ferent plate theories can lead to different singularity orders feixhibits the distributions oM, and M, along #=0deg for the

moments at the corner. symmetric case of a wedge with free radial edges, while Fig. 4
To show the stress resultant distributions corresponding to tpkts the distributions a#= 150deg for a wedge with G~ bound-
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Table 2 Characteristic equations for high-order shear defor- of the vertical axis are the signs for the stress resultants. Positive

mation plate theory stress resultants were plotted as [Mg/D| versus Log and
Case Boundary negative stress resultants were plotted as|MogD| versus
No. Conditions Characteristic Equations Logr, whereD is the flexural rigidity.
. 1S SymmMetric: codpa=—cosa” F ) thglgure 3 shovxlls Fhat the magnltultljes of the srt]rgs?_ resultant_s from
Antisymmetric: cos\,a=+cosa*, present solution monotonically approach infinity rasp
proaches zero, becausg, is a positive real number and smaller
4—N(1+ vYsir? ot than unity. Figure 3 also displays the stress resultant distributions
sir? )\ma:W obtained by CPT and by FSDPT. The stress resultant distributions
2 C_F for FSDPT were computed using the corner functions given in
) 4—\2(1—-v)sir? o [20], and the distributions for CPT were obtained from the corner
Sirf Nar= T Bya-v) functions given irf25] and[26]. The coefficients to be determined
- — in the corner functions for CPT and FSDPT were obtained by
SiN 2= Sin 2 requiring that the values dfl, atr=10"° for CPT and FSDPT
3 Si)_F sin 2 a= Am(177) sin 22 should be identical to that from the present solution. The value of
—3-v r was arbitrarily chosen. Consequently, the distributionVgffor
' A(147) FSDPT coincides with that for the theory used here because both
4 s1)_c Sin 2= —37, Sin 20" theories have the same, in this case. Ho_we_ver, the distributions
- of M, for these two theories are not coincidéRig. 3). In fact,
Sin A ma=\p,sin 2o the distributions of stress resultants along various values, of
Symmetric: determined by these two theories, are generally not coincident,
} - which fact is not depicted here. Therefore, although the theory
SINAma="—AmSINa, used here and FSDPT have the samdor the case shown in Fig.
Sin\a=— Mr(1=v) sino” 3, the stress resultants approach infinity at different rates for each
5 F_F ) —3-v theory as approaches zero. This may be due to the fact Mhat
gﬂt)'\sy;l")letgi%'a* is required to equal zero along a free edge in FSDPT, whereas
" )\m(lﬂj’) M,, for the theory used here still approaches infinity raap-
sin\pa= "‘3 sina® proaches zero, even along a free edge. The stress resultants for
Y CPT approach infinity more slowly than those for FSDPT and the
Symmetric: theory used here asapproaches zero, since the valuengf for
CPT exceeds those for the other two theories.
sin\ o= — Am(1+2) sina,* Figure 4 reveals that the stress resultants from the present so-
—3tv lution oscillate toward infinitely as goes to zero because, is
6 c_C Sin\pa=—\p,sin & complex. Figure 4 also plots the distributions of stress resultants
Antisymmetric: for CPT and FSDPT. The corner function for FSDPT givef2f]
Sinhae Am(1+) sina* and the corner function for CPT given(i] and[26] were used to
m —3+v ' determine these distributions. The undetermined coefficients in
sin\pa=N\p, sin o these corner functions were obtained in the same way as for Fig.
Symmetric: 3. Notably,)\m for QPT qual§ that for the theqry .use.d here in the
’ case of Fig. 4. Figure 4 indicates that the distributions of stress
7 SU)_S()  SiNApe=—\psine,* cos\ya=—cosa resultants from the present solution coincide with those for CPT.
Antisymmetric: Stress resultant functions ™, , M,, andM,, from the present
SiNApa=ApSina,* cOSApa=Ccosa solution can be shown to be exactly the same as those for CPT in
_ 4—\2(1+ v Sir? o* this case. The value of,, for FSDPT is also a complex number
8 c s sir? )\ma=W _but differs from th_ose for CPT and the theory used he_re. _A_ccord-
- ingly, the distributions of stress resultants for FSDPT significantly
sin 2\, a=\, Sin 2 differ from those for CPT and the theory used here.
sin 2, @=\,,sin 2a* The present solut_ion involves no singulgrities f(_)r_ shear forces
9 S(hH_s(I) or Rgz, which is attributable to the regularity conditionsrat 0
COS Apa=COS and the relations between stress resultants and displacement com-
10 Si_F SiNApa= =\, Sin &* ponents. The regularity conditions requifg, #, , w, andw , to
_ An(—14+0) remain finite ag approaches zero. The relations in EtQ) sug-
sin 2= 37, N 2 gest that the shear forces aRg either have the same orderoas
¥y Or ¢, or one order lower thaw. Consequently, shear forces
Note* means that the equation can be recovered in FSDPT. and R, cannot exhibit singular behavior asapproaches zero,
# means that the equation can be recovered in CPT. regardless of the boundary conditions around the vertex. Notably,

this finding markedly differs from that observed in CPT and FS-
DPT. Since shear deformation is not considered in CPT, shear
forces are determined from equilibrium equations such that the
- : - singularity of shear forces is always stronger than that for mo-
::}cn_n?j.iﬁ.c):hzn\:ja)‘\lueisoﬁgrrgs Ir:xalfcl)rr] :E: galzsecgrflénﬁ)—nﬂz 'Itzr?gnsdt?ergs ments. Huang20] found the characteristic equations for the sin-

' m P e : ; ylarity of shear forces in first-order shear deformation plate
resultants were computed by substituting the corresponding corﬁc}sr - ; . ;
functions given in Table 1 into Eq10) and setting the undeter- I'€0rY, according to which the singularity order of shear forces
mined coefficientgsuch asBs in Table 9 in the comer functions &/SO depends on both the boundary conditions and the vertex
equal to unity. Notably, wheR,, is a complex number, the corre-angle. _ o _ ) )
sponding stress resultants are also complex functions. Figure 40mparing the singular behavior in various plate theories with
only presents the distributions for the imaginary parts of the stret in elasticity theory yields interesting results. Hartranft and Sih
resultants. In Fig. 4, the superscripts-*and “ —" in the legend [9] developed the characteristic equations for a completely free

ary condition around the vertex. In both casess 300deg and
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Fig. 2 Variation of minimum Re (A;,) with vertex angle
\_/vedge be_lsed ona three-dimer_lsional_ elasticity approach. Accord- or A\p=(2m+1) 7/ e, (3%)
ing to their results, the stress singularity order aft the vertex of _ _ _
the wedge is\,— 1, where\ ,, is determined by wherem=0,1,23 ... . Thefirst two equations also appear in the
present work for EF boundary conditiong¢Table 2, while none
sin\pa=\pSina, (33a) of these equations are found in CPIIL]. However, all three equa-
tions are also found in FSDFR0]. The third equation character-
Sin\,&=—\pSina, (33%) izes the singular behavior of shear forces in FSDPT.
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Fig. 4 Distributions of M, and My=a/2 for a wedge with C _F
Fig. 3 Distribution of M, and M, along the symmetric axis for boundary conditions
a wedge with free radial edges

The characteristic equations for determining the singular behav-
. ior of M,, My, M,,, P,, P,, andP,, in this work include the
Concluding Remarks characteristic equations for classic plate theory and first-order
This study has established the asymptotic displacement fieldsieear deformation plate theory. For the same boundary conditions,
describe the singular behavior of stress resultants at the vertexddferent plate theories usually lead to different singularity orders
a sector thick plate based on Reddy’s third-order thick plafer stress resultants, except for the case with_S(1) boundary
theory. The solution was obtained using an eigenfunction exparenditions. For a plate withh=0.3, no singularity occurs when
sion approach to solve the equilibrium equations in terms of di#e vertex angle is less than 60 deg, while a singularity is always
placement components. The characteristic equations for deternpresent when the vertex angle exceeds 180 ded: Boundary
ing Williams-type singularities of stress resultants were alsmnditions result in the strongest singularity among the ten sets of
developed for ten sets of boundary conditions around the vertésaundary conditions considered in this study when the vertex
These characteristic equations do not involve the thickness arigle is less than approximately 105 deg, whild)SS(1),
plate. Poisson’s ratio is the single material property that couls{ll)_S(Il), and $I)_S(II) boundary conditions lead to the stron-
possibly influence the singular behavior of stress resultants. Notgest singularity for other angles. F and C_C boundary condi-
bly, unlike the singularity of shear forces found in classic platBons cause the weakest singularity.
theory and first-order shear deformation plate theory, no such sin-The singularity orders for stress resultants and the correspond-
gularity is involved in Reddy’s plate theory. ing corner functions given in this investigation are important for
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developing singularity elements in finite element approach for 52:4+(—4+(3+V)kz)Ker(V—l)kz)\ﬁp
complex thick plate problems involving corner stress singularities.
Furthermore, the corner functions for various corner boundary Y1=5(v=DEN(1+ N (1= Np),

conditions provided herein are also very valuable for applying the
Ritz method to solve thick plate problems with reentrant corners
like the work by McGee et all4] and Leissa et al.3] for thin

plate problems.
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Transient Ultrasonic Waves in
Multilayered Superconducting
Plates

Transient response of multilayered superconducting tapes has been studied in this paper.
These tapes are usually composed of layers of a superconducting material (like
YB&aCu0,_5, or YBCO, for simplicity) alternating between layers of a metallic material

A.J. N.|klasson (like nickel or silver). The tapes are thin, in the range of 4200 um. The supercon-
Department of Applied Mechanics, ducting layer is orthotropic with a thickness o£50 um. In applications, tapes are long
Chalmers University of Technology, and have a finite width. In this paper, attention has been focused on the transient response

SE-412 96 Goteborg, Sweden of homogeneous and three-layered tapes assuming that the width is infinite and that the

thickness of the superconducting layer is much smaller than the metal layer. The problem
considered here is of general interest for understanding the effect of anisotropy of thin

sg K. Datla coating or interface layers in composite plate structures on ultrasonic guided waves.

Department of Mechanical Engineering, Three plate geometries are considered as prototype examples: a homogeneous nickel (Ni)
University of Colorado, layer, a three-layered YBCO/NiI/'YBCO, and a three-layered Ni/YBCO/Ni. Transient re-

Boulder, CO 80309-0427 sponse due to a line force applied normal to the surface of the tape has been studied by
Fellow ASME means of Fourier transforms and direct numerical integration. Numerical results are

presented using an exact model and a first-order approximation to the thin YBCO layer.
The first-order approximation simplifies the problem to that of a homogeneous isotropic
plate subject to effective boundary conditions representing the thin anisotropic layers.
Both are seen to agree well (except when the center frequency of the force is high) and
capture the coupling of the longitudinal, S, (or flexural, A) motion and the shear-
horizontal (SH) motion. Detailed analysis of the influence of the thin layers, especially
their anisotropy, on this coupling and the transient response shows significant differences
among the three cases. The model results provide insight into the coupling phenomenon
and indicate the feasibility of careful experiments to exploit the significant changes in the
transient response caused by coupling for the determination of the in-plane elastic con-
stants of thin coating or interface layerfDOI: 10.1115/1.1505627

1 Introduction to be an efficient means of nondestructive material property char-

In this paper, our attention is focused on the transient responascetl_enzat'.On during and after the_processnng of the ta_pesf.
here is now a large body of literature on ultrasonics in super-

of a plate withthin anisotropic layers. As a particular teChmlog"conducting bulk materials. It is known that for superconductors,

cally Important problem, we_gon5|der the anisotropic layers to l?ﬁe elastic constants can be linked to the superconducting transi-
super_conductlng. Two specific examples are considered. Iq OH&H temperatureT . through the Debye temperatu@, and the

th_e thin layers are on the outer surfaces of.a homogeneous iso %'ctron-phonon coupling parametef{1,2]). A review of various

pic core I:_:tyer and in the othe_r, a th'r! layer is sandwmhgd b.etweﬁﬁlrasonic measurements of elastic properties can be fouf&].in
two identical homogeneous isotropic layers. The motivation f%vestigation ofin situ mechanical behavior and properties of thin

th'.SdSté'dy Is to (_je\:elop aﬂ:u?dam?néa] urtldgr?tandlng of ulltrlars]p ﬁperconducting layers has been limited. Since the properties are
guided waves In tapes that aré fabricated for commercial hig ighly dependent upon external and internal stress fields, interface

current applications_. The tapes are com_posites consisting 0 perties and porosity, to name a few, the motivation for this
brittle sqperconductlng phase and a ductile metal phase._ varl Stk is to understand the basic problem of guided wave propaga-
mechanical processes are used to get the crystallographic textls in an anisotropic three-layered tape

most favorable to high current capacity of the tapes. Such IE)ro'Dispersion of guided waves along a direction of material sym-

cesses c_oupled with th_ermgl pycling cause micro_cracking qf tlPr‘?etry of the orthotropic oxide lay& in a three-layeredNi/
brittle oxide layefs), which !ImItS the current carrying capacity. yg=o/Ni and YBCO/Ni/YBCO was studied by Pan and Datta
The degree of current carrying capacity reduction is a strong funey rransient response of such a plate to a line force orthogonal to
tion of the crystallographic texture of the oxide layer and thg e gymmetry axis and applied to the surface of the tape was also
nature of microcracking, which is also a function of the texturgapg ied in4]. In this example, the motiotP-SV) in the plane of
The_se effects influence the mechanical responses such as “@éfgﬁmetry containing the symmetry axis is uncoupled from the
sonic guided waves along the tapes. Exploitation of the connggotion (SH) perpendicular to the plane. Thus, the former problem
tion between the electrical and mechanical responses may proyVgne of plane strain. Niklasson, Datta, and D{y6] considered
- dispersion of guided waves along an arbitrary direction in a three-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Iayered plate In this case. P-SV motion is coupled with shear-
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- - . . ! .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July G’horlzontaI(SH) motion so that the dlsplacemept has a_” the three
2001; final revision, Mar. 21, 2002. Associate Editor: A. K. Mal. Discussion on theomponents. It was shown that because of this coupling symmet-
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmentid SH mode is coupled with the extensior&) mode and the

Mechanical and Environmental Engineering, University of California—Santa Bag+; : B :
bara, Santa Barbara, CA 93106-5070, and will be accepted until four months ;fiflerr]tlsymmemc SH mode is coupled with the ﬂeXL(m) mode. As

final publication of the paper itself in the ASMEDORNAL OF APPLIEDMECHAN- @ cOnsequence, for propagation in directions not aligned with th?
ICS. symmetry axes, there are bands of frequency when a predomi-
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nantly symmetric SH modeqSH,,n,y , n=0,1,2 .. .) changes to &az(arj>m+p(r>w2(;}[rn>:0, dr V<x<d®, r=1,...N,

a predominantly extension&S mode and vice versa. Similarly, 1)

there are different frequency bands when an antisymmetric SH

mode (qSkbn+1), N=0,1,2...) changes to a predominantly with the boundary and interface conditiofgerfect bonds

flexural (qA) mode. These mode interchanges occur within narrow N

frequency bands, the widths of which depend ontthieknessand SGh=—8(X1— &) Sim,  X3=0, (29)

in-plane anisotropy of the anisotropic layer. This suggests the pos-

sibility that with appropriate choice of narrow-band pulsed exci- S8m=0, xg=d™, (2b)

tation the mode interchange can be captured in the time domain

response of the plate. GN=GLrY, 3@ =3UD - x.=d®, r=1,...N-1,
The objective of this paper is to analyze the transient response/™ ™ m- s (20)

of the three-layered plate in order to understand this mode inter-
change and to suggest experiments that would lead to the detehere d(” is the thickness of the first layers, i.e., d"
mination of the in-plane anisotropic properties efficiently. The at=3'_.b{), Note that the fields are independent of the
tention has been focused primarily on the coupling of thg &l x,-coordinate. The summation convention is used throughout this
Sy modes which is observed first at a relatively low frequencyaper, unless otherwise indicated, with lowercase Roman indices
However, the analysis could be easily extended to coupling gfking on the values 1, 2, and 3 and lowercase Greek indices
other modes at high frequencies. taking on the values 1 and 3y, is the Kronecker deltaj(x) is

The layout of the paper is as follows. In the next section, th@e Dirac delta function and the notatigpmeansa/dx; . In Egs.
calculation of the exact Green’s function due to a line force api) and(2), Ejmn is the stress tensor corresponding to the displace-
plied to the surface of a layered anisotropic plate is outlined. Sinﬁﬁanthm’ p the density, and the circular frequency. Compo-
the approach taken here may be found in previous works, thent (j,m) of the Green's function is thus componenbf the
procedure is only briefly outlined and references are made to egisplacement field in the plate at,(,x;) due to a line force in the
lier works. In Section 3, approximations of the Green’s functionm-direction at ¢,,0) (the line force whenm=23 is shown in Fig.
are derived. Two examples of three-layered plates are considergdin Voigt's abbreviated notation, the Green’s stress tensor may
as illustration:(1) a line force located on the surface of a platge written as(see Auld[9])
made of a thick isotropic core coated symmetrically on both sur-

faces by identical thin anisotropic layers, af® a line force s Ciu Cip Ciz3 Ciy Cis Cye
located on the surface of a plate made of a thin anisotropic layer 11m C e C C C e
sandwiched between two identical thick isotropic layers. The ap- 3 2am R
proximations are obtained by means of effective boundary and S 33m Ciz Co3 Csz C3y Czs Cze
interface conditions, respectively, as describefbi®]. In Section S 3om = Cu Cos Cas Cuas Cus Cug
4, the exact and approximate Green’s functions are compared for S a1m
particular cases. Features due to mode coupling are described | g Cis Czs C3s Cus Css Csp
: . . g 21m
which may be useful for ultrasonic material characterization. Cis Cy Css Cus Css Cos
91G1m
2 Exact Green'’s function ) ((_);
In this section, we derive the exact Green’s function due to a X ﬁsGsm . 3)
line force applied to the surface of an anisotropic multilayered 3=2m
plate. The solution is presented for a layered plate consisting of an 93G1m* 91G3am
arbitrary number of layers of general anisotropy. The details con- 91Gom

cerning the approach taken here, the so-called global matri
method, may be found elsewheisee, for exampld,7] and[8]).
Only a brief outline is presented in this section.
Consider an infinite plate consisting &f anisotropic layers, . %
f(k):f

XThe problem is solved by applying a spatial Fourier transform
in Xq,

each of thicknes®(!), j=1,... N (see Fig. L All quantities
with superscripf j) are associated with laygand this superscript e
is dropped when no ambiguity is possible. The equations govern- 4)
ing the exact time-harmonic Green’s functiGn,(x,,X3;£;) due
to a line force ax; = ¢, x3=0 in thex,, direction and parallel to
the x,-direction are

. 1 (.
f(x,)e adx, f(xl):ﬂf f(k)e**udk,

to the equations of motion and the interface and boundary condi-
tions. The transformed system of equations is solved by means of
the so-called global matrix method described by Ju and D)@tta
and Mal[8]. The procedure is briefly as follows in our case. First
we obtain a general solution in each of tNdayers by reformu-
lating the transformed Ed1) as a first-order system of ordinary
l differential equations in the displacement-traction vector
(61,

0) (G1mG2mGamEaimSsam>aam) |- These systems are then solved by
Layer 1 = Y 5o ED) e assuming that the solutions are in the foiwe'*s*s, whereA is a
Layer 2 \é_ ( p(2) constant,v is the E_S-byjl polarization vector and is the wave
. \ number in thexs-direction. The wave numbeis;, and the polar-
! B ' ization vectorsy are obtained by solving a generalized eigenvalue
/’é/ i Bp(K) problem in each layer. The constants are determined by inserting
Layer K — \ the general solutions into E@2) and forming a sparse banded
: z3 ! g_lobal system of equationévhich will have three-right hand
Layer N — 1— ¢ ( pN-1) sides, one for each value uh_). Once the constants ha\_/e been
,/}f ) BV de_termlned, the inverse Fourier transform may be appl_led to ob-
Layer N tain the exact Green's function. Inversion of the Fourier trans-
form, i.e., the computation of the integral numerically is discussed
Fig. 1 An anisotropic layered plate in Section 4.
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Another alternative to the global matrix method is the

Thomson-Haskell or transfer matrix methdsee, for example, Coats pL\ 1 (é1,-b)

Nayfeh[10]). By using this method, one only deals with 6-by-6 \ S

transfer matricesone for each layey their sizes being indepen-
dent of the number of layed. One drawback of the Thomson-
Haskell method is that it requires stabilization in order to be use- [ ) /
ful numerically. This makes it less straightforward to use than the A, u, p % T2 71 S

> e

global matrix method.

T3
3 Approximations of the Green’s Function Fig. 3 A sandwich plate

In this section, we derive approximations of the line force
Green’s function for two specific configurations. The first system
considered consists of a thick isotropic core and two identical
anisotropic(superconductingcoatings(see Fig. 2, and the sec-  In order to obtain the field in the entire plat{|<b), a con-
ond consists of a thin anisotropisuperconductinglayer sand- tinuation ofg;, obtained as the solution to E¢p) is made. This
wiched between two identical thick isotropic laydsee Fig. 3. continuation is obtained as a series expansioxgikeeping up to
The approximations are obtained by replacing the thin layers ye linear term injx;|—a
effective boundary and interface conditions. Gjm(X1. X3 €1)~ Qim(X0, F2;E1) + (Xg T )

3.1 A Coated Plate. In this section, we derive an approxi- .
PP X(939jm(X1,X3;81) )= +a, TaASX3SEb.

mation to the line force Green’s function for a coated plate. The
plate consists of a thick isotropic core and two identical thin an- (7)

Isotropic coalings perfectly bonded to the cesee Fig. 2 Note heWhen solving the equations stated above, we start by finding a

that we have located the origin of the coordinate system in t . AL - .
g y tq;]eneral solution. This is very straightforward since, due to the

middle of the plate since the configuration is then symmetric wi ; ) -
respect to thei;x,-plane. The approximation of the Green'’s func.ntroduction of the effective boundary conditions, the waves are

PR . ting in a homogeneous isotropic plate. First, we ap-
tion is denoted byg;m(X;,X3;§,). Furthermore, we denote the NOW Propaga ¢ :
material properties of the anisotropic coatings®y, (the elastic P! the spatial Fourier transforrtd) to the equations and then
constants in abbreviated fojrandp, (the density and the mate- SOIV€ the resulting system of ordinary differential equations.
rial properties of the isotropic substrate ky x (the Lamecon- ;hﬁ ggneraillsolutlon may be written dsee, for example,
stant$ and p (the density. chenbacl{11])

If we assume that the thicl_<ness of the coatinigsjs small On=VP®,+VXW¥, , V- ¥, =0, (8a)
compared to all wavelengths involved, we can replace the coat-
ings by the effective boundary conditions used by Niklasson et al® ,=Ao SinpX3+ By COSPX3, p= \/kf)— K2, kp=wlcy,

EﬁinThiSeﬁquations governing;,, inside the core |k;|<a) are (8b)
g Y , (W) n=AmnSiNgxXs+By,cosqxs, q=vki—k?, ke=wlcs,
0T ajmT p0Qim=0, —a<x3<a, (5a) (80)

Timn= N 8imdrUrn+ #(J{Omnt dmbjn), —a<xs<a, (5b) wherem,n=123, andc,= JONF2u1)p and cs=ulp are the
pressure and shear wave speeds of the isotropic core, respectively.
T~ N(AGn+A,7m) =0, X3=a, (5¢)  The integration constantsix for eachm if we use the condition
_ _ _ V-Ww,=0) are determined by applying the boundary conditions
Tt DAGn T Ao Tn) = =000 = E)lm, Xa==a, () g general solution Ed8). It should be noted here that the
where gm=(91m92m+93m) "+ 7m=(031m03m.03am) ', and |, problem described by E¢5) can be split into a symmetric and an
=(S1m+02m,Oam) - The nonzero elements of the matridgsand antisymmetric problemwith respect to thexs-coordinate. This

A, are(see[5]) will reduce the set of six equations for the six unknowns into two
) ) ) sets of three equations for three unknowns. This has been done but
(Ay)11= pLo"+(Cq1— C1yCa3) 1, the explicit equations are not given here for brevity.

(AW 12= (Ay) 21= (C16— C15C36/Caa) 35, 6 3.2 A Sandwich Plate. The second approximation consid-
o, 2 B o, ©) ered, is derived for a system consisting of a thin anisotropic layer
(Au)22=pLo"+(Ce—C3d Cad) 91, (Au)az=pLe”, sandwiched between two identical isotropic layeee Fig. 3. As
_ _ _ in the previous section, the approximation of the Green’s function
(A)13=C1591/Cas, - (Ar)2s=Cael1/Cazr (Ar)ar=01 is denoted byg;;(X,Xs;&,). Note again that we have located the
origin of the coordinate system in the middle of the plate. We
denote the material properties of the anisotropic laye€ky and

pL,» and the material properties of the isotropic layers\by, and

A 1 p as before.
el (§1,-0) If we assume that the thickness of the sandwiched layerj2
l — ] h small compared to the wavelengths involved, we can replace the
b thin anisotropic layer by the effective interface conditions used by

Niklasson et al[6] and Rokhlin and Huan§l2]. The equations

P P governingg;, inside the isotropic layersh<|x;|<b) are given
Cim, L a |y by
\h ] h 000 gim+ p0°Qjn=0, *hsSxss+b, (9a)
r3 + + =+ +
Timn=NOjmdr U+ 1 (I Upnt dmljn),  EhSxzS =D,
Fig. 2 A coated plate (9b)
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(T;q)x _nt h(DTr;)X ch=(Tr)xae—h— (DT ) wm n Table 1 Material properties of YBCO (C}), in GPa and p in
3~ 3= 3= 3=~

3
(90) kg/m®)
g;jmzol X3=b, (9d) Ch C» Ci Cyu Cg Cg Ch Cip Cip p
_ 268 231 186 37 49 95 132 95 71 6333
O3im=—0(X1 = &1)Ojm, X3=—Db, (%)
whereT .= (91m>92m>93m s T31m » T32m T 3am) » and the matrixD

is given by . . . .

T are given in Table 1from [1]) and the properties used for nickel
A, B, arex=129.5 GPau=84.71 GPa, an$=8910 kg/ni. Note that

A A (10) only the nonzero elastic constants are included in the table. The
) Y M prime on the elastic constants means that they are given in the
The matricesA, andA,, are as before, and the nonzero elementfaterials crystal axes system, denoted %y, k5 ,x}). The orien-

D=

of B, are tation of the crystal axes system relative to the,&,,x3) system
(B,)11=—Cuasl 8, (B,)p=—Cxs/4, is given by the anglep as shown in Fig. 4. The transformation
7 7 (11) from the crystal axes system to this latter system is given by Auld
(Bs)12= (By)21=Cys/ S,  (B,)3z= —1/Cys, [9]. The dimensions of both tapes are givenayy50.m andh

. - .. =5 um (see Figs. 2 and)3The two configurations considered
whered= C44C55_.C‘2‘5' The superscripts: are used to indicate if hereluha\(/e recegntly been) studied by Pang and Ditaln [4],

we refEr to the field below or z_ibove the interface layer, i.eqqever, only the plane-strain Green's function is presented and
f7(xs) =f(x3), xs>h, andf™(xz) =f(x3), Xg<—h. the propagation is thus restricted to a plane of elastic symmetry. In
~In order to obtain the field in the entire plate|<b), a con-  aqdition to the layered tapes, examples are given for a pure Ni
tinuation ofg;,, obtained as the solution to E(p) is made. This tape of thickness 11@m (a=b=55um, h=0 xm).

continuation is obtained as a series expansiaxsikeeping Up 10| order to calculate the expressions for the Green’s function,
the linear term irh— x| the inverse Fourier transform must be computed. Since all inte-

= (X1, Xa €1)~ 05 (Xg, = h:&1) + (xaFh grands(the exact and approximatéave got a large number of
Gim(Xa. X33 £1)=Qjm(Xa )+ (sxh) poles along the redt-axis, great care need be taken. In order to
x(aggfm(xl,xg;fl))xszih, 0sxzs=*h. remove the singularitie@oles from the integrands, the integra-

tion paths are deformed in the compliexlane. The integrations
(12)  are performed along
When solving the equations stated above, we start by finding a K(s)=s(1—iaeAls)

.9 . X 0=<s<>, (14)
general solution in each of the two isotropic layers. These solu- R
tions are in the same form as in the previous section instead of along the re&taxis. Symmetries 06, and@jm with
At + + _ respect tok have been used as well to reduce the integration
G =V VX Wy, V- W,=0, (13) interval from(—o,%) to [0). Suitable values for the parameters
D =A>,sinpxg+ B, COSPXg, (13) « andp have been determined from numerical tests ard.1
and 8=1/2lk¢ have been used in the examples below. When the
(¥)n=An,Singxs+ B, COSqX; . (1) integration contours have been deformed as described above, the

The constants are determined by applying the boundary con
tions atx;= = b and the interface conditions &{= = h. It should
be noted here as well that the problem described by(®aan be
split into a symmetric and an antisymmetric problésith respect
to thexs-coordinatg. This will, for eachm, reduce the original set
of twelve _equatlorls for the 12 unknown |nteg_rat|on constéifts semi-infinite pars,<s<e«. For the finite part, we use polynomial
the equation§’ - Wy, =0 already have been useidto two sets of 5 nroximations of fourth and eighth order and for the semi-
six equations for six unknowns. These sets of equations are onjiliyite part, we approximate the integrand by polynomials of
ted in this paper for brevity. In order to recover the Green's fungs ,iih order. The value o, is determined numerically from the
tion, the solutions to the symmetric and antisymmetric subprofjasjred accuracy of the approximation of the semi-infinite part of
lems are added. the integral. When the approximate Green’s functions are com-

. puted, the finite part is calculated by means of the approximations
4 Numerical Examples derived in Section 3 and the tail is computed by means of the

Here, we present some numerica' examp|es using the exact %Ct Green'’s function derived in Section 2. This is done since the
approximate solutions, derived above in this paper, for the line
force Green’s function. In all the exampleS35(x(,0;0) or
033(Xo, —b;0) are shown withy=5.0 mm(see Figs. 2 and 3 for 3
the definition ofb). Note once again that different coordinate sys-
tems are used foB33 andgss, X3=0 is the top surface fo6s3
and x;=—b is the top surface fogsz. Only Gz3 and gz are
considered since they are of most interest from an experimental
point of view. The main objective is to investigate the influence of
the anisotropy of the thin layers on the Green’s function at low l
frequencies. A second objective is to investigate the usefulness of
the approximate solutions.

We consider two different superconducting tapes in the ex-
amples: one coated three-layered plate and one three-layered
sandwiched plate. The isotropic material in both tapes is nickel
(Ni) and the thin layers are made of the orthotropic supercon-
ductor YBgCu;0;_ 5 (YBCO). The material properties of YBCO Fig. 4 The orientation of the crystal axes system

ingularities are no longer present in the integrands. The inte-
gFands do, however, still experience highly irregular behavior
which makes the numerical evaluation very difficult. We, there-
fore, use adaptive integration schemes to evaluate these integrals.
We use the adaptive scheme by Xu and Ma] for the finite part
0=<s=<s; and the scheme by Xu and Mgl4] for the remaining
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Fig. 5 The time response and frequency spectrum of the line force when f.=29.4 MHz

approximations break down for largeh. Still, since the tail is the examples below. For the specific valfie=29.4 MHz, the

computed using very few points, the approximations are mugiine responsev(t), Eg.(15), and the frequency spectruvil(w)

faster to compute than the exact Green's function. = w(2xf) are shown in Fig. 5. As is seen in the Fig. 5, the line
When the time-harmonic Green’s function is obtained, itis Mu, e is essentially zero outside an interval of width 30 MHz

tiplied by a frequency spectru/(w) and to this product, the -ontered around,. The chosen value df; is close to the point

|nver5(’e tempqral _Fourler'transform_ls applled._The result is tr\lﬁhere the mode interchange betweenaBid SH occurs for the
Green’s function in the time domain from a line force with a

requency spectum gien y(u). Inal the xamplesh(s) s SO PS8 e s el e wileep e eniey
taken as the temporal transform of the function q y p 9

and coated plates. The main reasons for this choice is that, since
2 ) _ the mode interchange is due to the anisotropy, its effect is ex-
w(t)=\/—e S0 sin(wt), (15) pected to be amplified in this region. The function Eb5) has
been used by, for example, Pan and Didtia Finally, we employ
with ty=0.16us, a=50 um, andc, is the shear speed of Ni. Thethe exponential windowing technique when inverting the temporal
remaining parameten.= 27 f (the center frequengys varied in  Fourier transfornisee, for exampld4]).
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Fig. 6 Ga; for a 110- um thick Ni plate
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Fig. 7 Group velocity and vertical displacement for a 30 deg Ni /YBCO/Ni plate. Solid lines
are the symmetric modes and dashed the antisymmetric modes.

4.1 The Ni Tape. First, we consider a pure Ni plate ofdeg. The resulting signal whef,=29.4 MHz is shown in Fig. 8.
thickness 110um (a=b=55um, h=0 um). This plate is in- Since the propagation is in a symmetry plane, no mode inter-
cluded mainly as a comparison to the layered plates. The thicknesainge occuréhe SH modes are not present at all in this galée
of the Ni plate is the same as the total thicknesses of the layeteé figures are compared to the corresponding ones for the pure Ni
plates thus eliminating the thickness effect. plate (Fig. 6(b)), the main difference lies in the part of the signal

In Fig. 6(@), Ggz is shown forf,=27.0 MHz. The distinct re- arriving after the 4 mode.
sponses in the figures correspond to themode mixed with the  In Fig. 9, the propagation is no longer in a symmetry plane
S, mode att~1.6us and the 4 mode att~1.85us. The § (4$=30 deg and the mode interchange shown in Fig. 7 takes
mode, however, is not clearly seen in the figure. place. Here, the center frequency is=27.0 MHz which is

The center frequency is increasedte-29.4 MHz in Fig. b).  slightly below the point of mode interchange. If this figure is
The main difference from Fig.(6) is that the § mode is now compared to Fig. @) it is seen that the signals are quite different.
visible (mixed with the $ modg. & is seen to arrive at  The most notable feature is that it is now much easier to identify
~2.15us which corresponds well to the arrival time computeghe arrival of the lowest modes.
from the group velocity. In Fig. 10, the exact and approximate Green’s functions for the

The final example for the Ni plate is shown in Figch Here, off-angle casep=30 deg are compared whdp=29.4 MHz. As
the center frequency is increased even furthef te31.9 MHz. is seen from the figures, the approximation works very well and
Now, it is hard to identify the Aand § modes but the Smode captures all the features of the signal. The signals show that the
mixed with the $ mode is even more pronounced. Thg ode arrival of the modes is even more pronounced in this case and
is still easy to identify. especially the signal arriving at=2.0us is of interest to us. The

corresponding group velocity, taking the time delay into account,

4.2 The Sandwich Tape. The second example considered iss v,~2700 m/s. From Fig. 7, it is seen that this corresponds to
a tape made of a thin YBCO layer sandwiched between two thitke location of the mode interchange between thg &j8l qSH
identical isotropic layers made of nickéMi). The total thickness modes. We note that this signal is not seen in the case vheh
of the plate is 11Qum (a=50um, h=5 um) as in all examples. deg nor for the pure Ni plate. This is expected, since no mode

In Fig. 7, the group velocities and the-component of the interchange takes place in those cases. The signal is also seen
mode displacements on the upper surface are shown for a rotatdwen f .=27.0 MHz (Fig. 9), but not as clearly as in Fig. 10.
middle layer(¢$=30 deg. Here, the specific choices of center Finally, in Fig. 11 the case whenp=60 deg and f,
frequencyf . become evident. The point of our interest is when the-29.4 MHz is shown. If the signal is compared to Fig. 10, we find
mode interchange between the,gdd qSH modes occur. From that they are very different. The difference lies in the anisotropy of
the figure, it is seen that this location fis=28 MHz. In the ex- the interface layer and especially the signal due to the mode in-
amples belowf . is varied but kept close to this point. terchange is now much weaker. If the group velocity and mode

The first example is for propagation in a symmetry plahe0 shape graph@&ot shown hergare studied, it is seen that the mode

0.08 . T . . v v , 0.08 T ;
0.04 : i 6.04 L s
0.02 0.02} - i e o ‘ I
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Fig. 8 Gz for a 0 deg Ni/YBCO/Ni plate when f.=29.4 MHz Fig. 9 Ga3 for a 30 deg Ni /YBCO/Ni plate when f.=27.0 MHz
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Fig. 10 Ggaz and ga3 for a 30 deg Ni/YBCO/Ni plate when f.=29.4 MHz

interchange takes place during a much narrower frequency interFigure 13 shows the exact and approximate Green's functions
val. Therefore, the mixing of the modes is hardly seen. Also, tHer the 60-deg coated tape whégF 31.9 MHz. In the figures, the
signal arriving at~2.15us in Fig. 10 is no longer as distinct in gA, and g@ modes are clearly seen. If the figures are compared to
Fig. 11. Fig. 6(c) (the pure Ni tapg the big difference lies in the part from
. . . the mode. This is mainly a result of the mode interchange that
4.3 The C_oatec_i Tape. In this section, we co_nS|der_ the t""peoccgr% in the coated tape. \)//Ve also see that the approximatgi]on does
made of a thick Ni layer coated with two identical thin YBCOp o \york very well in this casécompared to the sandwich tape
layers. Once again, the total thickness of the plate isAM0(a  ope reason is that the center frequency is higher now and that the

=50um, h=5um). N ; :
In Fig. 12, the group velocities and thg-component of the approximation loses accuracy for high frequencies.

mode displacements on the upper surface are shown for rotated .

coating layers(¢=60 deg. Here, the frequency of mode inter-2 Concluding Remarks

change between the g&nd qSH modes is higher than for the  This paper was devoted to the transient response of a layered

sandwich plate. From the figure, it is seen that this locatio is anisotropic plate due to an ultrasonic line force of finite bandwidth

~32 MHz. applied to the surface of the plate. In two earlier pagé:$],
dispersion of guided elastic waves in three-layered plates, one
composed of a core elastic isotropic material surrounded by sym-
metric thin anisotropic coating layers and the other made of thin

0.8 T anisotropic interface layer sandwiched between two identical
0.06 ’ b thick isotropic material, was studied. Simplified boundary and in-
0.04 : terface conditions were derived taking into account the small
0.0 ! T it oo th@ckness of_ the coating and ir_nerface layers, respective!y. De-
- : ISR | (RN A AN tailed analy5|s of the.effe.ct of anisotropy on the mode coupllng for
I : WAL I Il propagation along directions deviating from the symmetry direc-
0021+ ot T R L tions revealed the existence of mode interchanges in certain finite
004 ranges of the frequency of the guided waves. Furthermore, it was
’ shown that the dispersion behavior of the coated plate was quite
=006 i e different than the sandwich plate with a thin interface layer. Here,
_0.08 : i : — a model study of time-dependent line force Green’s function was
P15 s "75,5 (25)2'25 25 275 3 presented with an objective to bring out the mode interchange

behavior as depicted by the shapes and arrival times of different
Fig. 11 Ga3 for a 60 deg Ni /YBCO/Ni plate when f.=29.4 MHz

6000' ¥ & 5 lr‘ ¥ i G oo ;’—-“ o -
9So , e b | i S NP’
5000 = ogle T
an S NERY
54000 T 06 :
qSHo 3 E )
\8/3000 7 é : /I g : :
s:zooo /; :qu." \ \;::/ 0.4 = ‘I/ = L : ',"f
jaho i 3 s
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b g el hed
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7 (MHz
(a) Group velocity. (b) |ua| on the top surface.

Fig. 12 Group velocity and vertical displacement for a 60 deg YBCO INi/YBCO plate. Solid
lines are the symmetric modes and dashed the antisymmetric modes.
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Fig. 13 Gaz and g3 for a 60 deg YBCO /Ni/YBCO plate when f.=31.9 MHz
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Wave Propagation in a
Piezoelectric Coupled Solid
Medium

Q. Wang
Mem. ASME . o o ) .
Department of Civil Engineering, Shear horlzonpal (SH) wave propagation in a seml-lnf|n|.te .SO|Id medlum surface bonded
National University of Singapore, b_y a Iayer of plezoelt_ect_rlc material abutting the vacuum is mves_tlgated in this paper. The
Singapore 119260, dispersive cha.ract.erlstlcs and the mode_shapes qf thg deflectlon,_the electrlc potential,
Republic of Singapore and the electric displacements in the thickness direction of the piezoelectric layer are
obtained theoretically. Numerical simulations show that the asymptotic phase velocities
for different modes are the Bleustein surface wave velocity or the shear horizontal wave
velocity of the pure piezoelectric medium. Besides, the mode shapes of the deflection,
electric potential, and electric displacement show different distributions for different
modes and different wave number. These results can be served as a benchmark for further
analyses and are significant in the modeling of wave propagation in the piezoelectric
coupled structures[DOI: 10.1115/1.1488662
1 Introduction analyses. The wave excitation of such SH wave propagation in a

H%ate-like structure by use of IDT is proposed[iB].

This paper is an attempt on the wave propagation in the piezo-
electric coupled structures based on the above background of the
S . ) - ; Wplication of the piezoelectric material in health monitoring of
propagation in the piezoelectric plate is of importance and hagctures. The dispersive characteristics of the wave propagation
arisen interests by Viktorof5,6], Curtis and Redwood7], and  j; 5 semi-infinite solid medium surface mounted by a piezoelec-
Cheng and Suf8,9]. Sun and Cheng@] presented acoustic sur-tric |ayer abutting the vacuum are presented in the paper. The
face wave propagating around a piezoelectric cylinder with metg{istributions of the deflection, the electric potential and the elec-
lic overlay. Their results show that a thin metallic film placed ofivic displacement in the thickness direction of the piezoelectric are
the top of a piezoelectric substrate can change the propagatinds studied thereafter. The result of this paper can be used as
characteristics of the surface waves. So the electromechanicaltgfnchmark for the study of the wave propagation in the piezoelec-
fect by a layer of metal should be modeled. tric coupled structures and is significant in the design of wave

Nowadays, the study of piezoelectric coupled structures overopagation in the piezoelectric coupled structures as well.
the last two decades spans from the simple mechanics model
([10Q]) to the more recent finite element modEll]). The use of
piezoelectric layers both surface bonded and embedded sensorémdMeChaniCS Model
actuator patches have been widely studigl?—-15). Such em-
bedded and surface-mounted sensor and actuator patches haWe consider a metal half-spagg>0 covered by a piezoelec-
been used in applications such as aerospace engineering, mectigiilayer of thicknessh (—h<x,<0) as shown in Fig. 1. The
cal engineering, civil engineering, and even in bioengineering. poling direction is in its transverses-direction so that only the

A potential of piezoelectric materials as actuators and sensorsid wave will be studied in this layered structure. .
the health monitoring of structures by use of the interdigital trans- The propagation of an SH wave in the host structure is gov-
ducer(IDT). This application requires a piezoelectric layer surfac@ned by
bonded on the structures to be health monitored, and the IDT is

Wave propagation and vibration in a pure piezoelectric mediu
have received considerable attentiph—4]). In order to achieve

2,/
used to excite a wave propagating in the piezoelectric coupled o2 9 Us
B CuVUz=p'— @
structure to study the wave signal for the purpose of damage de- at

tection of the host structure. Some methods and experimental

works on the rapid monitoring of structures using IDT to exciteherec,,=2G=E/(1+v’") is the shear modulg’ is the mass
Lamb wave have been attemptgd6,17) in some plate-like density,»’ is the Poisson ratiorE is the Young’s module of the
structures. In this study, an accurate analytical model of wabest plate,u; is the deflection in the host medium, and the
propagation in the piezoelectric coupled structures with piezoeld@caplace operator i§2= 9/ x,+ 9/ X, .

tric coupling effects fully modeled is a key to the design of the The shear stress in the host semi-infinite medium is then written
wavelength of the IDT and the excitation of the wave propagaticas

in the structure. Wang et dl18] studied the shear horizont&@H)

wave propagation in a semi-infinite solid medium surface bonded ) , dug

by a piezoelectric layer with electrodes shortly connected in their 023~ 044(9—)(1 2

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  The Coup”ng equation for piezoe|ectric |aye|' is written as
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 27, 2
2001; final revision, Dec. 17, 2001. Associate Editor: A. K. Mal. Discussion on the 2 2 d Uz

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Department of C44V Ug+ elSV b= p o2 (3a)
Mechanical and Environmental Engineering University of California—Santa Barbara,

Santa Barbara, CA 93106-5070, and will be accepted until four months after final -

publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. e1sV2u3— 2 ,,V2¢=0 (30)
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“« wherec is the phase velocity of the wave propagation and the

%3 frequency.
Substituting Eq(7) into Eq. (1) yields
d2f’ voer

Piezoelectric layer > X d_Xg_X r=0 ®

\ with the solution of the deflection shown as follows:

/’\ . ué:Ae—X’xzeiw(t—xllc) 9)

where
w

the assumption that<v'. Whenc>v’, such a wave would rep-
resent the kind of plane wave solution and this type of wave
Fig. 1 A Semi-infinite metal medium surface covered by a carries the energy away from the layer. Such a wave system would
layer of piezoelectric material quickly lose its energy and not be of significance at any distance,
and thus is beyond the scope of this paper.
By assuming

2
r_— 1—| — , 12 _ C/ r
i x, Y /\// X =73 (v’) v adp
C tal L . .
ore meta /\/\/ The above solution is the kind of surface wave solution under

wherecy, is the elastic moduleg;s is piezoelectric coefficient, _ ., G5 10
—_ . . . . - : Y=¢— = Uz, (10)
E 11 is the dielectric constanp is mass density of the piezoelec- E11

tric layer, us is the deflection in the piezoelectric layer, agds

the electric potential. Eq. (3) changes to the following equation:

The shear force, electric field, and electric displacement in the V2y=0 (12)
piezoelectric layer are then written as L
whose solution is as follows:
ou dod _ (i
O23= 044(973 +es (4a) = (Bie” ¥4 Byef*e)glwltx/0) (12)
2 2
whereé= w/c is the wave number of motion.
£__9¢ @p  Substtuing Eq(3b) ino (3a) gives
’ 9%z #uy
~ 2, —
5 dug L= E sz A " CasVU3=p 12 (13)
2*‘3‘15(9_)(2 =L 2*(3‘15(9_)(2 S (40) where
Consider the case when no electrodes are covered on the sur- 2
; ; ; ; — €15
faces of the piezoelectric layer, and the piezoelectric layer abuts Cas=Cust =

the air. In this case, the electric potential at the interface of the
piezoelectric layer and the core metal will be zero. However, the
electric potential and the electric displacement of the piezoelectric _
layer at the upper surface will be referenced by the field variables Uz= (A e 22+ A,eX2%2)el (=X /0 when c<v (14a)
in the vacuum. The continuity conditions of the shear stress and . o(t—x, /0) ,

the deflection at the interface and condition of free traction for theUs= (A1 COSx2Xp+ Az SinyoX,)e 1 when v'>c>v

The solution of Eq(13) is obtained,

piezoelectric layer at the upper surface should also be modeled as (14b)
in the following. where
In view of the above, the boundary conditions for this piezo- _
electric coupled structure are then expressed by the following o c\? 5 Caa
equations: xe=c V=g | v r
atx,=0:
2 Substituting Eq(12) and Egs.(14a)—(14b), we can have the ex-
Uz=ug (52)  pression for variables and D,
7202 (&) $=| (Bie~ &2+ B,eP2) + % (AjeY2X2+ AZGXZXZ)}?i eltale)
— =11
$=0 (50) (159)
atx,=—h: .
2 =0 (62) Do=—Ey[é(—Bie ¥2+BeP2)elw /9, (150)
723 whenc<v, and
D,=D' (6b) o
_ 15
_ ¢=|(Bie” ¥2+B,e*2) + =— (A, COSY,X
p=¢ (60) 1 2 g, (/1 COSX2X2
where¢’ andD’ are the corresponding variables in a vacuum. .
Because only wave propagation in tke-direction is consid- + A, siny,x,) [elet—x1/0) (15c)
ered in this paper, we can write the solutionaugfby the follow-
ing equation: D,=—E [ &(B,e” &2—B,ef*2)]elvt-x1 /o) (15d)
up="f"(xp)e“(t-x1/e (7)  whenv'>c>v.
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Substituting Eq.(9), Egs. (14a)—(14b), and Eqgs.(15a)—(15d)
into Egs.(2) and (4), we have

oha=Chi( — x')Ae X %2 (16)
023=[(— X2)Cas( Aje™X22— AjeX2*2) + (— )@ 5B~ &2
—B,ef2)Jelet=x1/0) (17a)
whenc<wv, and
023=[(— X2)Caa( Aq SIN X2Xo— A, COSYX,) +(— ) e5(Bre™ &2
_ Bzegxz)]eiw(tfxl Ic) (l?b)

whenv’'>c>v.

where

C. CaZ11 €
N5=(— X2Cas  X2CLas=11 H15)e()(27§)h’

ées éeisEy Eun

C, =t e
- ( X2Cas_ X2CasEn1 __15) Y
feis  fesHo B

The potential¢’ in the vacuum can be found by solving the Comparisons of Eqs(22a)—(23b) result in the following

electronic Maxwell equation,

V2¢' =0, (18)

and seeking the solution which remains finitexas> — . Such a

solution for¢’ andD’ can be obtained as
d)/ — Cle§x2eiw(tfx1 Ic) (19a)

D' = _Eogclegxzéw(t—xllc). (1%)

3 Dispersion Characteristics

The dispersive characteristics may be obtained by the solution

Ny— (Xzam Xzawfn 2) elE+xah
éess 1S = T =FT
N8: ( _ X2C44 X2C44fll+ ?) e(‘ff)(z)h_
éess =T =ET]
expression:
N1—Ns N—Ng|[A,; 0
= . (24)
N3_ N7 N4_ Ng A2 0

The dispersion characteristics for this piezoelectric coupled
structure can then be obtained by considering the condition for the
existence of the nontrivial solution fak; andA,, which finally
comes to the eigenvalue solution as follows:

N1—Ns N>—Ng

=0. 2
N3_N7 N4_N8 O ( 5)

of an eigenvalue problem when substituting the solutions from gq; the case when’ >c>v Egs.(5a)—(5¢) change to

Eqgs.(14a)—(1%) into the boundary conditions in E¢ca)—(6c).
For the case wheo<v, Egs.(5a)—(5c) give

A=A +A,

(= x2)Cas A=Ay +(—&)es(B1—By)=(—x")cyA

(208)

€1

By+ Byt = (A +A)=0. )
~11

From Eqgs.(6a)—(6c), we have

(= X2) Casl Ay 2" — Age™X2") + (— )y By~ Boe™ ) =0

(21a)
(B,ef"+Be M+ % (AeX2"+ Ae X2 =C e éh
=11 (21b)
— B~ éBef+ x,Be M=~ E£Cie N (21c)
VariablesB; andB, can be obtained from Eq&20a)—(20c) as
By=(N;A;+NyA,) /2 (22a)
B,=(N3A;+N,A,)/2 (220)
where

€15

_ X2Cas  X'Cus
fe1s  &egs
_XZE44 X’Cz’m_ E15
2 feis e By
:Xza,4_ X'Cla
3 éeis  &ess
_ Xzam_ X’Czlm_ Ci5
éeis  fes Eaip
Investigation of Egs(21a)—(21c) gives
B,=(NsA;+NgA,)/2

BZZ (N7A1+ N8A2)/2

1=

=,
=2}

€15

E 11’
4=
(2%)
(2%)

Journal of Applied Mechanics

A:Al

(= X2)Cad —A2) +(—£)es(B1—By) =(—x')CiA (26b)

(269)

€15
By+B,+ = (Ay) =0. (26c)
S

Equations(6a)—(6c) become,
(= X2)Cad — Ay Sinxoh— A, cOSYN) + (— £)eps(Bret”

—B,e M=0 (27a)

e
(B,ef"+Be M+ :—15 (A; cosy,h—A, siny,h)=C e
=11
(27)
—Eé(—Bef"+Be M =—EéCie . (27c)

Similar to the above analyses, from E¢®6a)—(26c), we have

B,=(LA1+LA,)/2 (28)
BZZ(L3A1+ L4A2)/2 (28))
where
:X’CA’M_E :Xzaw,
Yotes Eu 2 ées’
L :_X'CAIM_E __X2€44
3 fers Ea ées
Investigation of Eq(27a)—(27c) gives
B,=(LgA,+LeAy)/2 (2%)
B,=(L,A;+LgA,)/2 (2%)
where
C4 Caa= e
= (XZ—MsinXZh— )(24—4:1lsin)(2h— rlscosXZh) e ¢h
ées £eis80 =211
Cy =] e
6= (XZ # cosy,h— )(24—4:11003)(2 h+ rlssinXZh) e ¢h
ées £e155¢ 211
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X2€44 . X2?4 =P ers A Table 1 Material properties
L,=| — ==—siny,h— =———siny, h— = cosy,h | &¢ , _
g€ §eis=o =11 Host Structure Piezoelectric Layer
_ N (Stee) (PZT4
X2Ca4 X2C44=11 €15 . ¢h -
Lg=| — cosy,h— ——=—cosy,h+ =—siny,h |e*". Young’s modulus E=210x10° = 132x 10°
ées &e15=0 =11 (N/m?)
The dispersion characteristics of the structure is again obtained . Caq=8.5¢10°
by (kglsr?]g?ensny 7.8x10° 7.5x10°
Ll_ L5 L2_ LG elS(C/mz) 105
= (30) €s(C/m?) —4.1
Ls—Ly La—Lg Eo (F/m) 8.854x 10712
En/Eo 800
4 Mode Shape Analysis in Piezoelectric Layer Ess/Eo 660
The mode shapes of the deflection, the electric potential, and
the electric displacement in thickness direction of piezoelectric
layer may be obtained from the characteristic equation of this
piezoelectric coupled medium obtained in the above section. Tmere
final expressions are shown below.
For the case whea<uv, the mode shapdslenoted by an over-
bar are expressed by 5 efs
I(15:(: =
44— 11

uz=A (e X2+ M, ex22) (31a)

- _ 2e5,
d=A11 (N;+N,Mp)e™ &2+ (Ng+NyM ) efe+ —— (e x2x
1

—
=
=1

+M 1eXzXz)] (31b)

D,=A{(Ni+N,Mp)e &2+ (Ny+NyMp)efeh  (31c)
where

N>—Ns
CNgNg

For the case when’>c>v, we have

M]_:

U3=Ay(COSYXp+ M, Sin xoXy) (32a)

d=Ar] (Li+LMp)e” P2+ (Lg+L4Mp)ee+ —— (cosy X,
~11

andE,; andE, are dielectric constants for the piezoelectric layer
and the air. FoE ;> 2, we usually have g~v|pz14 ([20]).
The nondimensional phase velocity is takercasc/v|pz7, and

the nondimensional wave number is usedésyéh/27r. The dis-
persive characteristics for the first seven modes are shown in Fig.
2. The curves show that the phase velocities for all these modes
start from the shear velocity of the host steel semi-infinite medium
at a smaller wave number. This result is reasonable as the Love
wave velocity in a semi-infinite medium is always less than the
velocity of the buck shear horizontal wave in the substrate, which
can also been seen from E(R). Another investigation of the
figure shows that the curves approach the Bleustein-Gulyaev
(B-G) wave velocity or the shear horizon{&H) wave velocity of

the piezoelectric layer at higher wave number. This result is here
compared with that obtained for the same structure but with the
electrodes shortly connected on the piezoelectric lay&8]).
When the electrodes are shortly connected, the asymptotic veloc-
ity of the first mode tends towards the B-G wave velocity, whereas
the velocities of other modes tend towards the SH wave velocity.
This is due to the fact that for the first mode the surface wave for

+M; Sin)(zxz)] (32D)  the piezoelectric layer will become dominant when the wave-
o length is short compared with the thickness of the layj&B8]).
D,o=A{(L;+L,My)e &2+ (Ly+L,My)ed2)  (32) However, the B-G wave velocity and the SH velocity are almost

where
Lz_ LG
Ll_ L5 ’

MZZ_

the same in the current study when the piezoelectric layihout
electrodes bonded on ibutting the vacuum, was also claimed by
Parton[20]. Thus, it is with no doubt that the asymptotic veloci-
ties of all the modes for the case when the piezoelectric layer
abuts the vacuum tend to one value as shown in Fig. 2. It also

Next, numerical simulations will be conducted to give the disshows that the higher modes can only exist beyond certain values
persion curves of the SH wave propagation in the structure mesf- the wave numbers, for example, the second mode begins
tioned above, and to present the variations of the mode shapegiipundé=0.5.
the piezoelectric layer for different wave modes and wave The mode shapes of the deflection, the electric potential, and
numbers. the electric displacement in the piezoelectric layer are plotted in
Figs. 3—6. Figures 3—4 show the first mode shapes with the wave
number assigned at the values of 0.1 and 1.0, respectively. The

Table 1 lists the material properties that will be used in thn;g;j?hseri]f gﬁqc?cf)ttr? (e:lfrl\?gggtgost?nn;;ﬁllvz%i iljgggrdézpslggir?: Etigdlg
following numerical simulations. The bulk shear wave velocitie nd change to curves with higher curvatures with a zero node été
for the host material used by steel and the piezoelectric layer us§her wave number as shown in Fig. 4. This phenomenon is not
by PZT 4 are obtained as'|see= 3281 M/S,v|pz74=2351 m/s. surprising. As the wave number increases, the difference in the
The Bleustein-Gulyayev surface wave velocities in thg PZT4 f(iy operties of the two mediir and steglon the two surfaces of
the case when no electrodes are surface bonded on it can betFII'E'piezoelectric layer becomes important. However, it can be
termined by the expressid({u,6,9) seen from the figures that the mode shape of the deflection re-
mains almost a straight line for the two wave numbers. Different
from the result in this paper, the electric potential in the piezoelec-
tric layer shows an approximate quadratic variation for the case

5 Numerical Simulations

7
Kis

v=v\/1* ==
B 2(1+K29)%(1+E11/E0)?
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when the piezoelectric layer is shortly connected with electrod8®th curves for the electric potential and the electric displacement
on it ([18]). have more zero nodes compared to the results in the first mode
Figures 5—6 show the second mode shapes and the third metiape seen from Figs. 3—4. Surprisingly, the mode shapes of the
shapes of the deflection, the electric potential, and the electdeflection displays a curve, instead of a straight line, with one
displacement in the piezoelectric layer at a wave number of 1£ero node for the second mode and two zero nodes for the third
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1 Introduction The dynamic effects can also play important roles in some sta-
bility problems. When a cylindrical shell is subjected to a travel-

o - ?ng load, there are some critical load speeds to cause the deflection
and cylindrical shells are common elements in structural and

. > : - . nbounded11]. Jones and Bhutl 2] found that a bending reso-
phlnery applications. The dynamlc behgwors of.multllayered SYhance can occur at a very low speed in an infinitely long and
inders and shells have received a continuously increased atten 1O onic cviindrical shell. Manarum and Burfi&3] found that
in applied mechanics community due to their growing usefulne pic ¢y ] 9

. . . tiere are five critical load speeds in an infinitely long and ortho-
in structural and mechanical engineerifid. Over the past thre_e tropic cylindrical shell. As an impulsive pressure is suddenly de-

¢ h N th - il d h e\r/%bped, unstable plane-strain responses may take place in an iso-
ure, as shown in the reviewing articles and researc repO{'IgpiC circular cylindrical shell, and result in shell buckliptg].
[1-6], deal with the steady-state behaviors such as the Propagds,dier and Mclvof15] and Lovell and Mclvoi{16] discussed
tion of steady-state waves and free vibrations. The dispersion plgg Y

‘ L lind d shells has b Spectively, such unstable responses by linear and nonlinear
nomenon of wave propagation in cylinders and shells has eegtl';'ain-displacement relationships. Their results showed that the

particular subject investigated in details by many researchers E?E:Iic energy may exchange between the in-and-out “breathing”

ing shell theories and the three-dimensional theory of elasticity ) j4e and the one or two high flexural modes.

As an impulse acts, the propagation of the mechanical distur- g giscussed by Loy and Lafil7], the refined thin shell theo-

bance with wave speeds makes a multilayered cylinder respqRek may e still inadequate to model moderately thick and thick
immediately to the impulse at the place of wave incident, ag

e rcular cylindrical shells with a single layer. In contrast to the
respond later at other places. After the forcing impulse has s eady-state response, the transient response depends upon the dy-

sided, and over a long time in comparison with the time of thgamic joading applied to the boundary surfaces, which causes
wave propagating through the whole wall, the multilayered cylinyore complexity to both the solutions and the computations.
der turns out to vibrate freely and then rests finally due to the A exact three-dimensional elastodynamic analysis of circular
external resistance and interior friction in the material. Thgyingrical shells with a single layer is a very important subject,
dynamic stresses, however, play a more substantial rule in stryer has much greater difficulties in mathematical formulation. It
tural failure. They can reach their maximum values at the earfbems that there are only a limited number of papers available in
time when the transient effects of the impulse are significant. {e relevant literature dealing with some plane-stain problems and
this case, the importance of the transient-state behavior is Wgjtee-dimensional problems by approximate analyjses—30.
recognized. ) . ~ Svadh[18] analyzed an end load problem for an axially symmet-
In order to get some simple, but practical results of the transiefi¢ semi-infinite hollow cylinder by using the asymptotic solu-
responses, some thin shell theorles, deVeIOped using the S|mpl|ﬁ!%s_ (:hong7 Lee‘ and Cakmikg] examined the pr0b|em in
assumptions of the Kirchhoff-Love hypotheses and their refingyizdh [18] previously by considering only three modes: the first
ments considering shear deformation and rotary and/or longitugigia, longitudinal, and shear modes. Experiments on the end
nal inertia effects, have been applied to finite and infinitely longyroblems had also been conducted to measure pulse dispersions
isotropic and anisotropic circular cylindrical shells with a single¢20—21 and dispersion curvg®?2] through the measurements of
layer[7—16]. The numerical results showed that the transient efransient waves. In addition, by using two and three-dimensional
fects are influenced by impact loadingShristoforou and Swan- finite element methods, Rabern and Ley@8] simulated the dy-
son[7]), sizes of cylindrical shell§Chonan[8], and Humphreys namic stresses and strains excited by moving pressure fronts in
and Winter[9]), elasticity of material¢Chonan[8]), and material gun tubes. Using the finite Hankel transform techniques, Cinell

Multilayered, specially two-layered, elastic circular cylinder

damping(Sivadas and Ganes&h0]). [24] presented a solution of axisymmetric transient stresses for
infinitely long and isotropic thick hollow cylinders. As pointed out
*To whom correspondence should be addressed. by Gong and Wan{25], the solution presented in Cin¢R4] does

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF g ; e
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- not coincide with the nonzero stress boundary conditions. In the

CHANICS. Manuscript received by the ASME Applied Mechanics Division, June Z(ﬁquatlon of the radlal_stress with frequency equatlon, 't_ can be
2001; final revision, Mar. 6, 2002. Associate Editor: A. K. Mal. Discussion on thebserved that the radial stresses always vanish at the inner and
paper should be addressed to the Editor, Prof. Robert M. McKeeking, Departmenigiter boundary surfaces where nonzero pressures are imposed on.
Mechanical and Environmental Engineering University of California—Santa Bai : : ) ;

bara, Santa Barbara, CA 93106-5070, and will be accepted until four months afYé/rang and Gon@26] refined Cinell's SOIUtlon.' Waan?] ?‘nd Cho

final publication of the paper itself in the ASMBPORNAL OF APPLIED MEcHan-  @nd Kardomateas and Valleg] further applied the refined solu-

ICS. tion to thermal shock problems. Gong and W42§] also pre-
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consists of arbitrary number of coaxial layers with different ma-
terial properties. Each coaxial layer is made of homogenous, iso-
tropic, and elastic solid. The total number of the coaxial layers is
an intege. From the center of the coaxial layers, the layers are
consequently numbered as 1,2., andN. The inner radius is;
and outer radiudy . Theith layer has the inner radiug , the
outer radiusb;, the wall thicknessh;(=b;—a;) and the radial

.- wave speed; . The radial wave speed , the speed of the lon-
gitudinal wave traveling along the radial direction, can be ex-
pressed as;=[(\;+2ui)/p;]~?% where\; andu; are the Lame’s
material constants of thigh layer andp; the mass density.

As body force vanishes, Navier's equation for axisymmetric

plane-strain motion is

d2u;(r,t) . Lou(r,) uw(r,) 1 du(r,b)

(€]
ar? roor r2 c? at?
Fig. 1 Geometry and coordinate system of the multilayered . . . .
Cy?inde, y Y Y wherea;<r=<b;; i=1,2,..., andN; u;(r,t) is the radial dis-
placement of thath layer; and the subscript stand for theith

layer.
sented another type of the exact solution by the expansion oflf the interior and external boundary surfaces of the multilay-
transient wave function in a series of eigenfunctions. This eigefited cylinder are subjected to uniformly distributed dynamic pres-
function approach has been further applied to the problems $#r€spi(t) and p,(t), the stress boundary conditions, the dis-

internal multiple impacts by Yifi29] and Yin and Wang30]. placement, and stress continuity across the interfaces and the
For multilayered circular cylinders subjected to axially uniforniitial conditions can be expressed as follows:

distributed pressures, Wang and GdBd| and Wang 32] exam- as 1)= —pi(t 23

ined the transient responses using the finite Hankel transforms. or(ast) P1(t) (22)

The presence of the interfacial pressures in a multilayered circular on(by,t)=—py(t) (2b)

cylinder causes an additional difficulty in the mathematical for-

mulation of the analytical solutions. For solving the problem, ori(bi t) =0+ 1)(@is1,t) (20

Wang and Gond31] and Wang[32] tried to divide the radial U (by )=t s y(801.1) 2d)

displacement into two parts: the equistate and dynamic parts. Fur- R RO

thermore, they used two additional assumptions. The first assump- u;i(r,0)=ug;(r) (2e)

tion is that the radial displacement of the equistate part within

each circular layer can be expressed in the form similar to Lame’s vi(r,0)=vg(r) (2f)

static solution associated with two unknown constants and timer : T
dependent applied pressures. The second is that the radial stre%hﬁgagg;ét)éfu?;gigl %?gvlg((:;%aeﬁ tgﬁ dr aﬁ]'gl Vs g@iﬁ' tk(\)? Itrt]f'élal
the dynamic part vanishes at the inner and outer boundary Sté'er respectivel P y
faces of each circular layer. The second assumption can offe YEr respectively.
facility for the direct application of the method that has been used2.2 Exact Solution. To find an exact solution for the initial
for solving a circular hollow cylinder with a single layer. Never-and boundary value problem described above, we firstly divide the
theless, the combination of the two assumptions may lead a doudynamic radial displacement(r,t) of theith layer into the quasi-
ful result of the interfacial pressures, which can be explained ustatic partug(r,t) and the dynamic parig(r,t). The quasi-static
ing a multilayered circular cylinder that is only subject to ampartug(r,t) satisfies the static-state equilibrium equation, the im-
interior pressure. At the interfaces, because the radial stressep@ded boundary tractions and the interface continuity conditions.
the dynamic part are zero, the radial stresses are just those of the dynamic partiy(r,t) satisfies the motion equation, the free
equistate part, which varies in the time history of the interidsoundary surface conditions and the interface continuity condi-
pressure. It becomes clear that the above approach in Wang @bfls. As a result, thay(r,t) can be expressed in a series of
Gong[31] and Wang 32] is not suitable for general cases. eigenfunctiongi.e., wave modes[33] as follows:

In this paper, the expansion of the transient wave functions in a

series of eigenfunctions is used to obtain an exact solution for the - i

transient response of an infinitely long and multilayered circular uj(r,t) =ugi(r,t) + Zl Unn(r)dm(t) @)
cylinder subjected to uniformly distributed dynamic pressures. e

Numerical results are then given for several typical examples @where a;<r<b;, i=1,2,..., andN; Uim(r) is the mth wave

multilayered circular cylinders under dynamic loading. In particimode of theith layer; andg,,(t) is the unknown time-dependent
lar, the present solution is compared numerically with an approXpefficient associated with' (r).

mate solution based on the method suggested by Eringen ang; order to obtain the exact solution of the radial displacement,
Suhubi[33]. The present solution is further applied to the verifiy g necessary to have the governing equations of the wave modes

cations of the use of the thin shell theories in the axisymmetrig, the unknown time-dependent coefficients, and the orthogonal
plain-strain transient responses of multilayered circular cylindricahnditions of the wave modes.

shells. It is considered that the present method can be extended fthe wave modes)! (r) are governed by the following eigen-
the examination of the transient wave propagation along composy ;e problem: m

ite cylinders.
: . d?U'(r) 1duU'(r) U'(r z
2 Formulation of Solutions | i )+F d( ) _ (2)+w—2U'(r)=0 (4a)
r r r C

2.1 The Initial and Boundary Value Problem. We con- _ '
sider the transient response of an infinitely long, multilayered cir- oy (a;)=0 (4b)
cular and elastic cylinder under dynamic loading at the inner and i
outer boundaries. As shown in Fig. 1, the multilayered cylinder o(by)=0 (4c)
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al(b)=0c"Y(a,q) (4d) ej(k'r)=ayJ;(k'r) +abY;(k'r) (5h)
U'(b)=U"a4) (4¢)
wherea;<r=<b; ; k= w/c; is the wave number of thih layer. It

can be shown that the eigenvakis real and non-negatiié4]. WhereA, a;, anda; are unknown coefficients; arj andY; are,
It can be shown that the general solution of wave madles respectively, the Bessel functions of the first and second kinds of

eigenvalue probleinfor the ith layer is expressed in terms ofthejth order, wherg =0,1, and 2.

Bessel functions as follows: Substituting the general solutigd) into the boundary and in-
i D terface continuity condition$4b)—(4e), a set of linear algebraic
U'(r)=Ae;(Kr) (58)  equations can be obtained as the following matrix form:

FCii Cipb O 0O 0 0 0 0 0 0 1
- l - - -
Co1 Cyy Cuhs Cypy O 0 0 0 0 0 ai 0
Csn Css Csz Csa O O 0 0 0 0 Zg 8
0 0 Cuz Css Cus Cas 0 0 0 0 a% 0
0 0 GCs3 Css Cs5 Csp 0 0 0 0
ay t 0
aNfl 0
2
0 0 0 0 0 o - .- CZN—2,2N—3 C2N—2,2N—2 CZN—2,2N—1 CZN—2,2N al 0
1
Con-1a-3 Con-ian-2 Con-iav-1 Con-av || gl L 0]
L O 0 0 0 0 0 e 0 0 Conon-1 Conan

(62)

In the coefficient matrif C], the four nonzero components in  To facilitate the subsequent analyses, the(Ba). is rewritten in
the first and last rows are related to the traction boundary condi-compact form below:
tions at the inner and outer boundary surfaces.

[Cl[a]=[0] )
C11=My(hq,uq,k ) (6b)
Cro=Mo(Ay s kL a 6c where[ C] is the 2N X 2N square matrixfa] is the column matrix
1= Ma(haoty V (6c) of the eigenvectors witl2N elements, i.e., coefficients; and
Conan—1=M1(\n un kN, by) (6d) a, (i=1,2,...N); and[0] is the zero column matrix.
_ b The existence of nontrivial solutions leads to that the determi-
Conan=Ma(Aypn K7, by) (6e) nant of the coefficient matrixC] is zero, which forms a transcen-

The eight nonzero components in each of the next two rows g#gntal equation. This transcendental equation is also called as the
results from the fully continuous conditions of the radial stredéequency equation governing the axisymmetrical plane-strain ra-
and displacement at the interface between two connected coafidl Vibration:
layers. For the interface between thh layer and thei(+1)th

layer, we have De{C]=0 (8)
Coiz—1=Mi(\i,ui Kby (6f) Equation(8) is called a characteristic equatitor the frequency
B i equation of axisymmetrical plane-strain radial vibration of an
Caizi=Ma(Ai,ui Kby (69)  elastic cylinder withN number of coaxial layers. It has been
o ) _ i+1 4 shown generally that an elastic body has an infinite growth of the
Caiz+1= = MaNivpoptiva K081 (6h) positive characteristic valué&urtin [35], p. 270. So, Eq.(8) has
Coizra=—Mo(Nirg,mis1,k hai ) (6i) infinite number of positive roots. The positive root solutions of
) ~ Eq. (8) then provide the values ab,, (m=1,2,...) vhich rep-
Coir12-1=J1(k'b)) (6]) resent the circular frequencies or eigenvalues. The circular fre-
C. v, (kb)) (6K quencies can be dgtermined accurately from the frequenc{BEq.
2i+127 T1UR M by numerical techniques, such as Newton method.
, - . i .
Coiprasi=—do(kta, ) (6) The particular wave mode of thth layerU ,(r) associated the
) mth circular frequencyw,, can be expressed as follows using the
Coiv1as2=—Ya(K ta q) (6m) general solutior(5):
wherei=1,2,... N—1 and Uim(r):Amsil(kimr) (9a)
dJy(kr) Ja(kr) O : : : :
M\, .k ) =(N+2u)k a0k H\T (6n) &j(kyr) =ayndj(kyr) +agyY;(kyr) (9b)
dY,(kr) v, (kr) The wave modeJ im(r) can form an orthogonal set. The set is
Mo(N, k1) =(A+2u)k 1 ) (60) derived directly from the Eq4) and follows the orthogonal con-

d(kr) r dition below (see Appendix A
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where §,,,, is the Kronecker delta.

Uh(r)2ardr = (10)

Wherepil(t) is the quasi-static inner pressure epgut) the quasi-
static outer pressure of théh layer. Two external applied pres-
sures are known, i.e., the pressun%(t) of the first layer is the
imposed pressurp,(t) and the pressurpz(t)of the Nth layer is

The coaxial layers can have different values for the mass ddhe applied pressurp,(t). The otherp)(t) and pi(t) are the
sity p; . The termp; in Eq. (10) cannot be put outside the sum-unknown quasi-static interfacial pressures and can be determined
mation. For a circular cylinder with a single layer, this term caRy the full continuity condition of the radial displacement in
always be eliminated by the techniques of normalization, whidgd- (2d).
results in the well known orthogonal condition without the term of It is noted that although the different coaxial layers may have

mass density.

The coefficientA,, in Eqg. (9a) applicable to all the coaxial
layers are given below according to the orthogonal conditidh
(see Appendix R

N
- :Zl pi{ b e12(K b)) —ep(kLb)eb(kl b))

—ma[eh?(kha) — so(k' a)eh(kia)]} (11)

The correspondlng nonzero eigenvectar, i.e., coefficients
a),, andab,,, can be determined by the arbitrarjN2 1 linear
algebraic equations of the matrix E() pulse the orthogonal
condition (10).

Furthermore, by substituting E¢(B) into Eq.(1) in conjunction
with the equations governingy;(r,t) andug;(r,t), we have

d?gp(t) L

dUS|( t)
gz omd

(12)

m=1

Om(t )} Upy(r)=

By using the orthogonal conditiof10), we can obtain the or-
dinary differential equations governirgg,(t) below:

d%qn(t) ) szm( )

S de

mlm(t)= (139)

N
Z f pilii(r U (r)27rdr (130)

Using Laplace transforms and the initial conditidq@s) and (2f),

we can obtain a formal solution of the unknown time-dependent

coefficients from Eq(13a) as follows:

Om(t)=gm(0)coswpt + i dqm(O)sinwmt
@m
1 (td*Qu(7)
+w—mf0TS|nwm(t 7)dr (14a)
whereq,,,(0) anddqg,,(0)/dt are defined as follows:
Am(0)= E p.uo.<r>um(r>2wrdr+Qm(0> (140)
dq’“ —E p,vo,(r)U (ry2mrdr + 3900 (140)

Finally, the quasi-static radial displacement for tttelayer in
the form of Lame’s solution is

bfa?
2ui(bf—af)

a?py(t)—bZph(t)

-r
2(Ni+ i) (b?—a?)
X[pL(t)—ph(D)]

1
Ugi(r,t)= T

(15)
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different wave modes, they should vibrate at the same circular
frequenciesw,, and depend upon the same unknown time-
dependent coefficients functiong,(t). Furthermore, the solution
given above satisfies the Navier's motion Efj) and the initial
and boundary conditions and the radial stress and displacement
continuity conditions at the interfacé®a) to (2f). Therefore, the
above solution is an exact solution for the transient response of an
infinite long and multilayered circular elastic cylinders subject to
uniformly distributed pressures in the inner and outer boundaries.
The computational procedure to obtain the radial displacement
and stresses using the above exact solution can be summarized as
follows.

At first, we will calculate the circular frequencies using E8).
We then determine the coefficients of wave modes using&g.
(10) and the results of the corresponding circular frequency. Next,
we determine the quasi-static radial displacement using @gk.
(2d), and(15). Moreover, we calculate the time-dependent coeffi-
cient functionsq,,(t) using Eq.(14). Finally, we calculate the
transient radial displacement according E2).and then the stress
components using the strain and displacement relationship and the
linear stress and strain relationship in elasticity.

2.3 Approximate Solution. An approximate solution can
be obtained by following the approach given in Eringen and Su-
hubi[33]. At first, we perform the integration in E¢l4a) succes-
sively by parts and obtain a new expression for the time-
dependent coefficient functioq,(t). As a result, Eq(3) for the
transient radial displacement can be re-expressed in the following
form:

(1,0 =Ugi(1,0)= X Qn(H)Up(r)

1
@y COSwt+ — B, Sinwpt
Wm

>

t
*me‘ Qm(7) sinwm(t—7)d7|UL(r)  (16)
0

where  ap=3N[Ppug (r)Ul(r)27rdr and

==l pwa(rUp(r)2mrdr,

Following the suggestion by Eringe and Suh{28], the quasi-
static displacementy;(r,t) can be expressed in the following
series of the eigenfunctior@,,(t)U,(r).

Bm

usi<r,t>=mE:1 Qm(HUL(r)

Consequently, the transient radial displacement in(E€). can
be approximately expressed as follows:

©

>

m=1

17

1
ui(r,t)= am COSwpt+ — B Sinwpt— o
Wy

t
xf Qm(7) sinwm(t—7)d7|U! (1) (18)
0

It is noted that the above solution does not satisfy the nonzero

stress boundary conditions. This is because the wave tdgge)
is determined using the zero-traction boundary conditions. There-
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fore, the solution in(18) is an approximate solution. Gong andsolution(19) and the approximate solutig0). Parametric stud-
Wang[25] gave a similar conclusion for transient radial displaceies indicate that the results obtained using-2000 can be
ment in a single-layer hollow cylinder subject to dynamic bounctonsidered as the converged values of the infinite sums in equa-

ary traction. Furthermore, by using the approximate method dgons (3) and (18). From Fig. 2, one can have the following four
scribed above, Eringen and Suh{iBB] examined the initial and gpservations:
boundary value problems for finite strip fixed at one end and in

Single Spherica| and Cy|indrica| domains. Liu and @6] exam- 1. The COnVerged results Of the two stresses indicate that the

ined the transient wave propagation in a circular annulus. exact solution can be used to simulate the propagations of
the transient waves in the cylinder. At the time-1, the

3 Numerical Results compressive cylindrical wave, initiated at the inner bound-

ary surface, travels in the radial direction and its front ar-
rives exactly at the external boundary surface. Before this
time, as the compressive wave traveled across the interface,
a reflected tensile wave and a transmitted compression wave
were generated. The transmitted wave front has reached at
the external boundary surface. The reflected wave backed
n from the interface, reflected again at the inner boundary sur-

ui(r,t)=ug(r,t)+ 2 U‘m(r)qm(t) (19) face, traveled towards the outside and its front has just ar-

m=1 rived atr =0.0555. The wave fronts can be identified easily

from the jumps in the stress curves.

2. The converged results of the two stresses from the exact

3.1 General. In the numerical calculations, the following
partial sums with finite number of wave modes are adopted to
represent the exact solution and the approximate solution given in
Egs.(3) and(18), respectively,

(a) For the exact solution, we have

(b) For the approximate solution, we have

n 1 solution and the approximate solution have the only differ-
ui(r,t)= Z ¥y COSOMt+ — By SiNwmt— ences at the boundary ;urfaces wiFh nonzero strgsses. In
m=1 Wy other words, the approximate solution cannot satisfy the
. nonzero stress conditions at the boundary surfaces. The
Xf Qu(7) Sinwn(t—ndr| Ul (1) (20) maximum sh('ear stress. at the inner @unc!ary §urface of the
o two-layered circular cylinder at the tinte=1 is estimated to

be 0.987@, using the exact solution and 1.3580using the
In Egs.(19) and(20), then is the total number of the wave modes approximate solution. The difference is large.
used in the calculations. Furthermore, the following nondimen- 3. The converged results of the radial displacements from the
sional parameters are used to show numerical results: exact solution and the approximate solution are the same.
. . . 4. The exact solution and the approximate solution result in
» the non-dimensional displacement and stresses components: substantially different results if only one or three wave
. tﬁé\lr:roﬁé?r/r?érfgi%'n;r {s?[?dc?gg?(;/npg'material arameters for modes are used in the partial surie., n=1 or 3. The
multilayered circular cylinder: the ratio of acgustic imped- substantlgl dlﬁgrgnce between the first severaI. modes of the
ance of theith layer to that of the first layep.c, /p,c,; the two ;c_)lutlons indicates @hat the nonzero traction boundgry
ratio of the wall thickness of thih layer to that of the first condition has a strong influence on_the wave pr_opagatlon
and more wave modes shall be used in the analysis of forced

layer, h; /hy; the ratio of the time of wave traveling through- L i - )
out the wall of theith layer to that throughout the first layer vibration. The largest difference in the radial stress occurs

(hi/c))/(hy/cy); and the ratio of the wall thickness to inner ~ near the nonzero inner boundary surface. The largest differ-
radius of the first layeh, /a, . ences in the circumferential stress and radial displacement

« the nondimensional independent variables: (r —a,)/(by occur near the two boundary surfaces. It is noted that the
_ T _+/sN _ boundary stresses play an essential role in the failure evalu-
ay) andt=t/Z;_,(b;—a;)/c;. X ! -
ation of cylinders under external dynamic forces.

3.2 Comparison Between the Exact and Approximate So- 3.3 Discussions on the Solution ConvergenceThe con-
lutions. In this section, we give a numerical comparison begergence of the exact and approximate solutions is supported
tween the exact solution and the approximate solution presenigdyretically by the completeness of eigenfunctions for general
above. Using the two solutions, we estimate the transient respoRge - body(Gurtin [36], p. 271. In particular, the eigenvalue

of a circular(;:éllinlder with tv(\j/o (;ot?]xiall Iayerks) sut()jjected t? a SteProplem (4) is a typical Sturm-Liouville problem(Titchmarsh
pressuré suddenly imposed at the innér boundary surtace. , p- 17. Because the quasi-static radial displacen@&sj is

imposed pressures at the inner and outer boundary surfaces inuous and bounded with the interval, (by) and can be
. 1PN
then be expressed as follows: integrated over the radial distanca;(by), its eigenfunction ex-

p1(t)=poH(t) (21a) pansion(17) converges taig(r,t) at any fixed time(Titchmarsh
! [37], p. 12. Hence the converged results of the radial displace-
Po(1)=0 (21b) ment associated with the two solutions are the same in the interval

(ay,by). Similar conclusions can be obtained for the eigenfunc-

wherep, is the amplitude of the imposed step pressure, iy tion expansions of the quasi-static stresses.
is the Heaviside step function. In the theory of eigenfunction expansion, at the bounddites

For this comparison, we consider that the inner and outer dfe paper, at=a; andr=»by), the expansion results can con-
axial cylindrical layers are made of steel and aluminum, respe¢erge; however, it may not converge to the real values of the
tively. The structural and material parameters are chosen to éx¢panded functions. According to the boundary conditiGts-
hi/a;=1,h,/h;=1, (h,/c,)/(hy/c;)=1.1,p,Cc,/p;c,=1/3and 4c), it is clear that the expansion of the quasi-static radial stress
the Poisson ratios,=v,=0.25. converges to zero at the two boundary surfaces. It is therefore that

Figure 2 shows the variations of the radial displacement, tltke approximate solution would result in the radial stress zero at
radial stress, and the circumferential stress with the radial distarthe two boundary surfaces.
in the cylinder at the nondimensional timte=1. Threen values The differences in the stresses between the exact and approxi-
(i.,e.,n=1, 3, and 200Pare used in the partial sums for the exacinate solutions concentrate at the two boundary surfaces since we
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Fig. 2 Spatial variations of the radial displacement and the radial and circumferential stress obtained using

the exact solution (19) (solid line ) and the approximate solution (20) (dashed line ) at the time t=1 for a
two-layered circular cylinder  (the thick line for n=2000; the moderately line for n=3; and the thin line
n=1)

use a large number of eigenfunctions in the numerical calcula-Figure 3 illustrates the variations of the stresses at the seven
tions. The differences would be large and occur at other locatioimserfaces with time obtained using the partial sut®) for the
if we use a small number of eigenfunctions. exact solution in equation, where=2000. From Fig. 3, the fol-
The quasi-static radial displacement can be expressed asl@ming can be observed.
integral function of the quasi-static stresses. So, the limited differ- As a cylindrical wave is generated at the inner boundary surface
ences in the stresses at the two boundary surfaces would not causéhe step impulse pressure, the interfaces begin to response in
any meaningful effect on the displacement. The full continuity afequence. The circumferential strass/py at each interface is
the quasi-static radial displacement at the closed int¢lby] negative initially and then positive and so on. The stresses have
holds that its eigenfunction expansion converges to its real valubgir peak values when the cylindrical waves including the trans-
at the two boundary surfaces. Then the observat®rabove is mitted and reflected waves reach the corresponding interfaces.
valid over the closed intervdk, ,by]. The trails of the transmitted and reflected wave fronts can be
In addition, in Fig. 2, then value was selected to be 2000 fortraced from the peaks. From Fig. 3, it seems impossible to repre-
showing the propagation of waves more clearly. Usuailly,50 sent the time histories of the interfacial pressures in a simple form.
can generate accurate results in the numerical calculation. It is
noted that we used less than 20 minutes to complete the calcyja- At
tion of the 2000 frequencies on a 300 MHz Pentium Il PC and Ie%ts Applications
than five minutes were needed to calculate the three curves shown.1 Verification of Assumptions in Classical Thin Shell
in Fig. 2. Theories. As pointed out by Loy and Lanpl17], the classical
thin shell theories and their refinemeriso-called higher-order
3.4 Interfacial Stresses for a Seven-Layered Circular Cyl- shell theories may be inadequate for the analysis of the steady-
inder. A circular cylinder with seven coaxial layers subject to atate response of moderately thick and thick shells. It could be
step pressure at its inner boundary surface is used to examinedrgued that the thin shell theories may also be inadequate for the
behavior of the interfacial stresses. The circular cylinder has ttransient responses of multilayered shells and cylinders. The exact
following structural dimensions and material constants in the noselution presented above for the transient response of a multilay-
dimensional forms: h,/a;=1; v;=0.25 for i=1,2,...,7; ered circular cylinder under impose loading can be used as a
(h;/¢))/(hy/cy)=1 and pici/pic,=1 for i=1, 3, 5, and 7; benchmark to verify the classical thin shell theories for the axi-
(hi/c;)/(hy/c)=4 andp;c;/p.c,=0.15 fori=2, 4, and 6. The symmetric plane-stain transient response of multilayered circular
odd layers are harder layers and the even layers as softer layargindrical shells.
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Fig. 3 Time histories of the radial stress (a) and the circumferential stress  (b) at the interfaces of a seven-

layered circular cylinder  (n=2000)

Such verification usually needs substantial numerical data ahdrizontal coordinate uses the layer thickness as its unit. As a
accountable cases, as shown by Noor and Byitfor the linear result, the seven layers can be identified easily from the horizontal
static and free vibration problems of multilayered compositeoordinate. All the numerical results in Figs. 4, 5, and 6 are cal-
shells. On the other hand, the classical thin shell theories adeplated by using the number of wave moates 2000.
two main assumptionga) the radial stress is small compared with  Figure 4 shows the radial displacements at different time in the
other stress components and may be negligible @dhe radial seven layered cylinder associated with/a;=1 or h, /a;=10.
displacement varies constantly or linearly in the radial directiofrom Fig. 4, one can have the following observations:
Therefore, the present investigation focuses on the distributions of
the transient displacement and stress components in the radigl The radial displacement decreases nonlinearly and signifi-
direction for three types of seven-layered circular cylinders sub- cantly with increasing in the radial distance in the first layer
jected to the step impulse pressure. The three types of the seven- (0 to 1 and a hard laygrfor the two types of composite
layered circular cylinders are defined by/a;=0.1, h,/a;=1, cylinders.
andh, /a; =10, respectively. The other nondimensional structural * The radial displacement oscillates significantly with the in-
and material parameters are as same as those given in Section 3.4.creasing in the radial distance in the second ldgeo 2 and
Because each of the seven coaxial hollow cylinder layers has a a soft layey for the h,/a;=10 type of composite cylinders.

wall thickness equal to either @1, 1a,, or 10a;, we can call .
the corresponding composite circular cylinder with thin, moder-
ately thick or thick layers, respectively.

The numerical results are shown in Figs. 4, 5, and 6, where the

(a)

i

u(A; ) /aypg

7x7

(b)

u(Art ) /aypy

The radial displacement increases or decreases significantly
at different with the increasing in the radial distance in the
second layer(1 to 2 for the h;/a;=1 type of composite
cylinders.

f

|
0 1 2 3 4 5 6 7
rx7

Fig. 4 Spatial distributions of the radial displacements at different time for seven-layered circular cylin-
ders where (a) for hy/a;=10 and (b) for h,/a;=1 (n=2000)

Journal of Applied Mechanics NOVEMBER 2002, Vol. 69 / 831



@ (®)

~

.
—
o
o

'@P
“”*I
8
j
| 10

17} v
w - w
2 r=10 4
@ v g 4" @
r=5 )
=2
i _:
—~ /
AN I'I 1 L | A ! 1 L L L
0 1 2 3 4 5 8 7 0 1 2 3 4 5 6 7
Fx7 Fx7
Fig. 5 Spatial distributions of the stresses at different time for seven-layered circular cylinders where (a)

for hy/a,=10, and (b) for h,/a,=1; the solid lines for the circumferential stress and the dashed lines for
the radial stress

* The radial displacement also varies with the radial distancees The stresses have much more complicated patterns of distri-
in the fourth layer(3 to 4) for both the two types of compos- butions along the radial direction and at different time.

ite cylinders. _ _ ~ « The radial stress in the soft coaxial layers has the magnitude
* The radial displacement is almost constant or has linear varia- gjmilar to the corresponding circumferential stress.

tions with the radial distance in the other layers for both the , The oscillated distributions of the stresses along the radial

two types of composite cylinders. direction mainly occur in the softer coaxial layers and do not
The above results indicate that the second assumption in the exhibit significant decreasing with the time.
thin shell theories, i.e., the radial displacement varies constantly. .
or linearly in the radial direction, may be not adequate for the The above results show that it may not be adequate to neglect
thick and moderately thick composite cylinders. the radial stress component in the failure analysis, especially in

Figure 5 shows the radial and circumferential stresses at difféfe soft layers, for the multilayered shells with thick or moder-
ent time in the seven-layered composite cylinder associated waiely thick layers.
h,/a;=1 orh,/a;=10. From Fig. 5, one can have the following Figure 6 shows the radial displacement and the radial and cir-
observations: cumferential stresses at different time in the seven-layered com-

(a) (®)

S, - © -----
S, |
3 X ® i— e @ ......
> @ A A 5 m
3 L .+
¥ T @ T~ i | O
N e N e
2 - - o
— I I ' . ' ‘ Sl I [ [ il I ! J
o 1 2 3 4 5 6 7 S T S e
rx1 rx7

Fig. 6 Spatial distributions of the radial displacement and the stresses for a seven-layered circular cylinder

with h,/a,;=0.1 where the solid lines for the circumferential stress and the dashed lines for the radial stress;
n=2000;®: t=1+1/32,: t=2+1/32,: t=5+1/32,@: t=10+132,®: t=20+1/32,©: t=100+1/32,@:
t=200+1/32
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posite cylinder associated with, /a;=0.1 (the thin layer thick-

ness case From Fig. 6, one can have the following observations pic,l pe (yle))h e,
« The radial displacement and the two stresses are piecewis 3001~ 1.0 1.0
linear functions of the radial distance. ® 0.9 1.1
* The radial stress has a magnitude significant smaller than a= 0.7 L5
similar to that of the corresponding circumferential stress ig 8'2 g'g
the hard layers and the soft layers, respectively. ; 200 015 40
* The radial stress has small jumps at some internal points & 0.1 5.0
the seven-layered composite cylinder. 2

« The circumferential stress has jumps at both internal poin§
and the interfaces of the seven-layered composite cylinder 2

The total wall thickness of the composite cylinder ib;( Z: 100 t=10+1/32
—a;)/a;=0.7, which may not be treated as a thin shell. Th
linear distributions of the radial displacement with each laye
show that the assumption of linear radial displacement distributic
in the thin shell theories is adequate such composite cylinders. ] 0|8 OI6 0'4 5.0

In Fig. 6, the nondimensional time is specified to be an integ
plus 1/32. As a result, some reflected and transmitted wave frol Ratio of acoustic impedances
may locate not at the boundaries of layers and the wave fronts can o ) ) )
be identified as the slight jumps in the distribution curves of stre§&- 7 Variation of the relative wave front height with the de-
components along the radial distance. creasing of the acoustic impedance ratio for a seven layered

The relatively jumping amplitudes of stress components 8¥“”der (n=2000)
these wave fronts reflect both the influences of transient wave
propagations and the capability of the application of the thin shell
theories. From Fig. ®), the relatively jumped amplitudes in the ) ) ) ) o )
stresses are very small. Furthermore, the radial stress has matgyiered circular cylinder subject to uniform distributed dynamic
tudes much less than those of the circumferential stress in the hBfgssure at the inner and outer boundaries. Numerical results show
layers. Therefore, the other assumption in the thin shell theoriit the present solutions are suitable for the analysis of the tran-
that the radial stress is small compared with other stress com§int responses. From the numerical results presented in the paper,
nents and may be negligible may be adequate for the transi@R€ can observe that th_e |nte_rfaC|aI pressures are C(_)mpllcated _and
response of the composite cylinders with thin layers although t§&nnot be represented in a simple form. The approximate solution

thin shell theories cannot model the relative stress jumps at fifeinadequate for the calculations of the nonzero stresses at the
internal points. boundaries. Furthermore, it is found that the two solutions may

not be able to give converged results for the analysis of forced

4.2 Effects of Layer Acoustic Impedance. Because of the vibration if a small number of the eigenfunctions is used. The
common use of multilayered composite shells with substantialjpplicability of the thin shell theories to the transient response of
different acoustic impedance layers, it is valuable to examine thgultilayered cylinders strongly depends upon both the geometri-
changes of the linear characteristics in Fig. 6 with the distributiaghl and material properties of the cylinders.
of the layer acoustic impedances. We consider two extreme cases
for the seven-layered cylinders with different changeable acoustic
impedances in Fig. 6.

The first case is that the two neighbor layers have the safiéknowledgments

aCOUStical impedances. The Second case iS that the aCOUStiC |mrhe study is ﬁnancia”y supported by the Research Grants
pedances of the soft layers are very small. In the first case, ®8uncil of Hong Kong. The authors would also like to thank the
multilayered cylinder behaves as a single moderately thick cyligyo peer reviewers, and the Associate Editor, Professor Ajit Mal

der with the total thickness of the seven layers. In the second cagg.their valuable comments and suggestions which have greatly
few quantities of the wave disturbance can transmit from the firghproved the presentation of the manuscript.

(hard layer to the secongsoft) layer. The multilayered cylinder
behaves as a thin cylinder consisting of only the first hard layer.

Figure 7 shows the quantitative comparisons in attempt to de-
scribe the change of the linear characteristics with the distributidippendix A
of acoustic impedances. In Fig. 7, the horizontal coordinate rep- . L .
resents the rat[i)o of the acoustigc impedance of the soft layers O\E)ep/lathematlc?l Derlvatlion for Eq. (10). We consider two
that of the hard layers. The vertical coordinate represents the refgve modedJ,(r) and U(r) corresponding to the eigenvalues
tive wavefront height: i.e., the relative maximum jump height an and o, respectively. They satisfy the equations below:
wavefronts with respect to the divergence of the circumferential

stresses at the two boundaries within the fitsard layer. The qui 1

corresponding values ohg/c,)/(h,/c,) are also list in the fig- 2 (Kiy2r — _}Ui -0 (A1)
ure. The smaller the relative wavefront height is, the stronger dr dr " rp-n

linear characteristics are. Figure 7 shows the relative wavefront

height descends quickly with the decreasing of the acoustic im- _

pedance ratio. This result means that the applicability of the thin d| du, N 1

classic shell theories to the multilayered circular cylindrical shells arl " |7 (k)1 = |Up=0 (A2)

strongly depends upon the material properties.

. We multiply (A1) by U! (r)c2p; and(A2) by U! (r)c?p; . We then
5 Conclusions ply (A1) by Uy, (r)cipi and(A2) by U, (r)cip;
subtract the two results, integrate the remaining over the layer
The paper has presented an exact solution and an approxintatekness, then make the summation of all the layers. We can
solution for the transient response of an infinite long and multébtain the following equation.
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(w?, —wZ)E p, Ui (Ul (r )2mrdr:21 zwpicff

a:

rut.

N
:2 2mpicf
=1

N
=2, 2mpic

Un(by)

N-1
+27 ), {Picizbi
=

~pis1Cli18i1| Uy

Rewrite the conditiong4b)—(4c) in the manuscript in the fol-
lowing forms:

du?t u?!
(N+2u)—+N—
dr r

(A4)

uN un
(ANTF2un)——FAN—
dr r

(A5)

r=by

By using (Ad) and (A5) and expressing the wave modes withy
their derivations, we can show the first two terms in the right- hanoy

side of Eq.(A3) to be vanished.
As a result, we obtain

(wm—wn)E f Di n(I’)U (r)2ardr

{Picizbi

2
~Pi+1Ci+1Qi+1

Up(by)

: d .
Upn(bi) —Uy(by)

dUp(b;)
dr
du, (ai41)

dr

U@ y)

du, H(ay )

*UHl a
n ( |+l) dr

] (A6)

We then use the conditiofde) U'™%(a;.,)=U'(b)), pic’=(\,
=2u;) anda;,;=b;. So, we can reducér6) as the followmg
result:

(w —wn)z r)Um(r)Zwrdr
dUi(b;
—2w2 [ ()| (v 2y 20O
dU, (@ y) .
—(Njs1+2pi0)————|—bjUy(by)
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i du, idU'm
m
dr

N dU#I(bN)
d

Uin(by)

dr

i n(bN)

IR =2mpNCiby

Un(by)———

g

dUr]‘h(al)
dr

Ui(ay) _ut

—2mpiciay| Un(ay) o May)

dUp(by)
dr

dup(by)
dr Un(bi)

du;, (a4 q) duj  ay )

Yaisy) -U; N ai)

] : (A3)

|+1
x| O+211) Bn @)l g)
r

du (b)
—(Tr I = (Nis1+2ui49)

From the condition4d) and the conditior(4e), we have
Ui(bi) dUHl(aiJrl)
dr

d
(Ni+2pu;) —(Nj1+2p441)

U'(by)

=(Ni—Njy)— b;

(A8)
substituting(A8) into the expressiofA7), we have

(0B~ %)E

N—1
=27, {(\i+ 5 DUl (b)Ui(b)
i=1

p, n(r)Um(r)errdr

—(\i+ i+ ) Up(b)UL (b))} =0 (A9)

If w, andw,, are distinct, then we have

2

For simplicity, we can normalize the set of eigenfunctions by
requiring

p, n(r)Um(r)27rrdr— (A10)

(A11)

N bi
> f pilUL()|27rdr=1
=1 Ja

Finally, we can obtain the orthogonal condition in the form of
summation as Eq.10) below:

5 [

Mathematical Derivation for Eq. (11). As shown in Eq.
(9b), s}(k'mr) is a linear function of the Bessel functions of the

m(r)27-rrdr— n (A12)

Appendix B
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first and second kinds of thjén order, i.e..J; andY;. So,&](Ky,r)
has the following properties as those of the Bessel functiyns
andY;:

]

d
ijl(x)_ejJrl(X):Zd_x(sj(x)) (B1)
d .
&(XJSj(X)):XJSj—l(X) (B2)
d
&So(x)z —e1(X) (B3)
wherex stands forkyr ande;(x) for &}(kir).
If m=n, the orthogonal conditiofiL0) becomes
N rp
> | piAZedx2mxdx(Ky)?=1 (B4)
i=1 a
wherea is ki a; andb is kl.b; .
So, the coefficienA,, is
N i [
A2= — | &20)d(x? B5
" ;(k,m)zasl()() (85)

Performing the integration by parts, we obtain
b

b
f £100d03) = [X*e3() Ja— f x2281<x>dix<sl<x>>dx.
(B6)
Using(B1), (B2), and(B3), one can show the following is valid:
b d
JX2281(X)&(81(X))dx

a

b
= f x2e1(X)[£0(X) — £2(x)Jdx

a

b
= f {[x2e1(X) e(X) +[X2e2(X) ][ — &1(X)]}dx

— °[ d 2 2 d
- f X820 1e0(X) +[XPe2(x) 15 [eo(x)]  dx

a

b
= f d[x%e5(X)£0(X)]=[X%e2(X)eo(X)]5. (B7)

a

Substituting(B7) into (B6) and (B5), the coefficientA,, is de-
fined by

N

AR?= 2, pilmb?eh (Kb — eb(kib)eb(Kibi)]
i=1
—ma el ?(kla) —eh(kla)eb(kl a)]}

(B8)
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- Axial Loading of Bonded Rubber
Reflect.ing R(.)adst?ds,?td B I 0 c ks

Boothtown,

Halifax HX3 6TR, UK ) ) ) )
Axially loaded rubber blocks of long, thin rectangular and circular cross section whose

ends are bonded to rigid plates are studied. Closed-form expressions, which satisfy ex-

G. E. Tupho|me actly the governing equations and conditions based upon the classical theory of elasticity,
are derived for the total axial deflection and stress distribution using a superposition
M. J. C. Gover approach. The corresponding relations are presented for readily calculating the apparent
Young's modulus, E, the modified modulus,E and the deformed lateral profiles of the
School of Computing and Mathematics, blocks. From these, improved approximate elementary expressions for evalugtarglE
University of Bradford, E/ are deduced. These estimates, and the precisely found values, agree for large values of
Bradford BD7 1DP, UK the shape factor, S, with those previously suggested, but also fit the experimental data

more closely for small values of S. Confirmation is provided that the assumption of a
parabolic lateral profile is invalid for small values of $DOI: 10.1115/1.1507769

1 Introduction whereE, is approximated appropriately by eith@ or (2). They

Extensive use is made of rubber bearings in a wide range $f99ested th&, should then be used to predict the small deflec-
modern engineering environments. The important applications #@ns of rubber blocks bonded to rigid end plates under the influ-
clude the reduction of traffic-induced movement and the seisnfifice of an axial load. _
isolation of vulnerable buildings, the flexure of bridges with ex- In fact, Gent and Lindley1] found that the predicted values of
pansion bearings and the protection of vibration-sensitive instrifle apparent Young's modulus calculated using the relatibhs
ments. They often involve rubber blocks bonded to rigid metalli@), and (3) agree well with their experimental measurements,
end plates and it is therefore necessary to be able to predict éxeept for small values & when they fall below the experimen-
stiffness and stress distribution created when loads are appliedal values.

The approximate expressions developed by Gent and Lindleyln deriving the approximationgl) and(2) it was assumed that
[1] and Genf2] for the apparent Young’'s modulug, , of bonded the block material is incompressible, that cross sections of the
incompressible rubber blocks subjected to compression are dhilbck normal to the direction of the applied load remain plane and
widely quoted and used in the engineering industry for assessimgrmal and also that the free lateral surfaces have parabolically
their axial stiffnesses. They depend upon the so-called shape faeformed shapes. In the published subsequent discussions of the
tor, S which is defined as the ratio of the loaded bonded area Gent and Lindley[1] study, Payng4] observed that the discrep-
the force-free lateral surface area. The Gent and Linfliéyap- ancy “relating to the technically important range of shape factors

proximations,E{®" , take the forms less than unity” might be accounted for by “the fact that the
profile of the compressed block was not quite parabolic,” and

E(GL):E(1+SZ) ) Hirst [5] hoped that the next step “would be an improved method

a 3 ' of estimating the ‘bulgeability.’ " However, it appears that no fur-

. . ther progress has been made.
for blocks_ of rt_actangular cross section whose length is large COM-rhe present paper derives easily calculable expressions for the
pared to its width, and apparent Young’s modulus of blocks of long, thin rectangular and

(GL) — 2 circular cross sections, and for the deformed profiles of their lat-
ECY=E(1+29?), @ : i _ _

) _ eral surfaces, which satisfy exactly the governing equations based
for blocks of circular cross section, wheffedenotes the Young's upon the classical theory of linear elasticity. The analytical tech-
modulus of the material of the block. As rubber is generally reviques used here are fundamentally similar to those which Horton,
garded as incompressible, the expressitisand (2) are often Gover, and Tupholmg6,7] presented in deriving expressions for
written ([3]) with 3w replacingE, where is the shear modulus the radial stiffness and tilting stiffness of a rubber bush mounting
which along withK, the bulk modulus, are fundamental material¢ finite length. Improved approximations fd, are also de-

constants. . duced. These give values that agree with those predicted by the
Lirﬁe?cff]u?é;sogrrgg ?huelllt( fi)c;mbrljcr)?:izloc?f %Egtlr?esk?;%%k‘faec?grt ?h _ lations(1), (2), and(3) for_ large values o but which appear to
o , . . + it more closely the experimental data for the smaller values of
modified modulusE;, should be introduced according to therne shapes of the deformed free surfaces are shown to be para-
formula bolic only for large values 08§, and it is confirmed therefore that
1 1 1 for small values ofS the previously used assumption of a para-
TTE + K (3) bolic profile is indeed invalid.
a a The analyses of Sections 2 to 5 incorporate the effects of bulk
compressibility using the principle of superposition for two load-
ME?:zTSggLEdE%m:EAFe’;%?d mgg;g:\CiSnEELV;SAOQMOS‘;SFZANEECOAFNAﬁf:E;Y'\A%F ing situations. The total axial deflection of the loaded block and
CHANICS. Manuscript receivercjl by the ASME Applied Mechanics Division, Octobthe ?tress dlsmbu“on within it are evaluated’ in addition to pre__
30, 2001; final revision, May 22, 2002. Associate Editor: E. Arruda. Discussion d#€Nting expressions for the apparent Young's modulus, the modi-
e A 50 o) SNt B O B Tecemler o vy oo stk 1 Seion S
° - in rectangular or circular cross sections. Finally, in Section 6,
E,irrb ﬁ:ﬁ;nhss 1';::, ﬁﬁg,rﬁa}cagg9;131%5&:,?8} itir;?f inv‘;',!le ,{’SBM;};C@EFS}F “"dome numerical results are displayed and discussed. Interesting
APPLIED MECHANICS. comparisons are made particularly with the recent experimental
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F =h being displaced a distana#,. Then, in Case B, the same
block is loaded on its lateral surfaces alone with a compressive
stress equal and opposite to that in Case A. Treating the rubber as
incompressible, this applied loading axially extends the block by a

d distancedg . By superposition the total displaced distandgjs
A then given byd,+dg, with the effects of the lateral loadings
canceling out.

3 Case A: Axial End Load With Undistorted Lateral
h Surfaces

Suppose that the block of uniform cross-sectional aheis
subjected to bulk dilation by an axial tensile loaapplied on the
plane end face=h with the lateral faces restrained to remain
undistorted and parallel to theaxis by tensile stresses of magni-
Fig. 1 Cross section of the block through the ~ y=0 plane: un-  tude o applied normally to these faces.
deformed (dashed ), deformed (solid) The magnitude of the imposed axial stresiA and, with
o =F/A, the block material is everywhere in a state of hydro-
static tensile stress, whose magnitudejs given by

Iz

0 x

I/

measurements of Mott and Rolafl, and a finite element analy- F
sis of the stress distribution of laminated elastomeric bearings by o=0 =—. 4)
Imbimbo and De Luc49]. A
The bulk dilation,séV, is given by
2 Formulation &N OF
Consider a right-prismatic rubber block of axial heighand vV~ AK (5)

uniform cross-sectional are&a Relative to an origirO, a rectan-

gular Cartesian coordinate systéRyy, 2) is established wittDz Where K is the bulk modulus of the rubber. Since the cross-
along the axis of the block, and its plane endszat0 andz sectional area remains unchanged during the distortion and the

=h, as depicted in Fig. 1. end of the block az=0 is fixed, the resulting deflection, , of
It is assumed throughout that the rubber is homogeneous dh8 end az=h is given by

isotropic, and that during the subsequent deformations the dis- Fh

placement gradients are sufficiently small for the classical linear dA:R' (6)

theory of elasticity to be applicableee, for example, Sokolnikoff

[10], Spencef11], or Hunter[12]). The rubber is bonded to rigid  The consequences of the Case B loadings are now analyzed in

end plates az=0 andz=h which prevent all distortions of its detail; first when the block has a long, thin rectangular cross sec-

end surfaces. tion and then secondly when it has a circular cross section.
Suppose the end=0 of the block is held in a fixed position

and the other endz=h, is subjected to a load of constant magz  B|ock of Long, Thin Rectangular Cross Section

nitudeF along thez-axis, which causes it to extend or compress a

distanced. The force-free lateral surfaces will be drawn inwards if 4.1 Case B: Loaded Lateral Surfaces. Now consider an

the loading is tensile, as illustrated in Fig. 1, but will bulge outincompressible block of rectangular cross section of whi#nd

wards under compressive loading. The resulting displacementésgth | with I>b, bounded by the planex==*=b/2 and

calculated here by the superposition of the displacements arisiyyg =1/2. In the literature, this is often called an “infinitely long

in two separate specified loading situations, as represented dictangular block.” Suppose that it is subjected only to lateral

grammatically in Fig. 2. loading on the facesx==*=b/2 by a normal stress
First, in Case A the block is subject to an axial tensile load and o (= —F/A), which is equal and opposite to that in Case A.

at the same time the lateral surfaces are prevented from distortindRelative to the rectangular Cartesian axes, the displacement

by the application of a tensile stress of magnitude The slight components at a poift=(x,y,z) are denoted by, v, andw, the

bulk distortion creates an extension of the block with the facestrain components by, , &,,, €,;, &xy, &xz, andey,, and the

i
t 1

)

]
J_J___L__L__{l(_)

T

1\

AR IR

1
1

S

Fig. 2 Superposition of Cases A and B
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stress components by,,, oyy, 0,7, 0y, Oy, anday, in the d3w  48dw 36F
usual notation. For small strains, the assumption of incompress- — o= . (29)
ibility implies that dZ b? dz EAR?

Its general solution can be written as
exxteyyt £,,=0 (7 9

3Fz

and that w=c4 coshaz+c, sinhaz+ —— +c3, (20)
4EA

1 E
V=5 BTG ®)  with ¢y, C,, andcs being arbitrary constants, and

with v, 4, andE denoting the Poisson’s ratio, shear modulus and 5 48

Young’s modulus of the rubber, respectively. The constitutive a =2 (21)

equations relating the stress and strain components then become

The constantg,, c,, andcs can be determined to fulfill the
boundary conditions imposed at the two ends of the block. Since
the block is assumed to be bonded to rigid end plaies) atz
=0 andz=h for all x, and hence, from Ed14),

1

Exx E

1
o EWTE

1
Oyy— E(Uxx+ T27)

Oxx™ 5 (O'yy+ )

)

1
8zz:E Uzz_z(o'xx+0'yy) ) ) dw
EZO at z=0 and z=h. (22)
3 3
8xy=E0'xyv szzﬁng SyZZEUyz: (10) Also,
and the equilibrium equation which must be fulfilled in the w=0 atz=0, (23)
x-direction is
since the end ar=0 is regarded as fixed. When the general
5Uxx+ 30xy+ sz_o 11 solution (20) is subjected to the condition®2) and (23) it is
Tox oy a9z (1) found that the required solution can be written as
The block is of very large extent in thedirection and it is . az a
supposed that each rectangular plareconstant within the block 3F 2S|nh7 cosi{g(h—z)
remains plane and rectangular during the deformation. w= 1EA 7— " —h . (24)
Therefore cosh7
Ju  ow  Iw
v=0, — =0 (12)

The magnitude of the axial displacemedt,, of the end of the

Frinbe vl v
Y Y block atz=h being sought is thus given by

and it follows from the incompressibility conditiof) that

u dw o 2 o 25
T (13) 5=2EA 1T an @My - (25)
X dz
By symmetry,u=0 atx=0 for all values ofz, and hence 4.2 Apparent Young's Modulus and Deformed Profile.
The apparent Young’s modulus can now be determined. By super-
_ dw 14 position of the displacemen(6) and(25) obtained above in Cases
u=-X4- (14) A and B, the axial end deflectiat=d,+ dg of the block when it

i _is subjected only to the axial lod€ is given by
Representations for the nonzero stress components at anyRoint

within the rubber can now be derived in termswfand its de- Fh| 3 2 ah| 1
rivatives. Using Eqs(9), (10), and(14) yields d=—+ 17| 1~ gptanh= |+ |- (26)
2
Tov= ot 2E dw P 4E dw To= — Exd_w Adopting the notation of Gent and Lindl¢¥], this can be written
vy 3 dz? T 3 dz! = 3°d i « ' p!
(15) in terms of the “apparent Young’s modulusi?;, as
and the equilibrium Eq(11) reduces to d= ﬂ 27)
AE.’
doy, E dw a
x  3X4E (16)  Recalling Eq.(21) yields the representation
Integrating Eq.(16), and applying the boundary condition that 1 3 S 3\ 1
oxx=—FIA whenx==b/2, and substituting into Eq15), re- T aE 1- ‘/—itanhg T (28)
sults in a
El dw 1/Db?2 d*wl F where, for a block of rectangular cross section in which the length
O==|b—— = | X | == |— —. (17) is much greater than the width, the shape fa8tisrapproximately
3| 7dz 2\4 dz| A given by
In this loading case there is no imposed force in ztukrection
per unit length in the/-direction and so S= E (29)
2h’
b/2
f_blz‘fzzdxzo' (18)  \When the material of the block is incompressible={ ), it fol-

lows from Eq.(28), or by comparison with Eq(3), that the ap-
which, upon evaluation using E(L7), gives the differential equa- parent Young’s modulus;,, for a block of incompressible rubber
tion governingw as can be calculated exactly from the compact relationship
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Table 1 Percentage errors in using approximations for E,

S 0.4 0.8 1.2 1.6 2.0 2.4 2.8
Error in E, using 10.78 9.78 7.19 5.16 3.77 2.83 2.19
relation(1), %
Error in E, using —4.60 -1.22 -0.41 -0.17 —-0.08 —-0.04 —-0.02

relation (32), %

E.= 4E (30) sinr{a(z h”
: s, 3| poorex LV 2] (34)
3| 1- —tanh— X7 4A ah '
V3 S cosh—-

Numerical values o, andE, can be easily derived from Egs. ) .
(28) and (30) with modern software. However, it is interesting to! N€ir maximum values occur on the bonded eaesO andz

cite even more readily accessible elementary estim&g¥P™ =h, where

and EZPP™, which can be deduced for them. 3F 4x2 Fax ah
By expanding the hyperbolic tangent using the series represen- Oxx= Oyy= T2z= 50 ( 1- F) Ozx~ Iﬁtanh7.
tation given by Abramowitz and Steg{ih3], Eq. (4.5.64, it can (35)
be shown that the relatiori28) and(30) are approximated by
1 3 1 5 Circular Block
E PPN 4E(1.2+S) K’ (1) 5.1 Case B: Loaded Lateral Surface. A similar analysis
4E can be applied to study an incompressible block of circular cross
E2PPOX= "~ (1 24 S?). (32) section of radius, with the cylindrical polar coordinates (0,2)
é 3 of a pointP related to its rectangular Cartesian coordinates by

These are of the same form as, but are more accurate than,lﬁ{ecolsla' y=rsin 0,hz=z.fSuppose that it :S subjected only to
relationships given by Eqg$1) and (3) which were proposed by at%]a dqadllng on tte sur a“e:"’t‘ Eg’aa rgdla tst(;egs— oL- g
Gent and Lindley[1]. For exampleE3PP" approximates increas- € displacement componentsraare denoted by, , Uy, an

) u,, and the strain and stress componentgpyanda;; , wherei,

ingly more closely to the exact.r'epresentat(eﬁ) for values ofS. j=r, @orz with the corresponding constitutive equ]ations relating

greater than about 0.23. Specifically, the perciantage errors in H‘?ém. The loading is axisymmetrical and plane cross sections nor-

ing Eqs.(1) and(32), rather than Eq30), whenS=0.4 are 10.8% mal to thez-axis are assumed to remain plane. Therefore

and —4.6%, respectively, while whe®=2 the corresponding er- ’ '

rors are 3.8% and-0.1%. Further values are presented in Table 1. u,  du, du,
Most of the analyses in previous papers have been founded on uy,=0, 9090 (7_r:O' (36)

the assumption that the unloaded lateral surfaces will deform to

have parabolic profiles. However, it follows from Eq44) and The incompressibility condition implies that

(24) that in fact

e tegytey =0, (37)
az o
3Fx sinh7 sink{E(h—z)} and the equilibrium equation which must hold in the radial direc-
U= — (33) tion ([11], Eq. (11.39) is
2EA ah '
cosh— doy  d0oy
2 Oy — 0ot T or +r 0 =0. (38)
which whenx= *=b/2 gives an expression for the exact deformed
shapes of the free edges of the block. It follows from Egs.(36) and(37) that
4.3 Stresses. The stress components created within the J du,
block by the application of the loald alone can be calculated by o (tu)=—r-4-, (39)
the superposition of those in Cases A and B. These are derived
explicitly from Egs.(4), (17), (24), and(15) as and hence, sinca,=0 atr=0 for all values ofz,
3 h _rduy,
3F a2 coshal z > u,=-— >4z (40)
ToTAl T T 2] ah - :
cosh— The nonzero stress components within the block can now be writ-
2 ten in terms ofu, and its derivatives. Equatiof@0) and the con-

stitutive equations yield

i 1T
coshalz— = 2
F|]1 [6x? ( 2) _ _ du, __E d%,
Uyy:K Ei(Fil)-—ah ’ T =040, Uzz_Urr+EEr Uzr__grﬁ (41)
coshz | and the equilibrium Eq(38) gives
f> h\ 1) do, E d®u, 5
F ox2 1) %N *\? or 6 dF (42)
T2} T e 2 ah ’ ; -
cosh— Imposing the boundary condition that, = —F/A whenr=a on
2 ) the integral of Eq(42) and substituting into Eq41), yields
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Table 2 Percentage errors in using approximations for E,

S 0.4 0.8 1.2 1.6 2.0 2.4 2.8
Error in E, using 10.92 7.61 4.77 3.11 2.15 1.56 1.18
relation(2), %
Error in E, using —2.57 —0.50 —-0.14 —0.05 —0.02 —0.01 —0.01
relation (56), %
u, , . du, E
v BT @ gE | T A (43) Ea= . (54)
2 1 /3
However, as there is no externally applied axial force, 1- S\/;tanhg \[E
a
fo o, 4dr=0, (44)  Gent and Lindley[1] presented the expressio(® and (3) for

which leads to the governing differential equation €gras

du, 24du, 24F

97 a2 dz EAZ (45)

E, andE/ . However, the series expansions of EG#l) and(52)
yield refined approximation&3PP* and E PP, for them. It is
found that the resulté52) and (54) are closely approximated by

1 1 1

Since the rubber is bonded to rigid end plates:z0 atz=0 E,2PPOX E(1.2+2S%) * K’ (55)
andz=h for all r, and thus, from Eq(40)
du, ESPPO=E(1.2+25%). (56)
—=0 atz=0 andz=h. (46) ) ) )
dz The relation(56), for example, provides a better estimate to the
—0ic fi exact representatiofb4) than that given by Gent and Lindley for
Moreover the end a=0 is fixed, so values ogS greate:)(rf?\azn about 0%6. Cor¥1parative values ¥or the
u,=0 atz=0. (47) percentage errors in using E6) as opposed t¢2) for evaluat-

The solution of Eq.(45) which satisfies the condition@6) and
(47) can be written as

ing E,, which is given exactly by the relatiof®4), are displayed
in Table 2.
It follows from Egs.(40) and(48) that

sinhE cos%g(hz) Bz B
L R us) e, s s 2 (h-o)
° EA B Bh ' U=—— (57)
cosh7 ' EA sh
cosh7
where
24 Obviously, the deformed profile of the curved outer surface of
B=—. (49) the block can then be deduced by puttinga. This has previ-
a

The distancedg, through which the end of the block z&h is
displaced is therefore given by

d—Fh(l 2 hBh
B—E—A —%tan 7 .

5.2 Apparent Young’s Modulus and Deformed Profile.

(50)

ously been assumed to be parabolic. However, it is shown in Sec-
tion 6 that this is only appropriate for large valuesSf

5.3 Stresses. By superposition of those in Cases A and B,
the stress components within the block that are created by the
applied loadF alone can be determined from E@8), (40), (48),
and(41) in the forms

Representations for the apparent Young’s modulus can now be

determined analogously to those for the rectangular block above. 2F
By superposition of the distancé8) and (50), the axial end de- Trr =000~ 7~ 1- a2 Bh '
flectiond of the circular block when subjected to the axial Idad cosh7
is
_Fhi1 . 2 h,Bh 1 51 h
—TE —ﬁtan7+ﬁ. ( ) E 212 COSBZ_E
. . . UZZ:_ 1+ l_ a2 ah 1
Equations(27) and(49) then yield the representation A Bh
cosh7
EE 3PS V)i (52) h
. . i sinr{ﬁ( z— —) }
where, for a block of circular cross section, the shape fastisr FpBr 2
Oyy= ——————— . (58)
a 6A h'B—h
S= oh (53) cos 5

The apparent Young’s modulus, , for a circular block of incom- Their maximum values occur on the bonded emzesO andz
pressible rubber can consequently be written as =h, where
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r FBr Bh parabolic profile. This is indeed confirmed by comparing the val-
1->
a

, UrzziﬁtanhT- ues of E] given exactly by the representatid62) with those,
(59) Ea®Y, calculated from Eq(3) using the Gent and Lindley ap-

It is also interesting to note that at the central cross section, Wh@;gxmatlon Eg ) of Eq. (2). The realistic data used here_ dre
z=h/2, 0,,=0 and as the heigtt of the block becomes large =19 kg/cnt andK = 10" kg/cn?, as adopted by Gent and Lindley
0 =0 yy—0 ando,,—F/A, indicating a uniform stress. [1]. The values using E¢52) are found to be significantly greater
than those using the approximati(®) for values ofSless than 2.
. . They are presented in Fig. 5 when plotted on a logarithmic scale
6 Numerical Results and Conclusions for direct comparison with Fig. 1 of Gent and LindI¢Y]. It is

There is clearly a close similarity between the techniques aadsumed throughout that blocks of small shape factor do not ex-
analyses presented in Sections 4 and 5. However, in this sectj@tience instability when in compression.
the discussion is concentrated on the implications of the circular
block results for easy comparison with the available experimental
and finite element approach investigations.

The deformed profiles of the curved lateral sides of circula 19
blocks are given precisely by E¢67) whenr=a. But it is con-
venient to introduce the non-dimensionalized fractional radial dis
placement component of the free surface per unit axial strai,
u,/ae, as a suitable measure for the comparison of the profiles «
blocks having various shape factors. Here the fractional radi
displacement component of the free surface at a haighti,/a
with u,=u, evaluated at =a, ande=d/h is a measure of the
axial strain. Recalling Eq€57), (51), (49), and(53) leads to the
representation, in terms of the shape fa&or

®Jeosf £ 2] s Zsnd 2 )

1+ —

As expected, the values of,/ae are clearly symmetrical about
z/h=0.5. The multiplicative negative sign indicates that for a ten
sile load the profile will be waisted inwards. However, for a com-
pressive load it will analogously bulge outwards.

Graphs of—u,/ae as a function ofz/h are presented in Figs.
3(a) and 3b) for a range of values dwith E/K having the value 0
19x10 . Its maximum value is found to occur on the central (@
cross-sectional plane=h/2 whenS~1.6. It is obvious that the
graphs whenS=0.1 andS=0.2 cannot be approximated at all 1.0 4
reasonably by parabolic curves. Careful analysis, in fact, shov
that the accuracy of fit between the graphs and the exact parabc
curves drawn through the poirgs=0, z=h and the apices of the .
graphs increases & increases. Comparisons of these are dis
played in Figs. éa) and 4b) for illustration whenS=0.1 andS
=1.6

O =009~ 0z7—

2F
A

ae

Gent and Lindley{1], and other authors, derived relations for
the apparent Young’s modulus based upon the assumption of
parabolic profile. It was found experimentally, however, by Motl
and Roland 8] that slender rubber circular cylindefwith S be-
tween about 0.11 and 0.2@ssume a much flatter profile. A com-
parison of the Gent and Lindley prediction with the experimentz 95 7
results is given by Mott and Roland in their Fig. 2, and they
conclude that “the assumption of a parabolic profile is errone
ous.” There is a striking resemblance between the flattish curve
in Fig. 3(a) here and the pattern of their experimental values. Thu
the analysis of Section 5 and the graphs presented therein dem:
strate theoretically for the first time that it is indeed not adequat
for small values ofS to assume parabolic profiles for circular
blocks. The assumption can be shown to be similarly invalid fo
rectangular blocks from the results of Section 4.

Gent and Lindley{1] (Fig. 1) compared their predicted values
of the apparent Young’s modquE;(G"), as given by Eqgs(2) o 4
and (3), for a circular block in compression with experimental 0 03 06
measurements. They observed that for the smaller valugstbé
measured values dE, are seen to fall somewhat below those
predicted.” Bearing in mind the above discussion, it is reasonaligy. 3 Comparison of the deformed profiles  (a) when S=0.1,
to presume that this discrepancy is due to the assumption 0b.2, 0.4, 0.8 and 1.6 (b) when S=1.6, 3.2, 6.4, 12.8 and 25.6

) u, Jae
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Fig. 5 Comparison of the exact values of  E_ with the approxi-
mate values E.°Y as S varies
0 = T 1
0 -0.3 -0.6
(@ u,/ae
1.0 1
Ao,
F
zfh
parabola exact
0.5 4 Y U
0.5 1.0
rla
Fig. 6 Variation of Ao,,/F with r/a at the mid-height section
z/h
0 ¥ L
0 -03 -0.6
) u,/ae

Fig. 4 Comparison of the deformed profiles with parabolic
curves (a) when S=0.1 (b) when S=1.6

Imbimbo and De Luc49] provided a comparison of the influ-
ence of varying the shape factor upon the stress distribution within
a circular block between a finite element model and one based
upon the approximatiof2) of Gent and Lindley{1]. They con-
cluded that the approximate solution only “gives a satisfactory
estimation for defining all the stress distributions within the de-
vice” for values of S>20. Particular emphasis is given to study-
ing the normal stresses in the central rubber layer and at the
rubber-steel interfaces in their Figs. 4 and 8. The corresponding
graphs of the nondimensional normal stresees/(F/A) at z
=h/2 andz=0 or z=h plotted against/a can readily be drawn
using the exact representatiof®3) and (59) in Section 5 for a
range of values oS
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0.5 + 15 -

Fig. 9 Variation of o, with r/a at the bonded ends
0 0.5 1.0
4o, /F

Fig. 8 Variation of Ao ,,/F with z/h at r/a=0.9 of Imbimbo and De Lucd9], (Figs. 11 and 1 It should, of
course, be pointed out here that the theoretically predicted maxi-
mum values of the shear stress occurring at the force-free outer

At the bonded ends, the variation ®o,,/F (=Ac, /F lateral surface cannot physically exist, and must actually decay
=Aoc,,/F) with r/a is given by the parabolic curve (59) This, rapidly to zero very near to this surface. They arise as a conse-
in fact, is clearly independent of the shape fac®ralthough duence of assuming that, during axial strain, plane sections of the
Imbimbo and De Luc#9] (Figs. 58 apparently failed to realize Plock remain plane. This cannot be valid at the free outer surfaces.

this in presenting their virtually identical graphs.
The variation ofAc,,/F with r/a at the mid-height sectiom References
=h/2 is illustrated in Fig. 6, using Eq. (58Jor S:O':.I" 1.0,6.25 [1] Gent, A. N., and Lindley, P. B., 1959, “The Compression of Bonded Rubber
and 30. For larger values & (as presented by Imbimbo and De Blocks,” Proc. Inst. Mech. Eng173 pp. 111-122.
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Introduction point. BothK; and\ depend on the elastic and thermal properties
Particulate composites, consisting of particles of one or mo { the materials and on the joint geometry. In addititp depends

materials imbedded in a matrix of another material, are used for(?1 the magnitude of the applied load. The solutiorhadnd the
! Siibration forK; for a wide range of bimaterial joint geometries

wide range of engineering applications. In civil engineering, fof_. tin the literature[1—5]). The magnitude o is obtained from

; o i

th:rlg?é?élan%g:/ee%ﬁ;}bg?meﬂv\?:mgr?j't:s';#ﬁ:%gtgﬁ?mﬁ;o ﬁ{eeasymptotic analysis of the elastic problem while the free-edge
o ignway 9 : ggregyy ensity factorK; is determined either by matching the theoreti-

composite is widely used in building and construction. The use QL solution to the finite element solutigf8]) or using a combi-

D e porace, mount technoloBho of e clement soluton and @ contour ntegfac).
g gly pop ’ In contrast to the detailed discussion in the literature on the

IS ﬁ]n;? (E Ss é‘ Igteclii cY:ttigr? Spogr)]/ dr?;nnmft?n:r“sth tLL:es?rﬂ;"rliia'of the ic_haracteristics of the stress singularity at the free-edge of various
PP ! Y ' grty imaterial joint geometries, the analysis of the stress distribution

terfaces between the inclusion and the matrix material is para- . . : h . . :
mount to the performance of the product. The debonding of ﬂféear the interface junctions of inclusions imbedded in another

- . aterial is relatively nonexistence in the literature. Chen and Nisi-
aggregates from the b|tumgn matrix, for example, r_educes the t i [7] have used the body force method to determine the stress
sile strength of the composite and can lead to the ingress of w

and a further acceleration of the failure because of the freezi Eld near the interface Junction of an inclusion embedded in an

and thawina of the condensed moisture. Similarly. debondin inite plate, and subjected to a wide range of remote mechanical

: g . : arly, de 9 4 ding; including uniaxial tension, in-plane shear, and biaxial
the microchip-encapsulant interface can cause immediate or Iml%rﬁsion The stress field was expressed as a sum of two deforma-
mittent electrical failure and can have negative effect on the Ionﬁc-) : P

term performance of the microchip by providing a site for th n modes, one of which is symmetric and the other skew-
P ; A p by p 9 %ymmetric about a line bisecting the inclusion wedge angle. Chen
collection of moisture and ionic contaminants.

The mismatch in the elastic and thermal properties of an incland Nisitani[7] considered only the stress field associated with

sion and a matrix mav lead to the development of stress sin ulHi(_a smallest eigenvalue; higher-order terms and the stress field
y P 9 §gsociated with temperature change were not considered. Pahn

ity at_the corners of nonsphe_roid inclu_sions embedded in_ an elag fa Earmmé8] have recently examined the stress field near the
matrix. The corners are the intersection of two or more 'nterfacﬁﬁerface junction of a partially debonded inclusion within a brittle

between an inclusion and the matrix, hereafter referred tm-as . . o .
terface junctionsThe debonding of the inclusions from the matrixg]neg”éi e'zﬁl[lgi’v n;%hann :r[\)c?rgg(r:gn(ig]lngg{efr;?ﬁggetieb{ Qé'lf_?igya
IS a combined gﬁect of thg stress smgullar.lty at th_e interface UNress intensity factors as a function of the intensity of the singu-
tions and relatively low inclusion/matrix interfacial strength. Aiarit at the junction. More recently, Reedy and GuEES| have
detailed characterization of the stress field near the junctionsalﬁa?/yzed thje stress- field near thglinterfa)(/:e junction of a square
needed to unders_,tar_ld_the role of ma_1ter|_al properties and 'nCwSWé]d inclusion embedded within an epoxy resin and subjected to
geometry on the initiation of debonding in particulate composites,, axisymmetric loading. The solution presented by Reedy and
e e o Sless 10] s appcabie, fo example. o lasc ncapsulated

) BN R . crocircuits where the matrix is more compliant than the inclusion.
traction-free surfageof bimaterial joints has been examined b

; YHowever, the assumption of a rigid inclusion may not be appro-
various authors, see for example,_Réib.—4]. n f‘la_qy cases, the priate for cases where the stiffness of the inclusion is of the same
stress field at a traction-free edge is of the fatm" ~*, whereK;

; ) . ; der of itud that of th trix.
is the free-edge stress intensity factor,«(1) is the order of the order of magnitude as That of Ie marix

" inaularit d is th dial dist ; the sinaul In this paper we investigate the stress distribution at the inter-
Stress singularity and 1S the radial distance from the singular,ce junction of an elastic inclusion embedded in an elastic matrix

and subjected to both mechanical and thermal loadhig 1(a)).
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Ba= 3, KP4 S, KO 4oy
p= q=

N M
— S,
w3, KPP+ S KOGty @
p= q=

@ where k,1)=(r,6), o, is the eigenvalue of the symmetric stress

field with a corresponding interface-junction stress intensity factor
K}p) , andd, is the eigenvalue of the skew-symmetric stress field

with interface-junction stress intensity facﬂéfq) . Note that sub-
scriptj denotegunctior this distinguishes the interface-junction
stress intensity factor from the free-edge stress intensity f&gtor
for characterizing the singularity where an interface intersects a
traction-free surfacefy’, (9, g{P’, and g{® are nondimen-
sional functions of material properties, polar coordina@t@nd
wedge angley, while parametersN and M are the number of
eigenvalues associated with the modes | and Il fields, respectively.
The full expressions for these functions are given in the Appendix.
The eigenvaluesé (q=1M) is always real while w,(p
=1,N) may be complex depending on the wedge angénd the
material properties. Howeverp, is real when g(a—g8)>0,

Material 1

Interface

Interface
Material 2

(b) wherea and g are the Dundur§l2] elastic mismatch parameters
defined in Eq(14). The stress field in Eq1) is only applicable to
Fig. 1 (a) A quadrilateral elastic inclusion embedded in a material combinations with real eigenvalues, and this is the focus
brittle matrix; (b) a magnified view of interface junction R, of the present study. The stress field is singular wher<@p
showing the local coordinates <1 for the symmetric field(or 0.5<5,<1 for the skew-

symmetric field and nonsingular whew,>1 (or §,>1). In ad-
dition to the stress field associated with each eigenvalue, it is

extrapolation method 10]). The consideration of thermal |oading_possible to have a nonsingular constant stress near the interface
and higher-order terms for a wide range of inclusion/matrix propdnction depending on the inclusion geometry and the mismatch
erties will fill the gap that presently exists in the analysis of thi the thermal properties of the materials. The nonsingular con-
stress field near interface junctions. Although the integral meth§&nt stress field and the corresponding displacement are denoted,
has been used in the past to evaluate the free-edge stress intefi@ftpectively, byoy, and uy, in Eq. (1). These terms are zero
factors ([6,9,11), a different methodology is needed for thewhen the two-phase material is subjected only to remote mechani-
method to be applied to the analysis of stress singularity at int&@! l0ading and finite when subjected to a uniform change in tem-
face junctions because the stress distribution at an interface juRgrature.

tion is different from that near a free-edge. For a wedge a_ngle/:O anq inclusion shear modulys,; =0
and Poisson'’s ratie; =0, the eigenvalues are, = §,=0.5. Con-

. . sequently, Eq(1) reduces to the conventional mixed-mode crack-
Asymptotic Solution tip fields for a crack in a monolithic material.
A schematic diagram of an inclusion embedded in another ma-The interface-junction stress intensity factmg’) and KJ(Q) (p
terial is shown in Fig. (a). For simplicity the inclusion is as- =1N; q=1,M) are the only unknown parameters in Eq).
sumed to have a quadrilateral cross section and the wedge anglgash of these intensity factors is defined such that the tangential
the interface junction of interest is denoted fyBoth the inclu-  stress associated with a particular eigenvalue is given by
sion and the matrix material are assumed to be elastic, isotropic
and homogeneous, and the two materials are perfectly bonded.
When the composité.e., inclusion and matrix materjals sub- olfy=K{Pres™1  (at 9=0 for the mode | field (2a)
jected to a remote mechanical loading and/or a uniform change in
temperature, a stress singularity may develop at each of the inter-
face junctions of the inclusion depending on the relative proper- aﬂ,‘}}zK}‘”rf’q‘l (at =0 for the mode Il field. (2b)
ties of the materials.
A magnified view of one of the interface junctions, labeled R, is
shown in Fig. 1b). Plane polar coordinate systedm 6) centred at Note that the interfaces which form the inclusion wedge of inter-
interface junction R is used to describe the local stresses agmt are alongg=0 and #=, where y is the inclusion wedge
displacements. The region<0¥< vy is occupied by the inclusion angle. The definition in Eq2) is different from that used by Chen
(material 2 while the regiony< #< 2 is occupied by the matrix and Nisitani 7] and by Reedy and Guegk0], where the intensity
(material 2. Plane-strain conditions are assumed in the analysfactors are defined relative to the tangential stress along the plane
however, the equivalent plane stress solution can be obtained frtmat bisects the inclusion wedge angle. The magnitude of the
the results presented in this paper by making appropriate subsiierface-junction stress intensity factors depends on the inclusion
tution for the modulus and the Poisson’s ratio. wedge angley, elastic and thermal properties of the inclusion and
It is shown in the Appendix that when the geometry of thenatrix, and on the magnitude of the applied loading. The full
two-phase material is symmetric about the plafve y/2, the description of the stress field in the vicinity of an interface junc-
stresses and displacements near junction R can be decoupled fiisio requires knowledge of both the eigenvalues and the associ-
symmetric(mode ) and skew-symmetriémode I) components. ated intensity factors. In addition, the onset of failure at a junction
For a wide range of material combinations, these stresses amash be predicted based on a critical value of the intensity factor at
displacements are given by the interface junctiori[13,14).
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(5)
wherew; = — w,, for the evaluation of the intensity factétt of

the symmetric field with eigenvalue, . The integrals in Eq(5)
have the following characteristics:

Material 2

Fig. 2 Aclosed integration path 3 around interface junction R

e 0 of#—w,
§ ol iaeao=| |
3 p W = wp
Evaluation of the Interface Junction Stress Intensity i[ffjﬁ)g(k”*—f{j|>*g<k‘“]d0:o (6a)

Factors

The interface-junction stress intensity factor associated inHhere
each of the eigenvalues is determined using a combination of a N N
path-independent contour integral and the finite element solution. L= jg LA gl — i i 1d 6. (6b)
This method has been applied in the past to bonded joint geom- >
etries with single eigenvalug4]). The stresses in the vicinity of Hence, Eq(5) can be rewritten as
the interface junction of the two-phase material under consider-
ation are not just singular with higher-order terms; they are also _ _ P* _ (P*/y,
mixed-mode, consisting of symmetric and skew-symmetric fields. Hwp)= il(ak' Tl ki (U Uo) IMids - (78)
A summary of how the path-independent integral approach can be
used to evaluate the interface-junction stress intensity factor in :LpK}p)K}p)* (7b)
such situation is given below. . . .
In order to evaluate the interface-junction stress intensity fact$’€re the nonsingular constant stresg, and the associated dis-
K](p) associated with an eigenvalue, for the symmetric field, placemenu,, are subtracted from the corresponding total values

consider an integral around a paihenclosing the interface junc- nelarl]r é?gelrnigr;ictgrjrﬁpncél?r?e. interface-junction stress intensity fac-
tion, as shown in Fig. 2, ] Yy

tor K{P) associated with any eigenvalue, for the symmetric
field, the integral , in Eq. (6b) is first evaluated using the closed-
. « form expressions given in the Appendix ftff) andg{” , and the
lwp)= P [oqu?” — o ulnds. 3) i iliary fi i i ;
p s K1Yk ki- Hkd Mk corresponding auxiliary fields. The integral in Eqa) is then
evaluated along a chosen integration path usinghe finite ele-
ment solution of ¢, ,u,) for the particular inclusion geometry,

Here, ,1)=(r,6) are the plane polar coordinates centred at th@) the auxiliary fields ¢ ,u(") given in Eq.(4) with the

interface junction R of interestpf, ,u,) are the total stresses andintensity factorKJ(p)*= 1L, and(iii) the magnitude ofr, and

displacements given in Eql), (o{P" ,u{P") are auxiliary stress u,, determined from the closed-form expressions given in the
and displacement fields associated with the eigenvalyien, is  Appendix. The definition in Eq(7a) ensures that the resulting
the outward unit normal t&, anddsis an infinitesimal line seg- value of the integral give& (P .
ment ofX. ) ) ) ) The process is repeated for each of tesigenvaluesw,(p
It is known from the asymptotic analysis described in the Ap=1 N) of the symmetric field to obtain the corresponding stress
pendix that ifw, is an eigenvalue for given material propertiesntensity factor, and for each of thé eigenvaluess, (q=1M) of
and inclusion wedge angle thereby satisfying the characteristicthe skew-symmetric field to obtain the corresponding intensity
Eq. (12, wp (= —wp) also satisfies the same characteristic equgactor. In the evaluation of the intensity factors for the skew-
tion for the same material properties and angleHence, the symmetric field, the parameters associated with the symmetric
stress and displacement fields associated wgmre used as the field in Eq. (3) to Eq. (7) are replaced with the corresponding
auxiliary fields, and are given by skew-symmetric parameters. This method allows the interface-
junction stress intensity factors for the two modes of deformation
to be evaluated independently irrespective of the number of eigen-
g{(llﬂ* = Kj(p)*r“’;‘lff(ﬁ”* values. Two examples are used in the next section to demonstrate
the capability of the method.

* - .
uP =K (P repgP” (4) Numerical Analysis

The inclusion/matrix geometries considered in this paper are
. . . ) (o)* . . shown in Figs. 3 and 4. Figure 3 shows an elastic square inclusion
The nondlmensmnal fL:nctlorfi‘,’ _andgk” are qbtalned SiM- (wedge angley=90 deg) with a side lengtht2 embedded in a
ply by replacingw, by w; (= —w)) in the expressions for func- pjock of elastic material with altby 4h square cross section; this
tions f(P) andg{P given in the Appendix. is equivalent to 25% inclusion volume fraction. The inclusion in
By substituting Eq(1) and Eq.(4) into Eq.(3), we obtain the second example, Fig(&, has a diamond-shaped cross section
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a /Q ,Q \ Fig. 4 (a) The full geometry of the diamond-shaped inclusion
7 7 7 7 and (b) the half geometry considered in the finite element

(b)

Fig. 3 (a) The full geometry of the square-shaped inclusion
and (b) the quarter geometry considered in the finite element
analysis. The two-phase material is subject to a remote tension

o and a uniform change in temperature

AT.

analysis. The two-phase material is subject to a remote tension
o and a uniform change in temperature  AT.

identical elastic properties. The stress field associated with a par-
ticular eigenvalue is singular when the magnitude of the eigen-
value is less than 1. Whe= a/4, there are at most two power-

and wedge angley=60 deg andy= 120 deg; only the stresseslaw singular stress fields, one symmetric and the other skew-
near the junction withy= 60 deg are examined in this paper. Thé&ymmetric. This is consistent with previous study by Chen and
major diagonal of the inclusion istRlong, and it is embedded in Nisitani [16]. For a square rigid inclusion(=90 dega=1,8

a block of elastic material with & by 2h rectangular cross sec- =a/4) there are two eigenvalues for the symmetric fielg:

tion, see Fig. ). The relative dimensions of the diamond-shaped 0.769 and w,=1.169; and one eigenvalue for the skew-
inclusion and the matrix material are equivalent to 17% inclusiggymmetric field,5; =0.604. The magnitude of the eigenvalue as-

volume fraction.

sociated with the singular symmetric stress fiedd, is in agree-

Two loading conditions are considered: a remote uniaxial tement with that given by Reedy and Gug49)], see Fig. ).

sion o and a uniform temperature changd as shown in Figs.
3(a) and 4a). The remote tensionr is perpendicular to the major
axis of the diamond-shaped inclusion, and at 45 deg to the diago-
nals of the square-shaped inclusion. Because of the symmetry of
the geometry and loading, only a quarter of the square-shaped
inclusion/matrix geometry and half of the diamond-shaped
inclusion/matrix geometry were analyzed, as shown in Fi¢s). 3
and 4h), respectively. The dimension, which is considered as
the characteristic length scale, is takenhas1 unit in the finite
element analysis. The finite element mesh used for both geom-
etries is shown in Fig. 5; it consists of eight-node isoparametric
plane strain elements. The analysis was carried out using
ABAQUS [15] finite element package.

Results and Discussion

The eigenvalues associated with the symmetric and the skew-
symmetric fields are shown in Fig. 6 for the two inclusion geom-
etries. The results in Fig. 6 are shown for Dund[tg] elastic
mismatch parameters 1<a<1 and 8= al/4; « and B are de-
fined in Eq.(14). «=1 when the inclusion is rigid relative to the
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matrix, o= —1 when the inclusion is much more compliant tharFig. 5 The finite element mesh used for the two inclusion ge-
the matrix, anda=0 when the inclusion and the matrix haveometries
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Fig. 6 The eigenvalues for

0.2

both for material elastic mismatch parameters
The eigenvalues , (p=1,2) are associated with the symmetric

stress field while
stress field.

Table 1 The nondimensional constants

(a) the diamond-shaped inclusion,
y=60deg and (b) the square-shaped inclusion,

=90 deg;

a and B=a/4.

6, is associated with the skew-symmetric

Q associated with eigenvalues

Various authors have suggested that the stress field associated
with the smallest eigenvalue dominates the stress near a wedge
tip. This suggestion may sometimes by misleading. We shall show
later for a diamond-shaped inclusion subjected to remote tension
or uniform change in temperature, that the magnitude of the in-
tensity factor associated with the smallest eigenvadye,is very
small and its contribution to the overall stress field can therefore
be neglected. As such, the dominant stress field is that associated

The magnitude of the interface-junction stress intensity factor,
K;, associated with each eigenvalue for the two inclusion geom-
etries under consideration is a function of the elastic mismatch
parameters$a, B), the inclusion wedge angla and the magnitude
of the applied load. Dimensional considerations dictate khdie
related to the inclusion geometry and material properties by

K{P'=0*h"Q,, (.8,7)

K{?=0o*h'"%Q, (a,8,7) (8)
wherec™ is a representative measure of the applied loading,

the characteristic length scale a@dis a dimensionless constant
function of (@, B) and y. Here, ¢* =o for a remote uniaxial
tension of magnituder and o* = o, for a uniform temperature
change, wherer, is a measure of the applied thermal loading
defined in Eq.(37). The magnitude ofQ associated with each
eigenvalue is listed in Table 1 for remote tension and in Table 2
for a uniform change in temperature.

In order to assess the accuracy of the nondimensional constant
Q obtained by the integral method, a comparison is made with the
two studies in open literature on the subject, which contained the
results for some of the material combinations and loading. Chen
and Nisitani 7] have used the body force method to determine the
intensity factor associated with the dominant symmetric stress
field for a diamond-shaped inclusion subjected to remote uniaxial
tension; however, the effects of temperature and higher-order
terms were not considered. Following the definitiorkgfused in
the current study, Eqg2) and (8), the comparison between the
magnitude ofQ,, obtained by Chen and Nisitafir] for remote

wq, w,, and &, for inclusion wedge angles y=60 deg and

y=90 deg when the encapsulated inclusion is subjected to remote uniaxial tension. The corresponding magnitude of each eigen-

value is shown in Fig. 6, and the material parameter B=al4.

Diamond-Shaped Inclusiorn,= 60 deg

Square-Shaped Inclusions 90 deg

a le sz Q51 le Qa)z Q51
—0.99 0.057 0.012 —2.2E-7 0.009 0.012 0.012
-0.8 0.490 —0.020 —2.5E-7 0.106 0.151 0.172
-0.5 0.731 —0.091 —5.8E-7 0.180 0.219 0.318
-0.2 0.844 —0.123 —9.8E-7 0.227 0.243 0.432

0.2 —0.288 1.108 —2.1E-6 0.253 0.268 0.558

0.5 —0.148 0.936 —1.9E-6 0.254 0.286 0.590

0.8 —-0.147 0.950 —7.9E-7 0.251 0.297 0.479

0.99 —0.145 0.955 —1.9E-8 0.248 0.301 0.318

Table 2 The nondimensional constants ~ Q associated with eigenvalues w,, w,, and &, for inclusion wedge angles y=60 deg and

y=90 deg when the encapsulated inclusion is subjected to a uniform temperature change. The corresponding magnitude of each

eigenvalue is shown in Fig. 6, and the material parameter

B=ald.

Diamond-Shaped Inclusiorn,= 60 deg

Square-Shaped Inclusions 90 deg

a le sz Q51 le Qa)z Q§1
—0.99 —0.056 0.045 4.7E-3 —0.019 7.7E-3 4.1E-3
-0.8 —-0.519 —0.054 3.7E-3 —0.263 —0.345 2.7E-3
-0.5 —1.295 —0.197 2.7E-3 —0.709 —0.849 1.9E-3
-0.2 —3.849 -0.723 1.9E-3 —2.235 —2.383 1.3E-3

0.2 0.913 4.266 1.1E-3 2.425 2.878 4.8E-4

0.5 0.395 1.777 —3.5E-4 1.008 1.1261 3.7E-4

0.8 0.255 1.141 —2.6E-3 0.624 0.730 —1.9E-4

0.99 0.206 0.935 —-1.2E-3 0.499 0.599 —1.7E-4
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Fig. 7 Comparison between the nondimensional constant Qu,

obtained in the present analysis using the integral method and

that obtained by the body force method ([7], for a diamond- Tpg
shaped inclusion subjected to remote uniaxial tension. The ma- o
terial parameter B=al/4.

uniaxial tension and in the current analysis is shown in Fig. 7,
there is good agreement between the two results.

Reedy and Guedd 0] have analyzed a square rigid inclusion
subjected to a uniform change in temperature. The intensity factor
associated with the smallest eigenvalue for the symmetric field . ‘ , , ,
was determined by matching the finite element and asymptotic '10 60 120 180 240 300 360
solutions in the vicinity of the interface junction. Using the same ¢ (Degree)
definition for K; as in the current paper, Reedy and Gue<y
result gives a value dDw1:O.594 fora=1 andB=0.325. Using Fig. 8 The comparison between the asymptotic solution

the integral method, a value @,, =0.528 was obtained for the (dashed-dashed line ) and finite element prediction  (solid line )

. . . -~ ... . 0Of oy near interface junction R for the diamond-shaped inclu-
same loading and material properties=<(1,8=0.325); this is gjon subjected to a remote uniaxial tension @ () r=0.003h and

11% lower than that obtained by Reedy and GUéss. (b) r=0.06h; where r is the radial distance from the interface
The difference between the two values@f, is attributed to junction and h is half the major diagonal of the inclusion. The
the different inclusion volume fraction in the two analyses. Thelastic mismatch parameters are  @=0.5 and B=a/4.
inclusion volume fraction considered by Reedy and GUéa€s
was 2.5% and it is 25% in the present analysis. The results of the
intensity factor forunbondedsquare rigid inclusior{10]) show as shown in Fig. 4. The shear modulus of the inclusjon
that the magnitude of the intensity factor decreased by 12% wh&mu2, Whereu, is the shear modulus of the elastic matrix. The
the inclusion volume fraction was increased from 2.5% to 25%. iRclusion and the matrix have a Poisson’s ratip=v,=0.33.
similar reduction in the intensity factor is anticipated for a fullyrhese relative elastic properties give Dund[&g] elastic mis-
bonded inclusion. match parameters af=0.5 andB= a/4. The eigenvalues for the
The results shown in Tables 1 and 2, when used in conjunctiittlusion geometry and material properties agg:=0.829, w,
with Eq. (8), enable the interface-junction stress intensity factor 1.056, ands;=1.082. Although, only the symmetric stress field
associated with all the eigenvalues to be determined for an incRgsociated with the eigenvalug is singular, the stress field as-
sion with wedge angley=60 deg andy=90 deg, subjected to Sociated withw, is needed to obtain reasonably accurate results
remote uniaxial tension and temperature change. The results thé@ar the interface junction. The stress field associated &ittan
fore complement those of Chen and Nisitgrifor only mechani- be neglected due to the relatively small magnitude of the associ-
cal loading, and of Reedy and Gud4$)] for squarerigid inclu- ated stress intensity factor, as described above.
sion subjected to axisymmetric remote tension and temperaturelhe asymptotic stresses near the interface junction are com-
change. pared with the corresponding finite element solution for the inclu-
For an inclusion with wedge angle=60 deg subjected to re- Sion with a wedge anglg=60 deg. The asymptotic stresses were
mote tension, and with wedge angje=90 deg subjected to uni- calculated using Eq1), with the magnitude of the stress intensity
form temperature change, the magnitudeQodssociated with the factors given by Eq(8) and the values o in Tables 1 and 2. The
skew-symmetric field is much smaller than the correspondir@igular variation of the stress componeny, at radial distances
magnitude for the symmetric field. For these particular casés 0.003 andr=0.0eh from the interface junction is shown in
where the loading is symmetric about the plane that bisects thig. 8 when the two-phase material is subjected to a remote ten-
wedge angle of interest, a reasonably accurate solution of thién o, and in Fig. 9 when it is subjected to a thermal laggl.
stresses near the interface junction can be obtained by neglectlig¢ magnitude oér,, is normalized by the applied load:or o, .
the contribution from the skew-symmetric field. For other casedlote that the major diagonal of the diamond-shaped inclusion is
however, the stress field associated with all the eigenvalues mektength 2h, and the interfaces that form the inclusion wedge are
be considered to obtain an accurate prediction of the stresseglang 6=0 deg andd= y=60 deg. _ _ _
comparison of the theoretical asymptotic stress field and the finiteThe asymptotic solutions of the symmetric stress field associ-
element solution is made for an inclusion/matrix combination tated with the two eigenvalues,(=0.829) andw,(= 1.056) are
demonstrate the need to consider all the stress terms. shown separately in Figs. 8 and 9@$, ) ando'f,"?, respec-
Consider, for example, a diamond-shaped inclusion in a mattixely, and the asymptotic solution of the nonsingular constant
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r=0.003 from the junction. A good agreement is obtained be-
tween the finite element solution and the asymptotic solution only
when both the singular and nonsingular symmetric fields, and the
nonsingular constant stress associated with temperature change
are considered.

The value of the interface junction stress intensity factor char-
acterises the magnitude of the stress state in the vicinity of the
interface junction. The solution of the intensity factors and asso-
ciated eigenvalues for square-shaped and diamond-shaped inclu-
sions embedded in an elastic matrix and subjected to either remote
tension or uniform temperature change, as presented in this paper
allow the magnitude of the stresses near the junction to be deter-

3 . . . \ (a)r=|0.003h mined. In addition, the magnitude of the interface-junction inten-
0 60 120 180 240 300 360 sity factor can be used to predict the onset of failure, provided the
0 (Degree) zone of dominance of the singular fields is much greater than any

nonlinear deformation or fracture process zone near the junction.

Failure occurs when the magnitude of the interface-junction stress
3 intensity factorK;, attains a critical value. X;-based approach
has been used successfully to predict the onset of failure in
bonded joint geometries where there is only one singular stress
term ([2,14]). However, there have been few studigs0,13) on
the extension of the approach to the prediction of failure in en-
capsulated inclusions. For this to be successful, the interaction, if
any, between the interface-junction intensity factors for the sym-
metric and skew-symmetric fields at failure must be established.

-------

qL

[ Cgmo Conclusions
2 e B e
i (b} r=0.06h The stress behavior at the interface junctions of an elastic in-
al , . . , . clusion embedded in elastic, brittle matrix has been described. The
60 120 180 240 300 360 stresses at an interface junction can be separated into symmetric
0 (Degree) (mode ) and skew-symmetricmode 1)) fields. A contour integral

method was used to evaluate the stress intensity factors associated
Fig. 9 The comparison between asymptotic solution (dashed-  with both modes of deformation, for a two-phase material sub-
dashed line ) and the finite element prediction  (solid line ) of oyy  jected to a remote tension and a uniform change in temperature.
near interface junction R for the diamond-shaped inclusion The results of two examples: square-shaped and diamond-shaped
subject to a thermal load o7, . (&) r=0.003h and (b) r=0.06; jyciysions, showed that the asymptotic solution of the stresses at
where r is the radial distance from the interface corner and his an interface junction is in agreement with the finite element pre-

half the major diagonal of the inclusion. The elastic mismatch _ . - .
parameters are a=0.5 and B=a/4. diction only wh_en all the stress terms including the higher-order
terms are considered.

stress is denoted hy,4, . The nonsingular constant stress is Zer@ppendlx

when the material is subjected to only remote mechanical loading,tne Asymptotic Fields Near the Interface Corner. The

Fig. 8, and it is finite for a uniform change in temperature, Fig. Qsymptotic stress and displacement solution near the interface

As expected the stress fields in Figs. 8 and 9 are symmetricjiRction R of the inclusion shown in Fig. 1 can be obtained using

material 1(i.e., the inclusion about = y/2=30 deg and in ma- he complex variable method or the Airy’s stress method. We as-

terial 2 (i.e., the matrix about=210 deg. The inclusion occu- gyme there is a symmetry alomig= y/2 and that the inclusion is

pies the region & ¢<y while the matrix occupies the region perfectly bonded to the matrix. When the two-phase material is

<0<2m. B subjected to a combination of remote mechanical loading and a
The stress fielarf " is singular at the interface junction sinceuniform change in temperature, the stress field can be split into

1<1, ando';~? is nonsingular sinces,>1; o'f,?=0 atr two independent modes: a symmetrimode ) and skew-

=0. For the material properties under consideratier;0.5, 8 symmetric(mode l)) fields. The boundary conditions for each of

=al4, the nondimensional constan@, =—0.148 andQ,, these modes are

_:0.936. Therefore, Whgn the |n_clu5|on/m_atr|x_geometry is sut_)- Urle= Urzo; Uéf 020; ur1=ur2+rAp*AT;

jected to a remote tension, the interface-junction stress intensity

factor associated wite,, K{P~"<0, while that associated with ub=u? (at #=0 and 6=1) (9a)

wy, K{P~2>0. Consequently, the results presented in Fig. 8 for

remote tension show that{f,"") is negative with an absolute

value which decreases with increasing radial distanfrem the (at =7+ y/2) (9b)

junction, Whilea(,,%zz) is positive and increases in magnitude with . 44 symmetric field, and

increasing distance Therefore, the magnitude of the total stress ’

ol,=ul=0 (at 9=v/2); and ¢2,=u3=0

o4 increases with increasing radial distanicom the interface ol=0%  0h=05%,  Ur=UP+TAp*AT;
junction. L o
The asymptotic total stress is compared in Figs. 8 and 9 with ug=uy (at #=0 and 6=1y) (10a)

the finite element solution. The comparison shows that although
the symmetric stress field(f,~? is nonsingular, its contribution to
the near-junction stresses is significant, even at a radial distance (at =7+ y/2) (10b)

ob,=ul=0 (at #=v/2); and o%,=u’=0
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for the skew-symmetric field. The superscripts in the equationsThe eigenvalues = w, (p=1,N) associated with the symmet-
above refer to the material numbgr for the inclusion and 2 for ric field must satisfy the characteristic equation

the matriy; Ap* =(1+ v,)p,—

(1+ v4)p, characterizes the ther-
mal expansion mismatch between the two materials under pland=1(«,8, v, ®)

strain conditionsp, andp, are the thermal expansion coefficients
of material 1 and material 2, respectively; akd is the change in
temperature from a reference valueTgfto a current value of,

e, AT=T-T,.

By substituting the stress and displacement equations from the
complex variable analysis into the boundary conditi¢®sand
(10) it can easily be shown that the stresses and displacements
near the interface junction are given by

N

gy = zl K}p)r“’p’lff(‘f)-‘r z]_ K}q)rgqilff(cﬂ)‘f‘ Oklo
p= q=

N

uk:Z K}P)rmpgﬁp)_kz K(Cl)r qg(kq)+uko

where k,1)=(r,6), w, is the eigenvalue of the symmetric stresgvherea and 3 are the elastic mismatch parameters between the

M

M

=1—a?—(1-B?cos 2wm+ (a—B)’w?(1
—€0s 2y) +(a®~ B cog 2w(y— )]+ 2w(a
—B)siny{sinwy+siMw(27—y)]} + 20(a
—B)Bsiny{sifw(2m—y)]-sinwy}=0
12)

and the eigenvalué= 6, (q=1,M) for the skew-symmetric field
must satisfy the characterlstlc equation

(11)

Fo(a,B,y,0)=1—a?—(1— B?)cos 26w+ (a—

B)?8%(1
—c0s 2y)+ (a®— B?)cog 28(y—m)]—28(a

= pB)siny{sindy+siNé2m—vy)]}—25(a
—B)Bsiny{sif §(2m—y)]—sinsy}=0 (13)

field with a correspondlng interface junction stress intensity factérclusion and the matrix, given for plane strain condition[g]

(p)
K] ,

and gy is the eigenvalue of the skew-symmetric stress field
with a corresponding interface junction stress intensity factor
K](q). The parameterdl and M are the numbers of eigenvalues

associated with the mode | and Il fields, respectively. The nondi-

_ kot 1) —(kat Dps _ pa(ko=1) = (k1= Duy
ma(ko+ 1)+ (ky+ D) uy’ Ml(K2+1)+(Kl+1)M(21.4)

mensional functiong(", £ g  andg{® depends on the The characteristic Eq$12) and (13) are identical to those given
material properties and the inclusion wedge anglehe terms by Chen and Nisitanj16] when the appropriate substitution are
oo anduy, in Eg. (11) are the nonsingular constant stress anchade for(a, 8) and the wedge angle.

the corresponding displacements which may exist depending orirhe functionsf,,, f4,, f,y, 9,, andg, corresponding to an
the mismatch in the thermal properties of the material. eigenvalue\ (=w, or §5; p=1N andq=1,M) are given by

MB—=N)cogAO—60) —N(3—N)SiNAO—60) —AcogAO+6) AsinNO+0) ]
f NN+1)cogAh—0) —ANA+1)sinAd—6) Ncogrb+6) —\sin(\ 6+ 6)
f o0 NA—=21)sin(N6—60) N(A—1)cogA6—0) N sin(A 6+ 6) N COg N O+ 6) ’;m
frot =| (km—N)cOINO—0)  (A—ky)SIN(\O— 6) —cog\6+0) Sin(A 6+ 0) cm (15)
9r 2pm 2pm 2pm 2pm D:
99) m | (kptN)SINNO—0)  (A+K,)COSNO—0) SN\ O+ 0) cog\ 0+ 0)
L 2pm 2pm 2pm 2pm i
I
whereu,, (=E/2(1+v,,)), E,, andv,, denote shear modulus, By(w)=é&x(a— B)siMo(y—m)]sin(w—1)(7+ y/2)]
Young’s modulus, and Poisson’s ratio for matena|=1,2), re- (21)
spectively, andc,,= 3—4v,, for plane strain. The nondimensional
constant,,, B,,, Cy,, andD,, wherem(=1,2) is the material
number, are given for the symmetric field by Cy(w)=—é{w(a—pB)siNy—w(y—m)]
+(1+pB)sinomicod (w+1)(m+y/2)]. (22)
Ai(w)=&(a—p)sifo(y—m)]cod(w—1)y/2]  (16)
B.(0) =~ bala- B w(y—msif(o—1)y2] (17) ~ DA@ITHel@mfsitymelymm]t s fsiner)
Xsin(o+21)(7+y/2)] (23)
Ww)=&fo(a=p)siNy—o(y—m)]+(1-p)sinom} _
x cod (w+1)/2] (1gy Wth
1(0)==&fo(a=p)siny=o(y=m)] L ot 1 B)SiTel v o080 1)y12
+(1-B)sinomsin (w+1)y/2] (19) g eletDla=fsioly=m]icog(o=1)y/2]

+o{w(a—p)siNy—w(y—m)]+(1-B)sinwm}

X cog (w+1)y/2]

Ax(w)=—&(a—B)siMw(y—m)]cod (w—1)(7+ 7/2)](20

(24)
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&H=6

(1-B)sinwy+(1—a)sifw(m—7y)]+w(a—B)siny

Similarly, the nondimensional constams,, B,,, C,,, andD,
for the skew-symmetric field are given by

1+ B)sifw(27—v)]+(1+ a)sifo(y—7) ]+ w(a— B)siny

(25)

Ca(0) =&l 6(a—B)sin y—6(y—m) ]~ (1+ p)sinom}

Xsin (6+1)(m+ /2)] (32)

AL(8)=Ex(a—B)sin 8(y—m)IsiN(6-1)y/2]  (26)
By(8)=és(a—B)sin 8(y—m)]cof(s-1)y2]  (27) D2(8)= & da=p)siy=(y=m)] = (1+ B)sinom}
C1(8)=&{8(a—B)sin y— &(y—m)]—(1— B)sin o} xcog(o+1)(m+yi2)] (33)
X sin (8+1) y/2] (28)  with
D1(6)=és{(a—B)sin y— &(y—m)]—(1— B)sin o} 1
% cog(8+1)9i2] 29) 7, =00+ (a=p)sin (y—m)lsinl (5-1)y/2]
Ao(8)= Ey(a—B)sin 8(y—m)Isif(6—1)(m+¥/2)] (30) +8{8(a— P)sin y— 8(y—m)]— (1— B)sin o7}
B(8)=£4(a— B)sin 8(y— m)]cog (5—1)(w+y/2)] (31) X i (8+1) /2] (34)
|
B S(a—pB)siny—(1—pB)sindy—(1—a)si é(m—1vy)]
=63 (1+ B)si (27— )]+ (1+ a)sif 6(y—m)]— 8(a— B)siny| (35)

When the inclusion-matrix composite material is subjected to al2] Reedy, E. D., 1993, “Asymptotic Interface-Corner Solutions for Butt Tensile
uniform change in temperature, an additional nonsingular constant _ Joints.” Int. J. Solids Struct30, pp. 767-777.

stress fieldry, and associated displacement, given in Eq.(11)

must be consideredk(l)=(r, #). The nonsingular constant stress

field and the associated displacement field are given by

0o

8B

1T _ 2 _ 1 _ 2 _ _
Ttro = Orro = 0900~ T o0

T _ 2 _.1_ 2 _
Ureo_arﬁo_uﬁo_uﬁo_o

1_ 90

r
Uro—z—m(lle) SB +rp’IAT

W= (1 kp) 22 +1p3 AT
24, 2 g P2

(36)
where
0o,=E*Ap*AT (37)

is a measure of the applied thermal loading &fidis the effective
modulus given by

1 1 l—vi 1—11%
- = _ +
E* 2| E; E,

(38)

Both o, and uy, vanish if the material is subjected only to a

remote mechanical loading.
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Penetration Limit Velocity for Ogive- Experiments and Results

Nose Projectiles and Limestone Targets We conducted depth-of-penetration experiments with ogive-
nose steel rod projectiles and limestone targets. The 3.0 caliber-

radius-head CRH) rod projectiles were machined from 438
M. J. Forrestal 45 (VAR) steel and had diameters of 7.11 mm and total lengths of
. . . 71.1 mm. The nominal properties for the limestone targets include

Sandia National Laboratories, Albuquerque, density (—2.31 Mg/n¥), water content =015 percent). po-
NM 87185-1174. Fellow ASME rosity (n=15 percent), and unconfined compressive strength
(o.s=60 MPa). Again, these are the same projectiles and targets
S. J. Hanchak as used in our previous studyt]). Other experimental details are
4701 Theodore Street, Munhall, PA 15120-2934 reported by Hanchafs].

We summarize the results from six experiments in Table 1.
Three projectiles were embedded in the target and three projectiles

. . . . rebounded. These data show that the penetration limit velocity is
We conducted depth-of-penetration experiments with ogive-nz6.een 289 m/s and 308 m/s or about 300 m/s. For the striking

steel projectiles and limestone targets to determine the penet(gsq ity of 308 mis, the projectile was embedded in the target and
tion limit velocity. The penetration limit velocity is demedEQW

- o - . . "=he penetration depth wa3=36.8 mm; so for the projectile di-
as the minimum striking velocity required to embed the projecti b I pin W projectiie di

; o . ; eter of 2=7.1 mm, P/2a=5.
in the target. For striking velocities smaller than the penetration Figure 1 shows data from this study and the data from Frew,
limit velocity, the projectile rebounds from the target. '

Forrestal, and Hanch . The data from this study shows the
[DOI: 10.1115/1.1480820 penetration limit veloi?fy] at 300 m/s. The data fr)c/[m] show
results for both 434®&; 45 ([6]) and Aer Met 10QR.. 53 ([ 7]) steel
projectiles. For striking velocities greater than those shown in Fig.
. 1, the projectiles severely bent and turned within or exited the
Introduction sides 0? thJe targets. g

Most studies in the broad field of penetration mechanics focus

on penetration depth or residual velocity,2]). In our recent
work on penetration into aluminund3]) or limestone targets Summary
([4]), we started with striking velocities large enough to embed the . . . .
projectiles in the targets and increased the striking velocities ungjl W€ conducted a set of experiments with ogive-nose rod projec-

the projectiles were defeated by turning within or exiting the sid o?:ﬁ ar;%:gﬁitignevﬁg%ﬁisto Se?te(;:ntw:ntrt]r(?ispﬁrr::iattr\?(tellc())réi'llmlth\e/e-
of the targets. In this study, we define the penetration limit veloc- % 9 9 Y

ity as the minimum striking velocity required to embed the proprmectlles were embedded in the target, and for striking velocities

jectiles in the targets. We use the same targets and projectiles as

those used by Frew, Forrestal, and Hanchdk however, we

obtain data for smaller striking velocities and determine the pefizple 1 Penetration data for the 7.1-mm-diameter, 71-mm-

etration limit velocity. long, 0.0205 kg, 3.0 CRH projectiles. For pitch and yaw: D
For some applications, such as anchors or munitions that casrgown, U=up, R=right, L=left.

explosives, the projectiles should be embedded in the targets. An

chors must be embedded in order to transfer loads to the target, nggi(t'g% pitch. Yaw Penetration
and munitions are much more effective when coupled to the targnot Number (m/9 s (deg,ree}s Depth Rmm)
et. Thus, another defeat mechanism for some projectiles is re

go nd from the target proJ 6-3418 242 0, 0.7R 30.9 Rebound
u get. 6-3420 271 05U, 1.7R  35.0 Rebound
6-3423 289 0, 0. 36.2 Rebound
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MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- 6-3421 320 0.9, 1.0R 40.0 Embed
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Fig. 1 Data and prediction for limestone targets

less than this limit velocity, the projectiles rebounded from thr|, Pugno
targets. The penetration limit velocity for these experiments W@Sasearcher

found to be about 300 m/s. . o
e-mail: pugno@polito.it
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erful universal laws for the multiscale energy dissipation under If 0 <D< 2 it is necessary to specify,,, but notr ., in order
impact and explosion fragmentation for one, two, and threés obtain a finite total surface area of fragments. B it 2 it is
dimensional bodies, respectively. necessary to specify,,, in order to constrain the total surface
The three-dimensional law unifies the most important and wekrea to a finite value. Thus for most observed distribution of frag-
known fragmentation theories: the surface thepty, when the ments the surface area of the smallest fragments dominates.
dissipation occurs on a surface, the volume thdéiy when the On the other hand, the total volume of the particles, or total
dissipation occurs in a volume and the third comminution theofyagmented volumé/, is
[6], when the dissipation occurs in a domain exactly intermediate

between a surface and a volurtsee[7]). "max4
ezl 7] V= f —ar3dN
"min 3
. . ' max 4
2 Three-Dimensional Theory :J' No(§Wr3> p(r)dr
After comminution or fragmentation, the cumulative distribu- "min
tion of particles with radius € 33/47-volumgicid Smaller 4 D
thanr is (see, for exampld,8]) = EwNoﬁrain(r%;)'?—rsman
N(<r r i) P
P(<r)= (N ):1—(ﬂ]) ; (1) 4 D 5 30
0 r §7TN03__Drminrmax , D<3

I

whereN(<r) is the number of fragments with radius smaller than
r, Ng is the total number of fragments,,, (<<r a0 is the mini-
mum fragment radius, and(>0) is the fractal dimension.

The probability density functiop(r) times the interval ampli-
tude d represents the percentage of particles with radius com-If 0 <D <3 it is necessary to specify,,, but notr v, in order
prised betweem andr+dr. It is provided by derivation of the to obtain a finite volume of fragments. The volume is predomi-
cumulative distribution functiorl): nantly in the largest fragments. This is the case for most observed

o distributions of fragments. ID>3 it is necessary to specify,
dP(<r) T min but notr .. the volume of the small fragments dominates.
p(=—4g— =Dz ©) It is interesting to note that in Eq&5) and(7) D equal to 2 and
. ) o 3 do not represent singular points but indeterminate forms. So, the
During fragmentation, the energy dissipation due to fracturshysice“ meaning is preserved also Brequal to 2 and 3.

4 D ™

§7TNOD__3rﬁ1inv D>3.

dWe, is proportional to the surface area of fragmen&(@riffith Based on fracture mechanics we can assume a material “quan-
[9D): tum” of size r,=constant(Novozhilov[12] and Sammig13])
dWexdS. ©) and make a statistical hypothesis of self-similarity, i.6pax

L ) o ) « 3V (the larger the fragmented volume, the larger the largest
During impact fragmentatiorimaterial in compression the  fragment; Carpinter[14]), so that the energV dissipated in a
main dissipation W is due to collisions and friction betweenthree-dimensional fragmentation process, which is proportional to

particles(converted into heauand the effect results to be propor-the total surface are® can be obtained eliminatinlg, from Egs.
tional to the same quantity dSmekal[10], see[7]): (6) and(7) as

dWocdS. ()] _
D=2, D<2
On the other hand, during explosion fragmentatiamaterial in —
tension the main dissipation \W; is proportional to the kinetic WS VPR with { D=D, 2<D=3 (8)
energy of fragmented ejectd dThe velocity of fragmented ejecta D=3 D>3
varies inversely with fragment size as<r ~*? (Nakamura and o '
Fujiwara[11]), so that the kinetic energy, i.e., the main dissipation
in explosion, results again in being proportional to the fragmeg[:
surface & (of volume d/):

The universal law of Eq(8) can be used to predict the multi-
ale energy dissipation under fragmentation in impacts and ex-
plosions of three-dimensional bodies. It represents an extension of
dW;ocdT v 2dVadS. (5) the third comminution theory, whei/=V%*3 ([6]; see[7]). The
extreme cases contemplated by Eg). are represented by =2,

Sum_marizing, the globa_l _dissipation in impacw({+WF_) Or  surface theory[4]; se€[7]), when the dissipation really occurs on
explosions W+ W) surprisingly appears always proportlonal toa surface W3, and by5=3 volume theory(5]; see[7))
the total surface are8 of fragments. It can be obtained by inte- ! ’ ' '

when the dissipation occurs in a volum@&/¢V). These three

gration: laws are substantially experimental, so that the universal law of
" max Eq. (8) is obviously experimentally verified.
S= 4mr2dN

"min

_ eraxN0(477r2)p(r)dr 3 Two-Dimensional Theory
" min For a two-dimensional body of area (and thickness), we

D 1 1 have
4y 5 rEAJ)

S= frmaxN(Zwrh)p(r)dr, AzfrmaxN(wrz)p(r)dr,

min "' min

D
47TN0mr%m, D>2

N

(6) I max* 2\/K- 9

4wNOLrD- r2 b p<a2.
2_D  min' max so that Eq(8) becomes
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As an example, we can apply the three-dimensional law to the

prediction of the devastated area due to asteroid impacts on eagth - .
as a function of the energy released in the collision. The compaf? Note on the Appllcatlon of the

son with the experimental Steel's la@15]), based on nuclear Flamant Solution of Classical E|asticity
weapons tests, shows a good correspondence.

Assuming that the destroyed zones fragmented volume¥) O Circular Domains
are self-similar at each scale, the af@g,sieqdevastated by an
impact is proportional t&/? and, beingW=VP"3, the theoretical A. J. Levy
prediction for the devastated area will be T
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Steel [15] provided the following formula (see htp:/ NY 13244-1240. Mem. ASME
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nuclear weapons tests, for estimating the area of destruction due
to asteroid impacts: It is a well known fact that the Flamant solution of classical
_ 67 _ 2 _ elasticity cannot be used at an interior point of an elastic body
Quevasiea™ 400N, [Dgevased=[kim’], - [W] [megatoni$4) since the resulting displacement field would be multivalued. In
) ) ) ) this note we demonstrate that the solution to the problem of a
Equation(14) appears in good agreement with the theoretical prgpncentrated force at a point on an interior circular boundary has
diction of Eq.(13) and, if we assum@®~3, they practically co- a multivalued displacement component but that the exclusion of
incide. the point of application of the load from the domain renders the
displacement field single-valued everywhere.
[DOI: 10.1115/1.1480821

6 Conclusions

Summarizing, the universal laws for the energy dissipation if

. . ' Intr ion
impact and explosion fragmentation of one, two, or three- troductio

dimensional bodies can be rewritten as This note contains an analysis of nonuniform convergence of
_ . the displacement field in the Flamant solution to the problem of a
WoLP (0=<D=<1) one-dimensional concentrated force at a point of an interior circular boundary of an
— _ unbounded elastic domain. This issue, which does not exist in the
W« AP2 (1=<D=<2) two-dimensional (15) Flamant problem for the straight boundary, arose in previous work
— _ by the author on cavity nucleation in planar inclusion problems
Wee VPR (2<D=<3) three-dimensional. where the inclusion-matrix interface is modeled explicitly by a

The three-dimensional law unifies the experimentally verifi

ed——
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nonlinear cohesive zone of vanishing thickndssvy [1]). Inthat 2 The Solution
work the Flamant solution for the boundary displacement is used
as a Green's function in an integral equation formulation of thanI
problem. In two interesting papers, Dundurs and Hgitg2], and complex potentials. First, note the following geometrical relations
Dundurs et al[3] have considered the problem of a circular in;_. pl p lid 'f ’ h infA) of gl_g . f the load
clusion in an unbounded plate subject to a concentrated force - ), valid away from the pointA) of application of the loa
point of the plate and oriented so that its line of action is along &
diametral linet The problem considered in this note is therefore a
special case of these studies. The focu$208|, however, is on
constructing the Airy stress functions and providing formulas for
the stress components. Although the nature of the singularity is
discussed, and the condition of single-valued displacements is en-

Because the problem as originally stated provides the stress
nction, we will proceed directly from it as opposed to using

Rsing=r sing,

R?=a%+r2—2ar cosé,

forced, no explicit consideration is given to the issue of the non- asing=r sin(y—0), ®)
uniform convergence of the tangential displacement at the bound-
ary, which is the subject of this note. cosyy=—R/2a on r=a,
In order to explore this issue, first consider the Flamant solution
to the problem of a concentrated force acting at a point on a sing=asind/R on r=a,
straight boundary. In that problem the force acts at a point with
radiusr =0 which is situated on a straight boundary which can be cosysing=—sind/2 on r=a.

defined by the polar angles=0, 6= — 7. For the case where the

load is directed along the outward normal to the boundary, it Fhe stress functioR¢ sin ¢ gives rise to the well-known simple
well known that the displacement normal to the boundany) ( radial stress distribution of a force acting at a point of a boundary.
becomes unbounded, while the displacement tangent to thige polar components of this stress state, referred to a basis at the
boundary (1,) becomes multivalued, asapproaches zero. Note hole center, are easily shown to be given by

that each point within the domainD={(r,6)|r e (0»),

0e[—m,0]} occupied by the half-plane is uniquely represented 2 cosys

by one set of coordinates. Only wheis zero, do points coalesce S = R cog(6— ),

and then multivaluedness becomes an issue. Because it is implic-

itly assumed that a neighborhood of the pairt0 is excluded

from the domain the displacement field is therefore bounded and S = 2 cosy cos f— g)sin( — ) @)
single-valued everywhere iD. This contrasts with the Flamant o R '

problem for circular domaing=ig. 1). Here, the domain of interest

is given byD={(r,6)|r e[a,»),0e[0,27]} so that multivalued- 2 cosy

ness(or continuity if e[ 0,27)) becomes an issue not just on the See= R Sinf(6— ),

boundaryr =a but for anyr e[a,). It is a straightforward mat-

ter to demonstrate that on the boundarya the tangential dis- \yhich may be expressed entirely in terms (of) by utilizing
placgment is multivalued a;;—o andg=2m. Thellnterestllng. part geometrical relation$3). This distribution gives rise to nonvan-
of this problem, and the primary concern of this note, is in dengning tractions on the hole surface which must be removed by

onstrating the nonuniform convergence of the tangential displacgjperimposing the stress field arising from the stress function
ment componenti,(r,d) asr|a to a multivalued limit function

forr=a, 0e[0,27]. 1 1 a
A formal statement of the Flamant problem appears, without ——(1—vw)rlogr cosd— =r@sinfd+ = logr
solution, in the elasticity text of Timoshenko and Goodig; for 4 2 2
the case of a concentrated load acting normal to the interior cir- a2
cular boundary, and is restated here verbatim: — —(3—v)—coséb.
“Verify that the stress functién 8 r

For this function the polar components of stress follow from the

P 1 1
d=— p Yr sinf— Z(l_ v)rlogr cosf— 5T fsing stress table in Barbg¢b],
d d2 1 1 cosf cosf al a? cosé
+ 71091 = 25(3— ) —cosf 1) Se=—7 A=) —————+52t 7B 3,
satisfies the boundary conditions for a force P acting in a hole in 1 sing a? sin g
an infinite plate with zero stress at infinity, and that the circum- So=—7(1=v)——+ 7 B=v) 7, (5)
ferential stress round the hole is
cos§ al a? cosé

1
Sep=—7(1=v)—— V)3

P - =5 —(3—
ﬁ[2+(3—v)cos¢9] 2 2r2 4 r

The complete stress field for the problem follows directly by su-
perimposing like components i) and(5) and multiplying each

Note that the last sentence in the problem statement expliciff m[:t))onen_t Elum be_.(g/E)' I?]y ut_ilizingf the r_ellations in(3) it
refers to the issue of single-valued displacements. This will 5&0 P€ quickly verified that the circumferential stress a@ Is

analyzed in Section 3. Section 2 contains an outline of the solutigﬁlend by ) Wllile the no_rmal and tar‘g?ntial _trﬁctions fon the
for the stresses and displacements. oundary(S;(r=a), S,(r=a), respectively vanish away from

except atA (Fig. 1). Show that it also corresponds to single
valued displacements.”

point A.
IReference[2] considers the perfectly bonded interface whil treats the The calculation for the .p0|ar compo_nents of dlsplacement fol-
smooth interface. lows from the stress function and the displacement table in Barber
2¢ is appropriate for plane stress. For plane strainvietv/(1—v). [5],
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Fig. 1 Problem geometry

dpmu, .
5— =~ (k=1)(=0)sin6—(x+1)logRcoso+2 cog
K 1 2 3 4 5 6
) ) 1 3 o)
X iy cosSO+ 2 cosy sin iy sin — ‘—1(17 v)+ > cosé
Fig. 2 Nonuniform convergence of function -0
)l a, « & 6
+(k— )ogrcose+r+mr—2cose, (6)
4umu, . 3 Discussion
p— — (k= 1)(y-0)cosf+(k+1)logRsin -2 co$ First, the stress components are single-valued and infinitely dif-
ferentiable at all points within the domain except at point A. This
. ) 1 1] . follows directly from(4) and(5). Now consider the displacement
Xy sinf+2 cosysing cosé—| 1 (1—v)=5Isiné  field (6) and in particular the termsyé—6)sin6, (i—6)cose.
) From Fig. 1 and the first three identities (@) it follows that
K a
—(k—1)logr sinf+ —— —5sin 6, asiné
k+1r? y—f=sin! 9el0.2n], re(ax).

JrZ+a?—2arcosf/’

where « is (3-v)/(1+v) for plane stress and 3+w4for plane 10

strain. Consider the displacement of points initially situated on the (10)

boundaryr=a. By using relations(3) in displacement compo- Now for r € (a,») the functiony—6 is a single-valued and con-

nents(6) we arrive at the form tinuous function of(r, #). Consider the limit asr|a for 6
€ (0,2m). Itis not hard to show that

s =2~ 2L gsino— L iog(1— cose)cos 0
plr=— 5 (m=0)sin 5 l0g(1—cosé)cos ,(7) Iim[w(r,a)—e]:T,rla (1)
Pl «—1 k+1 ) which is consistent with boundary displaceméft Thus we have
4puy=—| = —— (m—0) cosf+ ——log(1—cosh)sind|,  the fact that, while single-valued and continuous for all

e(a,»), 0e[0,2r], ¢¥—6 converges to a discontinuous limit
where for compactness we have superimposed an approprigiiction onr=a, 6e[0,2r), i.e., the functiony—6 is multival-
rigid-body displacement. An interesting feature of this boundagyed onr =a, 9e[0,27]. The limit function(7—6)/2 is piecewise
displacement is that it is multivalued. A casual inspectiof®f continuous and 2 periodic onr=a, the points of discontinuity
reveals that the offending term occurs in the expressiorufor occurring até=0, =2n, n integer.(A graph of this function is
ie., (’7T— 0)0039. This will be discussed in the f0||0WiI’]g section.shown in Fig_ 2 for values of/a approaching uni’[y.The above
For now, we note that the boundary displacement behaves c@iscussion concerning the functigr(r, 6) — 6 implies that the tan-
rectly in the simple case of a uniform pressure applied to the innggntial component of displacement,(r,6) has the following

boundary. To see this introduce the kernel functions properties:
k+1 k—1 = 2
Ur=g-Ug=—o— cosﬂlog(l—cose)——8 (7m—6)siné, Up(r,0)=uy(r.2m), 1e(ax),
o e (8) Lim uy(r,00=0+#uya,0), rla,
k+1 | k—1 - _
Uy,=e, Ue,= sin #log(1—cos#) — —— (7— 6)cosh. Lim uy(r,2m)=0#u4(a,2m), rla,
8mu 8mu
,0)# 2 12
Then the boundary displacement is determined by Up(,0) % Ug(@,2m) (12)
where use has been made @. Because the pointr&a, 6
U= Us(n)ds ) =0,27) is excluded from the domaiit coincides with the point
IR ' A of application of the concentrated ford® and the point of

singularity for the stressgthe displacement field is single-valued

wheres(n) is the traction vector and is the unit normal vector anq continuous everywhere in the domain. The equation for the
pointing away from the boundaryR. Note that in(9) U is a geformed boundary is given by

function of the differenced—6’,% s(n) is a function ofé’, u is a _
function of 8 and integration is carried out with respectéa For a
a pressure loads(n) =pee (8) and (9) yield the boundary dis- a
placement vectou= (apy/2u)e; .

k—1 . k+1
=l-« T(w— 6)sin 6+ Tlog(l—cose)cosa ,

a=—. (13)

3That is, the difference between field point and source point. 4,u7'r
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We show that for a confocally elliptical hollow section under
Saint-Venant’s torsion, there always exists a confocally elliptical
closed contour inside the section that exhibits no warping. This
property is generally true without any regard to the thickness or
the aspect ratio of the hollow section, as long as the inner and the
outer ellipses are confocal. This property allows us to apply Pack-
ham and Shail's (Packham, B. A, and Shail, R., 1978, “St. Venant
Torsion of Composite Cylinders,” J. Elas8, pp. 393-407) su-
perposition method for the torsion solutions of a two-phase ellip-
tical hollow section. Previously, this superposition method is only
applicable to symmetric compound sections with respect to a
straight line or a circular arc. [DOI: 10.1115/1.1504095

1 Introduction

Saint-Venant’s torsion of a prismatic bar is a classic problem in
solid mechanics. For a circular cross-section or circular ring under
torsion, it is well known that there is no warping in the section.
For a cross section of general shape, typically the absence of

4 warping only occurs at positions which exhibit the symmetry of
the geometry. For instance, the warping contour of a square bar
under torsion indicates that there are only four straight lines with

(b) zero warping, two diagonal, one horizontal, and one vertieed,
for example,[1], p. 133, Fig. 27. In this work, we found, inci-
Fig. 3 Boundary distortion; () normal force (a=.01,»=13), dentally, that for a confocally elliptical hollow section there al-
(b) tangential force (a=0.4,r=1/3) ways exists a closed elliptical contour inside the section that has
no warping. We make use of a mapping function that transforms
) ) ] . the confocal ellipses in the-plane onto concentric circles in the
Flgu.re :{la) shows the distortion of the boundary near the point q;-plane. Suppose the outer and the inner ellipses are mapped,
application of the load for the case of plane strain. respectively, onto circles with radii 1 amdwe find, remarkably,
Note that the related problem of a tangential fofcacting at a that this closed contour with no warping is simply given |y
poin_t on the inter_ior boundary of an unb_ounded domain gives rise, 12 |, other words, this zero warping closed contour is also a
to similar behavior. For that problem, it can be shown that thgntocal ellipse with the same foci as that of the inner and outer
components of boundary displacement are given by ellipses. This existence of the zero-warping contour is found with-
out any regard to the thickness or the aspect ratio of the hollow
, section, provided that the inner and the outer ellipses are confocal.
(14) A-recent paper of Chiskis and Parfeq proposed a general cri-
terion for closed thin-wall members which exhibit no warping
, under the condition of constant thickness. By lettjpy— 1, the
present finding serves as a complemental example of the absence
so that the breakdown in single-valued behavior at the point of warping for a thin-wall section witlmonconstanthickness.
application of loadF occurs in the expression for the radial com- The finding makes it possible to extend Packham and Shail’s
ponent of displacement. This fact gives rise to a more jarrirgyperposition metho@3] to find the torsion solution of &wo-

Flx—1 k+1 )
4,uu,=; T(w— #)cosH— > log(1—cosh)sind

4 7F K X K+1I 1
Mua—; —T(w— a)sme—T 0g(1—cosfh)cosé

picture of the boundary displacement figkig. 3(b)). phaseconfocally elliptical hollow section. This method states that
for a certain symmetric two-phase section, the torsion solution can

References be obtained by a linear superposition of two solutions with homo-
[1] Levy, A. J., 1998, “The Affect of Interfacial Shear on Cavity Formation at angeneous sections: one is the solution of the whole section and the
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Fig. 1 A schematic illustration of a confocally elliptical hollow section mapping onto a concentric circle

warping function to this question. The displacement fields of thEhus, Eq. (2.4) provides
Saint-Venant torsion are characterized Upy= — 1yz, u,= 9xz, - -
andu,= J¢(X,y), whered is the angle of twist per unit length of E b.ein?_ 2 be-int

the bar andp is the warping function. The equilibrium condition ., " n

aij,;=0 requires thatp be harmonic throughout the cross section

of the cylinder. On the traction-free boundary, the boundary ” _ o _

condition is written in the form =i( ;) Aul,—1e™7+ k21 Ak|p_1e'k”) +const.,

d
To=—venl, (2.) @7
n and (2.4) gives
wherev=—y i+x j and n denotes the outward normal {g . * S
Since ¢ is harmonic, one can construct the analytic function E bnr”ei”f’— 2 bnr”e"””
w(z)=¢(z) +iy(z), of the complex variable=x+iy, in which n=—w n=—c
¢ is the conjugate harmonic function. o -
Since for any doubly connected regiéhin the z-plane there . ko e —iko
exists a one-to-one conformal mapping that transform the domain - ,ZO Adp-re""+ kzl Adp-re +const.
R onto a circular annulus with outer radius 1 and inner radiums
the p-plane[4,5]. This mapping function can be written as (2.8)
" Equivalently,(2.7) and (2.8) imply that
z(p)= a,p", p=pe’, 2.2 b—b_ =iA _q,
(P)= 2 P’ p=p 22 = _t"’_l for k=1,2,-- 0. (2.9)
bur “+b_r =iA =,

where a, are some complex coefficients. The analytic function?,hiS leads to
w(z(p)) in the circular annulus can also be expressed as a Laurent

series o T A=Al A 1= Adpe)
" k k(K ) —k k- K )
w(p)= >, byp", (2.3) (2.10)
n=-e« and the coefficienl, is left as arbitrary. Apart from a nonessential

constant, Eqs(2.3) and (2.10 constitute the torsion solutions of
any hollow section described by the mapping funcii@r®). Vari-
ous shapes of technological interests can be resolved without any
vl S difficulty. For example, one can consider the hollow epitrochoids,
w we(p)=iz(p)z _1tconst., X i
(P) = We(P) (pﬁﬁ)hp“l hypotrochoids, and many othef8]. A general solution for the
W — WD) =i2(D)Z _.+const., 2 4) Stress function which uses conformal mapping for hollow cylin-
«(P) = We(P) =iZ(P)Z(P) jp-r (24) ders of general geometry can also be found in Luf@, pp.
where the bar denotes the complex conjugation. We expand #b—407. We mention that previous solutions derived by Bartels

series, using2.2), [6] (see alsd7] for simply connected sections [10] for eccentric ring and hollow lune can be reconstructed in a
simple and unified manner. Instead of seeking warping fields of

- _ <o various geometric shapes, we shall restrict our attention on con-
2p)z(p) = D, Aekl+ D Ak, (2.5) focally elliptical hollow section.
k=0 k=1

with unknown coefficient®,,, and the boundary conditior{2.1)
are now transformed to

where
3 A Contour With No Warping in Confocally Elliptical

Hollow Sections

We consider here the hollow section is of a confocally elliptical
shape. The outer elliptical boundary is defined by (#eb)-axes,

0

Ak=2 a@p? e (2.6)
j=—o
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and the inner boundary by tha'(b’)-axes, in whicha anda’ are b a
the major axes of these ellipses. In the mapfi2g) we assign al,—re=a— 590 b| = v2=b— 59 (3.8)
(Fig. 1)
‘b b When 6— 0, the warping function along the thickness direction is
2p)= a p+ a -1 (3.1) negligible and¢ is assumed to be a function only of the arc
2 2 length. Sinceg3.7) represents a closed curve of zero warping, we

conclude that for a limitingly thin confocal elliptical tube, there is

no warp. Chiskis and Parng3] recently found a general criterion

Qr closed thin-wall members which exhibit no warping, in which
their derivation is under the condition obnstant thicknessThe
rpgﬁesent finding serves as a complemental example of the absence
of warping for a thin-wall section with nonconstant thickness. To

It is well known [8] that the transformatiofi3.1) maps a con-
focal elliptical configuration in the-plane onto concentric circles
in the p-plane. The outer and inner ellipses are mapped, resp
tively, onto the circlesp=1 andp=r in the p-plane. The semi-
axes of the inner and outer ellipse are interrelated by the followi

connections: ;
our knowledge, no such results for nonconstant thickness were
,_atb —a-b ,_athb a-b reported before. It is mentioned that the existence of such a con-
a=—mrt—r- b’= S T (3-2)  tour could be very sensitive to the shape of both interfaces. For

example, one could fix the outer boundary of the elligaéth
Thus, the circle of radiup=m*?, wherem=(a—b)/(a+b), in semi-axesa andb) and deform the inner boundary of the confo-
the p-plane is mapped onto a flat ellipse wiah=c andb’—0 in  cally elliptical hollow section to a geometrically similar ellipse
the physical plane, whereis the common focal distance of all the(with semi-axeska andkb, wherek<1). Since such an elliptical
ellipses given byc=+a?—b?. This flat ellipse represents here aing has the same warping function as the simply connected ellip-
crack of length 2 lying on thex-axis. It is therefore seen that thetic section, namelyp=x,y (see, for example, Timoshenko and

parameter needs therefore to obey the constraimt><r<1. ~ Goodier[13], pp. 328328 no closed zero-warping contour now
From the results 0f2.10), it can be verified that exists.
w=bh,p2+b_,p?, (3.3)
where 4 Packham and Shail's Superpositions for a Two-

Phase Confocally Elliptical Hollow Section

r-2-1 c? 1-r?

b,=i T2 b_,=i T2 2 (3.4) A few decades ago, Packham and SH&il showed that in
Saint-Venant'’s torsion problem for a two-phase compound section

This suggests that the warping function in the hollow ellipse takéslso in current flow of two immiscible viscous flui@$4]), if the

the simple form cross section is symmetric about the interface, the stress function

(or the warping functionpfor the compound cylinder can be ex-

pressed in terms of two separate solutions for homogeneous cyl-

inders. One corresponds to the torsion of the whole section, and

Greenhill[11] was the first to solve the solution of hollow (:onfo-th.'tahometr t? tt?]e torsion of a sgcgog whose cro_?? se(;tlofntﬁow:ud_es

cal ellipse in terms of the conjugate warping functi¢®2], p. wi at ot the reglon occupied by one constituent of the two

phase section. The superposition method was originally applied to

fhzooagﬁsgggioisdI\tfveerﬁgtvénvaeeiﬁilgg ;ﬁ;lcﬁﬁ:ﬁyctﬁgfg%g Z&pﬂ%sioﬁ]ﬁe cases that the interfaces are parallel toxtbey-axes, and was
u ther modified to the cases @f=constant or = constant. For

are equivalent. It is also mentioned that the torsion solution f(t)ne former case, namelg=const., Chen and Huar[g5] gener-
confocally elliptical hollow section can also be found in Lurie y - 9

([9], pp. 407—409in which the solutions are obtained in terms 0f':l_lized the concept to anal_yze the torsional rigidity _of a two_-phase
stréss f.unction circumferentially symmetric compound bar. The aim of this sec-

. _ S tion is to show that, upon the finding of the fa&7), Packham
Back 10(3.9), letting ¢(p) =0 will give and Shail's method is also applicable to a special class of com-
2 pound section with elliptical interface.
sin20=0, or p %~ z=0. (3.6)  Let us now consider the auxiliary problem of a hollow circular
cross-section consisting of two different phases in which the ma-
The first condition is an expected outcome, as they in fact repierial « lies in the regionr*?<p<1 and the phas@ in r<p
sent the lines of geometric symmetry. The latter is somewhat suy 12 This belongs to the original context of Packham and Shall
prising, which gives exactly with interface being described biy=const. Note that for the su-
p=r12 (3.7) perposition to be valid, it is necessary that the interfaea /2 be
' ' the square root of the radii of the inner and outer boundary. This is
Since the closed contout’? always lies inside the interval df, analogous to the image method in harmonic problghts. Con-
1), (3.7) suggests that there always exists a unique closed contgider the following two boundary value problems for hollow el-
that exhibits no warping inside the hollow ellipse, without anyiptical sections under torsion
regard to the value af (or the thickness of the hollow sectiprit ) .
is mentioned that the contour pf=r 2 represents an ellipse with ¥ #1=0 in Qq,  dpi/dn=—v-n on p=r and p=1,
the same foci common to the outer and the inner ellipses. Asimivz¢2:o in Q,, de,/dn=—v-n on p=r2 and p=1.
lar analysis has been carried out for a number of geomet@s “ (4.1)
responding to different mapping functiondt turns out that no ) ) .
simple guidelines can be found. For instance, there exists no zef§€ Solutione, has been given if3.5 and ¢,, by the same
warping closed contours for any hollow epitrochoid and, for hofOUtes in Section 2, is found as

CZ

I R PP 3
e(P)=7 75 ,2|p "~ jz|sin26. (3.5)

low hypotrochoids the existence of the zero-warping contour de- | p?
pends on the dimension as well as the geometric factor. @o(p)= T1r T ( p 22— —) sin 26. (4.2)
Back to(3.7), for a thin-wall limitation, we set =1— 8, where r r

6—0 and the elliptical hollow section becomes a thin ring oPackham and ShajB] procedures show that the warping func-
variable thickness. It follows fron(B.2) that the axes of the inner tions in phasesy and 3 of this compound configuration can be
ellipse area’=a—bé andb’=b—aé, and the major and minor obtained from those of the two homogeneous sections by the lin-
axes of the zero-warping contour are ear superposition
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by=————, b2=“TB. (4.4)
Fa#o Ha B Are Lower-Order Gradient Theories of

The field solutiong4.3), (4.4) can be verified, with some math- ..
ematical skills, that they indeed fulfill Laplace equation, th«PIaSthlty Rea”y Lower Order?
traction-free boundary conditiof2.1) as well as the continuity

conditions of the warping displacement and traction at interfa
p=r"2 namely % yu. VoIoI_<h . _ . _
Faculty of Civil Engineering, Technion—Israel Institute of
— Ma+MBWﬁ+ M‘Mﬁwﬂ —if«e #6,7 (45 Technology, Haifa 32000, Israel
2 2 2

We now consider a special type of two-phase elliptical hollow. W. Hutchinson®

section. Suppose the geometry of this compound elliptical secti@ivision of Engineering and Applied Sciences, Harvard
is given such a way that, under the transformati8r), it is University, Cambridge, MA 02138

mapped onto the configuration of the auxiliary boundary valu i :

problem. We claim that the warping functions of this compoun§'ma'|' hutchinson@husm.harvard.edu. Mem. ASME
elliptical cross-section in thp-plane are given agt.3) and(4.4).

The reasons are simple. Singeis the real part of the analytic

function w and the mapping functioi3.1), and its inverse, is An explicit example of one-dimensional shearing is used to illus-
analytic, thus it satisfies the governing equatitaplace equa- trate the necessity of extra boundary conditions for a class of
tiong). Also, since for a hollow confocal ellipse, the closed conincremental theories of plasticity regarded as otherwise conven-
tour p=r*? has zero warpingor equivalently the normal deriva- tional apart from a dependence of the tangential moduli on gra-
tive of the conjugate functions is zerg. Thus, Packham and dients of plastic strain[DOI: 10.1115/1.1504096

Shail's superperposition method is applicable to this compound

confocally elliptical configurations. Obviousi#t.3 and(4.4) are  Gradient effects may be introduced into plasticity theory by
exactly the warping fields of this compound elliptical section ifysing additional kinematical and work-conjugate stress variables.
the transformed domain. This perspective is new and may haggch theories enjoy the structure of Cosserat-type continua in the
further implications on chessboard-like elliptical geomeltty]. general case. Extra stresses and boundary conditions are inherent
Of course, the torsion solutions of this compound elliptical sectiqR the generalized continuum theories. While very flexible in in-
could have been analyzed directly as in the steps in Sectionygducing new quantities, the generalized continuum theories have
together with the satisfaction of interface conditio@s5). Al-  drawbacks associated with the difficulty of physical interpretation
though much cumbersome than that(f3—(4.4), we have in- of the higher-order stresses and extra boundary conditions. To
deed done the analysis and have verified that the superpositioRgid such higher-order formulations, a class of theories has been
true for this configuration. proposed by Bassaril], which introduces gradients of plastic
strain into the instantaneous tangent moduli. Otherwise, conven-
tional equilibrium equations of lower-order theory are retained.
The underlying premise of these enhanced conventional theories
This work was supported by the National Science Council, Tais that they accommodate only the same types of boundary con-
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Fig. 1 Numerical solutions of Eq. (4) with n=3 and m=2. The curves corre-

spond to the values A=1/4;1/2;1;2;4 from the bottom to the top.

Consider shearing displacements parallel to theaxis with =g, and g’'(0)=\By/L for n=3, m=2, ¢/L=1 and several
Uo(Xy)=u(x) and y(x)=u’(x). With o5(X;)=7(X), conven- values of\. The solution forn=1 is that with uniform plastic
tional incremental equilibrium requires (x) =0. strain. For each of the solutions, it is a straightforward process to
The incremental boundary value problem considered here hgisce together the entire solution to the boundary value problem
displacement boundary conditions(0)=0 andu(L)=v with v  with 0(0)=0 andu(L)=v by making an appropriate choice for
increased monotonically. The solution for the conventional mate{y). The plastic strain distribution will depend an as will the
rial where the stress satisfi€d) is a uniform state of stress andoverall relation between shear stress and shearing displacement
strain consistent with the incremental relatiops-v/L and U Uniqueness of solution requires that one extra boundary condi-
="yX: The plastic strain is also unif_orm and all details of thgjgn pe specified ory, in addition tou(0)=0 andu(L)=0. The
solution can be generated as a functiovof ~example shown introduces the extra condition at the left end of
Introduce the enhanced material by including the gradient gs interval. One could have equally well imposed the one extra
plastic strain in the tangent modulus @) according to boundary condition at the right end, but not on both simulta-
1 1 1 1 ny (Yp/)’o)z (n=1)/2n neous_ly. Higher or_der theoried-leck and Hutchi_nsor{Z] and
G §+ q with [T W (3)  Hutchinson[3]) do involve extra boundary conditions. In a one-

t Y Yo !7p dimensional problem such as the present one, they require speci-
where ¢ is the material length parameter. The factorcan be fication of extra conditions atoth ends of the interval. An extra
used to adjust the strength of the gradient hardening. In the aandition at each end of the interval would be expected on physi-
sence of the gradient this reduces to the original fé2and it cal grounds due to the constraint, or lack thereof, on plastic flow
meets requirements outlined for the type of formulation proposeglat would be expected due to interaction of dislocations with
by Bassan{1]. In the plastic ranger=G,y is precisely equiva- each boundary. Thus, it would appear that the added flexibility
lent to 7=H7Y,. Assuming conventional equilibrium holdsassociated with the extra boundary condition afforded by the en-
(7'(x)=0), 7 is uniform and, thus,y is uniform in both the hanced formulation in the present example is inconsistent with
elastic and plastic range. In the elastic range<{y), ¥=7ve sound physical principles.
=v/L, 7=Gy and y,=0. In the plastic ranger(>ry), equilib-  The values of parameters chosen for the numerical example in
rium requires € y,)’ =0. Becausey, is uniform, the displace- Fig. 1 are not exceptional; solutions can be generated for any
ment can be written as(v,X) = ye(v)X+Uuy(v,X) with y,=u,. choice of the parameters. Similarly, the one-dimensional shearing
Moreover, becauskl is homogeneous in the plastic strain and itproblem is not an isolated example. Another simple, basic ex-
gradient, the equationHy,)’ =0 admits a separated solutioy  ample for which an extra boundary condition must be specified is
=a(v)B(x) with y,=ap’ and y,=aB’ (a=da/dv). The the deformation well away from the edges of a uniform film at-
equation is third order and homogeneousgiand its derivatives: tached to a planar substrate. Moreover, the issue arises in this

enhanced class of conventional theories whether these problems

. o . , are approached using a phenomenological theory or a single crys-

B'I(n=1)mEZE" A +[1=(n=1)m]¢?p 2+ B2]1=0. (4) 4 theory such as that discussed by Bas§&hiThe need for an

One solution ta4) is obviouslyB’ =c corresponding to a uni- €xtra boundary condition in these examples arises because the
form plastic strain distribution. This solution coincides with theleformation at the onset of plasticity is uniform and, therefore, the
solution for the conventional material when the conditian&)) gradient of plastic strain is indeterminant. Consequently the tan-
=0 andu(L) =0, are enforced. But there is an entire family ofgent modulus is also indeterminant unless an additional condition
other perfectly acceptable solutions to the problem as posed traimposed such as the extra boundary condition. At the very least,
satisfy the boundary conditiong0)=0 andu(L)=uv. These so- these basic examples raise questions about enhanced conventional
lutions do not have a uniform distribution of plastic strain. Thejormulations, and they suggest that further conditions must be
are possible becaus)z{J is not otherwise determined at the onsestated to render unique solutions. Our own view is that higher-
of plastic flow. Due to the third-order character (@j, one addi- order boundary conditions, which specify constraints on plastic
tional boundary condition can be imposed. The example showndeformation at boundaries, interfaces, and free surfaces, should be
Fig. 1 was computed numerically frofid) with B(0)=0, B(L) an integral part of a strain gradient theory of plasticity.
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Acknowledgment be noted that the disk and the experimental apparatus used here
were also used ifl1]. In [2] and [10] a focus was placed on
tio:;hc?f VRVgrsl;gICﬁ\;\t/ t\;nvgstgErF:i?) rrtled by the Fund for the Promoinvestigating the onset of solitary waves on a very thin,
’ membrane-like disk spinning over a thin air film. The results in
[2] and [10] indicated a transition from harmonic to apparently
References fixed frequency solitary waves. This is similar to the frequency
[1] Bassani, J. L., 2001, “Incompatibility and Simple Gradient Theory of Pl.slsti(:l-OCk'In phenomenon described in the present work. _However, In
ity,” J. Mech. Phys. Solids49, pp. 1983—1996. [2,10] the speed dependence of unstable wave amplitude, and the
[2] Fleck, N. A., and Hutchinson, J. W., 2001, “A Reformulation of Strain Gradi-coexistence of multiple solutions in the post-flutter regime were
s ﬁ'mt F;J?StiCityj" fN M;()C(;‘d F:EBI/S-t$9'id*‘t5’£hppm?245—52271;,l 3. solids struc "0 presented. The present experiments are performed using a stiff
(3] 2 ;pl.n;gg'—zés:y + "Plasticity at the Micron Scale,"Int. J. Solids Struct.gy0 01 gisk enclosed in a large sealed chamber, a significantly dif-
' ferent experimental regime frof2] and[10].
This note aims to communicate rapidly experimental results,
: which describe the occurrence of new nonlinear dynamic phenom-
A Note On_ the F_)OSt'HUtter Dynamlcs ena occurring at rotation speeds above the onset of the flutter
of a Rotatmg Disk instability. These new results should assist the continuing devel-
opment of nonlinear fluid-nonlinear structure interaction modeling
for this problem.

Experimental Setup

The experimental apparat(sig. 1) utilized here is that used in
[1]. The design minimizes sources of experimental error, includ-

A. Ramant
School of Mechanical Engineering, Purdue University,
West Lafayette, IN 47907-1288

e-mail: raman@ecn.purdue.edu ing bearing noise, rotor imbalance, and unwanted stressing of the
disk caused by temperature gradients. The primary elements in-
M. H. Hansen clude a thin disk held between thick collars, a high precision
Wind Energy Department Risg National Laboratory, DK- Spindle, and vibration measurement instrumentation all placed in-
4000 Roskilde, Denmark side a large, sealed chamber. The disk has a nominal outer diam-

eter 356 mm, and the collar diameter is 106.7 mm. The disk ma-
terial is 8660 steel, ground to a uniform thickness 0.775 mm and

C. D. Mote, Jr. with maximum runout less than 0.10 mm. Residual stresses from
Professor of Engineering and President, manufacture are relieved after the grinding, creating a disk that is
Glenn L. Martin Institute, University of Maryland, substantially stress-free. For further details of the experimental
College Park, MD 20742 chamber and its functionality, the reader is referredlio

The experimental configuration in Fig. 2 shows two inductance-
type displacement transducers measuring the transverse motion of
the disk at a radial distance of 148 mm. The probes are angularly

The dynamic response of a thin, flexible disk spinning in an eseparated by 18 deg, have a linear range of 2.5 mm and a resolu-
closed air-filled chamber, beyond the onset of aeroelastic flutter,tisn of 0.20 um. The vibration response signals from the two
investigated experimentally. The results describe the occurrengigplacement probes are conveyed to a Tektronix 2630MS Modal
of new nonlinear dynamic phenomena in the post-flutter regime phalyzer coupled to an IBM PS2/Model 70. A counter connected
primary instability leads to the Hopf bifurcation of the flat equito an optical probe measures the disk rotation speed. An electro-
librium to a finite amplitude backward traveling wave. A secondnagnetic actuator is driven by amplified signals from the com-
ary instability causes this traveling wave to jump to a largeputer and applies a transverse force on the disk. Short duration
amplitude frequency locked, traveling wave vibration. For a smaflulses are applied to the actuator to investigate the stability of the
range of rotation speeds, both types of traveling wave motiofigttering motions under perturbation. The surrounding chamber is
co-exist. The results underscore the interplay between structugbsed during the experiments.

and fluidic nonlinearities in controlling the dynamic response OII:' . | d
the fluttering disk in the post-flutter regime. xperimental Procedure
[DOI: 10.1115/1.1504097 At pre-flutter speeds, disk vibration is excited randomly by the

turbulent boundary layer that develops on the disk surface at high

speeds. At each speed the Fourier spectrum of the vibration re-

Introduction sponse is computed and averaged over ten time intervals. The
) - ) ) o ~__ magnitude of each peak is converted through the sensor calibra-

The aeroelastic stability of rotating flexible disks is a significafon data to the amplitude of the corresponding traveling wave
concern for the engineering design of a diverse class of mechamieasured at the sensor location. Each peak in the vibration spec-
cal systems such as magnetic and optical data storage deviggfm is associated with &m, n) forward or backward traveling
thin sawblades, and turbomachinery. A majority of the literatuigaye withm nodal circles anth nodal diameters. Identification of
on the problem is devoted to linear coupled fluid-structure intefhe nodal diameter number is facilitated through computation of
action models aiming to predict accurately the speed and mode phase of the cross-spectrum of the data from the two displace-
the onset of aeroelastic flutt¢f,—9|. ment probes|11].

To the best of our knowledgél,2,4,1Q are the only works in  As the disk speed is increased, the first critical speed occurs at
the literature that present experimental data on the post-flutiy 5 rev/s rotation speed. At this speed, the backward traveling
vibration response of a spinning disk. [I], the disk speed was wave (BTW) frequency of the0,3) mode vanishes. With further
changed in increments of 100 rpm, which is too large to resolygcreases in disk speed th6,2), and (0,4) modes reach their
the transitions in dynamic response we are discussing here. It igdifical speeds in succession. As the disk speed is increased into
- the supercritical range, the frequency of %63) BTW increases

'To whom correspondence should be addressed from zero(This is sometimes called a reflected wavehe ampli-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ; f
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- tude of the peak corresponding to 183 BTW starts to increase

CHANICS. Manuscript received by the ASME Applied Mechanics Division, OctobeFapidly beyond 5_0 rev/s rotation speed indicating the onset of
7, 2001; final revision, February 6, 2002. Associate Editor: N. C. Perkins. aeroelastic traveling wave flutter.
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Fig. 1 A schematic of the chamber
(from [1])

(shown open here ) and the disk apparatus

esdthrough
Nozzle

At speeds greater than 50 rev/s the disk speed is increased lghange in slope of the speed variation of wave frequency, accom-
rev/s increments while increasing and then decreasing the rotatmamied by a flattening of the amplitude response. The solution
speed across the flutter instability. The fluttering BTW is alloweldranch from A to B is referred to as thegrimary instability
to stabilize after each speed increment and its frequency and dranch
plitude measured at the sensor locations. Two sets of data ar8. The first secondary instability occurs at poin{d approxi-
collected while the speed is gradually increased and one setriately 58.5 rev/s It is characterized by a sudden, large increase
taken as the speed is decreased from post-flutter speed. The dathe traveling wave amplitude, and a sudden, simultaneous de-

are collected and presented in Figéa)3and (b).

crease in frequency of the traveling wave. This instability is quite

Results
1. As the rotation speed is increased from 50 rev/s, the prima 35 9 (a)
flutter instability of the(0,3) BTW occurs at about 53 rev/s. This
point is indicated in Figs. @) and(b) by the point A. The exact & 39 |
location of point A requires an analysis of the Hopf bifurcation ir §
the presence of colored noise such as that generated by turbu :‘.;A
boundary layer excitation of the disk. £ 225 -
2. As the disk speed is increased above that at point A, tlz A
amplitude and frequency of the flutterii@,3) BTW continue to & 3¢ |
increase. However, below point B, there is a small, but discernit
15 T T T 1
45 50 55 60 65
Displacement Sealed Chamber
Probes
Electromagnetic
= Actuator 100 - (b)
e @ 90 -
% 80 1 l-.
=)
E -
Eg © Qu
a8 9
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o€ 40 AA
Optical Probe H M 15
o 30 4 A
g A
E. 20 - A
< 10 - @ A
Speed 0 A AAAAAA
Counter ’ '
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PC and Disk Rotation Speed (rev/s)
Tektronix
Spectrum Fig. 3 (a) Frequency of the (0,3) backward traveling wave
Analyzer (BTW) versus disk rotation speed; (b) vibration amplitude of
the (0,3) BTW measured at the sensor location, versus disk

Fig. 2 A schematic of the experimental configuration

Journal of Applied Mechanics

rotation speed. Triangles and squares represent dynamically
dissimilar branches.
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dramatic because the amplitude of the traveling wave neatlye secondary instability, the dynamics of the disk appear to be
doubles from about 35% of plate thickness to nearly 80% of plattominated by fluidic nonlinearities. The nonlinear coupling
thickness while its frequency decreases by nearly 20% fromechanism leading to the secondary instability may be found
nearly 33 Hz to 28 Hz. There is a marked increase in tonal acownongst the following explanations:

tic emission from the enclosure accompanying this secondary in

stability, 1. The near constancy of BTW frequency along the locked fre-

the locked frequency branciThe points on this branch are indi-; i
cated by solid squares in Fig(e83 and(b) while all the other data gﬁeir?rzzsgoar:/iglovr\llgnteh;;(éceked frequency branch. No attempts to

points including pre-flutter and along the primary instability 5 Ansther possible explanation for the near constant frequency
branch are indicated by solid triangles. At yet greater speeds, %}?the frequency locked branch could be coupling with an inde-
amplitude continues to increase while the wave frequency remagishdent vortex shedding frequency near the rim of the disk. Our
nearly constant. reliminary investigations using a hotwire anemometer to mea-

5. As the speed is decreased from above point B on the loc : : . T ;
i . e flow fluctuations just outside the disk rim did not support this
frequency branch, the amplitude of #®:3) BTW decreases while suggestion. However, we cannot rule out the possibility that flow

Itths frequergjcy remaéilns n.eart'lyb(.:lpnstant. Ats the tSpegd :(S decrga aration near the rim of the disk at large disk vibration ampli-
e second secondary instabilityccurs at point Cidisk speed yie mav be the cause.

approximately 56.5 revjsAt point C, the amplitude of the flut- ; :
tering (0,3 BTW decreases suddenly while its frequency in 3. Another explanation of these results may arise out of the

12-14. In these works, the authors investigate the hydrodynamic
. ability of the three-dimensional Karman swirling flow over rigid
again. . . . gisk with a viscoelastic coating. This system features several fluid
. 6. The secondary |nstab|_llty at point B a_lf'fects all stable trave ominated instabilities leading to time-periodic fluid motions and
ing waves, and not exclusively the flutterifg,3) BTW. In par- o strycture dominated instability, namely traveling wave flutter
BF the disk coating. Thaonlinearinteraction of these waves has
Bt been studied in the literature. This may yield important infor-
ation regarding the post-flutter lock-in phenomenon.

decrease. Below point A, the zero equilibrium of the disk is stab

sponding to other nodal diameter modes remain very small, th
frequencies all drop by about 5-15% at point B and remain nea
constant thereafter. Because this effect was also obseryé¢ian
exactly the same disk, we omit presenting this data for the sake of
brevity.

7. One additional test was performed. The disk speed was References
creased in small increments from below point A to above it while [1] D'Angelo, C., Ill, and Mote, C. D., Jr., 1993, “Aerodynamically Excited Vi-
the solution was allowed to stabilize on the primary instability ?f:stio;ﬁgac)i lglgtt% 0; a Thin Disk Rotating at Supercritical Speed,” J. Sound
?Irevnhﬁll’]e- J}zediieﬁgsﬁ?srgﬁﬁ]% ?)?Ltjl?;egrltr?la“g ?:;agﬁgypt?:g;scﬁ zr}% Boullahbal, D., 1995, “Self Excited Vibrations of a Spinning Disk,” Doctoral

. ' thesis, MIT, Cambridge, MA.
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In their paper, Tanov and Tabiei presented two micrc
mechanics-based models to evaluate the elastic moduli of wou
fabric reinforced composites. After going through their numeric:
examples shown in the paper, the present reader has a str
feeling that the accuracy and hence the efficiency of their mode
is suspect.

The fabric investigated by Tanov and Tabiei is schematical
shown in Fig. 1, wherea; and a,, are the fill and warp yarn
widths, andg; andg,, are the inter-yarn gaps between the fill anc
warp yarns. After the fabric is impregnated with a polymer matri
the areas in between the inter-yarn gaps have no reinforceme
Namely, they become pure matrix regions in the woven compos-
ite. Apparently, these pure matrix regions can significantly reduce Fig. 1 Schematic of a plain woven fabric
the overall stiffness and strength of the woven composite. The
amount of reduction depends on the gap-yarn ragipk; and
dw/ay . It has been shown by this auth@ee[1]) that when the
gap-yarn rati@g/a (supposingy; /a;=g,,/a,=g/a) is only 4%, a
reduction of as high as 22% in the in-plane elongation modulgge in-plane modulus of the cross-plied laminate. The maximum
can be recognized. The larger the gap-yarn ratio, the lower thgssible in-plane moduli for the three woven composites thus ob-
in-plane modulus of the resulting woven composite. Therefore, {fined are: 18.21 GPa, 11.77 GPa, and 45.1 GPa, respectively. In
order to achieve as high a mechanical performance as possilight of the fact reported in Ref1] that a 50% gap-yarn ratio
the woven composites have been generally fabricated with @8uld cause nearly 300% reduction in the in-plane modulus of a
small (if not zerg inter-yarn gaps as possible. woven composite, the predicted moduli of the woven composites

However, the three examples of woven fabric reinforced epoxyith the aforementioned very large gap-yarn ratios, i.e., 17.85
(with modulus between 3.45 to 4.51 GRaatrix composites in- GPa, 11.86 GPa, and 45.08 GPa from Tanov and Tabiei’s four-cell
vestigated by Tanov and Tabiei were all assumed to have venbdel, or 18.21 GPa, 11.93 GPa, and 45.17 GPa from their single-
large gap-yarn ratio@using the term of Ref2], the gap-yarn ratio cell model, would be hardly possible.
was given by (+V,)/V,, see Fig. 1 and Fig. 2 of Ref2]),
being 85.7%, 284.6%, and 72.4%, respectively. From the input
data of the yarns, epoxy matrices, and the yarn volume fractions
provided in Ref.[2], we can easily estimate the maximum pos-
sible in-plane moduli for the three woven composites without arffgeferences
inter-yarn gaps, which are given by those of the correspondingi] Huang, z. M., 2000, “The Mechanical Properties of Composites Reinforced

cross-plied laminatel® deg/90 defy The estimation for the prop- With Woven and Braided Fabrics,” Compos. Sci. TechnéQ, pp. 479—-498.
erties of the unidirectional0 deg lamina is made based on the [2] Tanov, R., and Tabiei, A., 2001, “Computationally Efficient Micromechanical
bridging micromechanics modéRef. [3], with bridging param- Models for Woven Fabric Composite Elastic Moduli,” ASME J. Appl. Mech.,

eters3=0.35 anda=0.45 by assuming that it is fabricated from 68, pp. 553-560. o _ , .
the yarn(fiber) and the matrix with the given yar(rﬁiber) volume [3] Huang, Z. M., 2001, “Simulation of the Mechanical Properties of Fibrous

fraction. The classical lamination theory is then applied to obtain (z:oggpoljt;_sl%the Bridging Micromechanics Model,” Composif2, No.
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Closure to “Discussion of lished in this journal. Needless to say, in developing this work we
ourselves have gone through a long and rigorous process of ques-

‘Computationally Efficient tioning, testing, and comparing, to get enough confidence in the

i H presented approaches and their assumptions and formulations. To
Micromechanical Models for Woven illustrate that, we have compared our results to previously pub-

Fabric Com posite Elastic lished data from theoretical, finite element, and experimental stud-
R ies. However, the author of the above discussion felt that the data
Moduli (20021 ASME J. Appl presented in our work is “hardly possible” based on his notions
Mech., 69, p. 867 for woven composites. He has tried to illustrate his point by first
using a micromechanics-based homogenization scheme to deter-
mine the values of the moduli presented by us. The values he has
R. TanoV come up with, come within a reasonable proximity to our results.
However, after determining these values, he further references a
A. Tabiei woven composite_“parametgr," which he calls “gap-yarn ratio,” _
Associate Professor and Director and based on which he claims that the above calculated moduli
should additionally undergo a “nearly 300% reduction.” If the

reader is to read Ref1] of his discussion he would immediately
Center for Excellence in DYNA3D Analysis, Department recognize that what is referenced there as “gap-yarn ratio” is just

of Aerospace Engineering and Engineering Mechanics, @ different way of expressing the composite yarn volume fraction,

University of Cincinnati, Cincinnati, OH 45221-0070 the ratio of the volume of the yarns to the volume of the entire
' ’ composite layer. By homogenizing the composite constituent

It is with great embarrassment and humiliation that we writgarns and matrix in his initial calculations Huang has already
these lines. We, the authors of the above paper, do strongly lgken into consideration this ratio. In this process he, as most
lieve that truth is born through doubt and dispute. However, waicromechanical approaches including ours do, has arrived to a
were very disappointed to read the “Discussion of ‘Computatiorfictitious continuous and homogeneous composite layer. The con-
ally Efficient Micromechanical Models for Woven Fabric Com+inuity and homogeneity of this layer would, of course, imply no
posite Elastic Moduli by R. Tanov and A. Tabigl. Appl. Mech. gaps within it, whatsoever. However, Huang has failed to recog-
68, pp. 553-560, 2001" by Zheng-Ming Huang. We do not nize that by claiming that due to gaps in the initial yarn periodic
believe that raising trivial questions in front of a large audience agrangement the properties should further be significantly reduced.
the readers of this journal would contribute in any way to scieng& this point of the analysis, after the homogenization is complete,
in general, and computational mechanics in particular. We thikere is no yarn, no matrix, no gaps, but only one continuous and
that the normal and less embarrassing for both sides way to &@émogeneous layer, which, to repeat yet again, excludes the pres-
dress such issues is through personal communication, but sikgee of any gaps. These gaps, used as basis for Huang’s suspect in
this did not happen we see these lines as our only opportunitydar work, make his claims incorrect and ungrounded. Another
defend our work. As much as we want to say, replying to theroof of which is that he failed to determine any definite value of
above discussion, we will limit our response to only pointing thehe parameters he states as inaccurate apart from that “nearly
answers to the questions therein raised. We apologize for trying300% reduction,” which even from a strictly arithmetical point of
explain what we think is obvious and trivial and what the readefiew makes no sense whatsoever.
might have already deduced if reading the referenced lines. We would hereby like to thank the Editor of thlurnal of

In his writing Huang is questioning the accuracy and therefoggpplied Mechanicsor the provided opportunity to defend our
the applicability of our work on composites micromechanics, pulivork. And finally, we would like to again express our confidence

in the methods in subject that we have previously developed and

Presently at IMMI, Westfield, IN. published.
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