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Axisymmetric Instability of Fluid
Saturated Pervious Cylinders
The emergence of two-phase instability is investigated analytically for the axisymm
cylinders made of a pervious solid matrix with pores filled with an interstitial flu
General analytical solutions are derived for a broad range of constitutive models, and
illustrated for a few specific types of solids. For particular combinations of stresses
material moduli, saturated hypoelastic and elastoplastic solids are found to und
two-phase instability, whereas their dry solid matrices remain stable. Two-phase ins
ity can emerge within stable single-phase solids due to the interaction between
matrix and fluid flow. The present analysis provides general analytical solutions usef
investigating the instabilities of axisymmetric soil samples subjected to the undra
triaxial tests of geomechanics.@DOI: 10.1115/1.1505624#
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Introduction

Nonlinear pervious solids which have connected pores s
rated with an interstitial fluid~i.e., two-phase materials!, can be-
come mechanically unstable as shown by Rice@1# for saturated
dilatant hardening rocks, and Vardoulakis@2,3# for saturated con-
tractant granular soils. The instabilities of two-phase mater
have not been investigated as extensively as those of single-p
solids~e.g., Bardet@4#, Biot @5#, Chau@6,7#, Hill and Hutchinson
@8#, Vardoulakis@9#, and Vardoulakis and Sulem@10#!. They have
been analyzed using the principle of effective stress~Schrefler
et al. @11#! and assuming constant-volume deformations~e.g.,
Darve@12#, Di Prisco and Nova@13#, Nova @14#, and Lade@15#!.
These approaches, which consider two-phase materials as si
phase materials, revealed the isochoric instabilities resulting f
solid nonlinearities, but neglected the effects of fluid compre
ibility and fluid flow throughout pervious solids. Bardet and Sh
@16# examined the two-phase instability of plane-strain rectan
lar samples of pervious solids with voids filled with compressib
incompressible fluids. Bardet@17# showed that two-phase instabi
ity causes numerical difficulties for the finite element solutions
plane-strain boundary value problems involving water diffus
within nonlinear solids. So far, two-phase instability has only be
investigated for plane-strain problems, and not for axisymme
conditions, which are very common in soil testing~e.g.,
Bardet,@18#!.

This paper analyzes the two-phase instability of axisymme
cylinders made of a pervious solid with pores filled with an int
stitial fluid. It derives general analytical axisymmetric solutio
for a large variety of constitutive models, examines the relati
of one and two-phase instabilities, and considers the compress
ity of solid and fluid constituents. The present analysis is limi
to axisymmetric bifurcation modes, which are commonly o
served on cylindrical samples during conventional laboratory
periments. Symmetry-breaking instabilities and antisymmetric
furcation modes~e.g., lateral buckling and localization of stra
within planar shear bands! are beyond the scope of this analys

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 2
1999; final revision, Sept. 14, 1999. Associate Editor: D. A. Siginer. Discuss
on the paper should be addressed to the Editor, Prof. Robert M. McMeek
Department of Mechanical and Environmental Engineering University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
Copyright © 2Journal of Applied Mechanics
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Definitions

Problem Definition. As shown in Fig. 1, the cylinder is mad
of a pervious solid matrix of height 2H and radiusR, the pores of
which are filled with an interstitial fluid. It is assumed that~1! the
fluid is free to permeate through the connected voids of the s
matrix, ~2! the lateral side and end extremities of the cylinder a
impervious and frictionless, and~3! the specimen remains cylin
drical when it is loaded axially in either compression or tensio
Hereafter, the solid-fluid mixture is referred to as a two-pha
material. The geometry of Fig. 1 is intended to represent tha
soil samples subjected to the undrained triaxial testing in soil m
chanics~e.g., Bardet@18#!. In these tests, cylindrical soil sample
are saturated with water, compressed axially through lubrica
frictionless platens, and confined laterally with pressure. Sim
geometries are also found in the testing of other porous so
~e.g., rocks and concrete!. The boundary conditions are carefull
selected so that the fluid pressure, stress, and strain can b
sumed uniform and axisymmetric throughout the cylinder. At a
given loading state, the Cauchy stress components anyw
within the cylinder are

s rr 5suu and s rz5s ru5szu50 (1)

wheres rr , suu , s ru , s rz , andszu are the Cauchy stress com
ponents in the polar coordinatesr, u, andz of Fig. 1.

Possible departures from uniform states will be investigated
formulating a linear stability~or incremental bifurcation! problem.
Starting from a given uniform state of fluid pressure, stress,
strain, we investigate the circumstances for which the rates
fluid pressure, solid stresses, and solid strains may become
uniform within the cylinder. For a given rate of prescribed loa
ing, the boundary conditions of the incremental bifurcation pro
lem are as follows:

vz50, ṫ rz50 and ṗ,z50 for z56H and 0<r<R
(2a)

v r50, ṫ rz50 and ṗ,r50 for r 5R and 2H<z<H
(2b)

where ṗ is the time rate of fluid pressure change,v the solid
velocity, andṫ the rate of applied distributed force at the bounda
The partial differentiation with respect tor, u, andz are denoted
with ‘‘, r ’’ ‘‘, u’’, and ‘‘, z’’ and the derivative with respect to time
with a dot. The incremental bifurcation problem will now be com
pleted by introducing geometric and material nonlinearities, a
equilibrium equations.

Stress States and Rates.By definition, the distributed force
vector t acting on the deformed surface, with areadSt and unit
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normal vectorn, is related to the Cauchy stress tensors and the
nominal ~Piola-Kirchhoff! stress tensorS through

t5n•sdSt5N•SdSo (3)

whereN anddSo are the unit normal vector and area, respective
of the reference surface. Nominal and Cauchy stresses are re
through

S5det~F!F21
•s (4)

whereF21 is the inverse transformation of the deformation g
dient F. By definition the Kirchhoff stress tensort is related tos
through

t5det~F!s (5)

The rates oft andS are

ṫ5N•ṠdSo and Ṡ5det~F!F21
•~ ṡ2L•s1strace~L !!

(6)

whereL is the velocity gradient tensor.

Rate-Type Constitutive Models. In the present linear stabil
ity analysis, the behavior of the solid materials is modeled w
rate-type equations~Truesdell and Noll@19#!

t̂5C•D (7)

where t̂ is the Jaumann rate of Kirchhoff stresst, D the rate of
deformation, andC the fourth-order stiffness tensor. In general,C
is homogeneous of degree zero inD and depends on the states
stress and strain. The Jaumann rate of Kirchhoff stress is

t̂5 ṫ2W•t1t•W. (8)

The rate of deformationD and spin tensorW are

D5
1
2~L1LT! W5

1
2~L2LT! (9)

where the superscript ‘‘T’’ denotes transpose. The Jaumann rate
Cauchy stressŝ, which is defined similarly to Eq.~8!, is related to
t̂ through

t̂5det~F!~ ŝ1strace~D!!. (10)

When the present configuration is chosen as reference, the d
mation gradient is approximately equal to the unity transformat
1:

F'F21'1 and det~F!'1. (11)

In this condition, the nominal, Cauchy, and Kirchhoff stress te
sors are identical:

S5s5t (12)

and their rates are related through

t̂5ŝ1strace~D! and Ṡ5ŝ1strace~D!2s•W2D•s.
(13)

Fig. 1 Geometry, coordinate systems, and boundary condi-
tions of cylindrical porous solid for linear stability analysis
718 Õ Vol. 69, NOVEMBER 2002
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The generality of the present analysis is not affected by the ch
of the Jaumann rate of Kirchhoff stress. As shown in Bardet@4#,
the analysis applies to other types of objective stress rates
adding stress-dependent moduli to the constitutive moduli
Equation~7!.

Axisymmetric Conditions. In the case of axisymmetric ve
locity fields ~i.e., vu50 andv r ,u5vz,u50!, the nonzero terms of
deformation rate and spin tensors are

Drr 5v r ,r , Dzz5vz,z , Duu5
v r

r
,

Drz5
1
2~v r ,z1vz,r !, Wrz52Wzr5

1
2~v r ,z2vz,r !. (14)

Hereafter, we consider the following axisymmetric constituti
equation:

t̂ rr 5C11Drr 1C12Duu1C13Dzz (15a)

t̂uu5C12Drr 1C11Duu1C13Dzz (15b)

t̂zz5C31Drr 1C31Duu1C33Dzz (15c)

t̂ rz52C44Drz (15d)

whereC11, C12, C13, C33, C31, andC44 are constitutive moduli.
This general constitutive form, which was used by Chau@6,7# will
be later specified for some particular types of constitutive mod

Equilibrium Equations. In axisymmetric conditions and cy
lindrical coordinates, the stress-rate equilibrium equations
solid materials are~Hill @20#!:

Ṡrr ,r1Ṡzr,z1
1

r
~Ṡrr 2Ṡuu!50

Ṡrz,r1Ṡzz,z1
1

r
Ṡrz50. (16)

Using Eq. ~13!, Eq. ~16! can be expressed in terms of Cauc
stress:

ŝ rr ,r1ŝzr,z1
1

r
~ ŝ rr 2ŝuu!1~s rr 2szz!Wzr,z50 (17a)

ŝ rz,r1ŝzz,z1
1

r
ŝ rz1~s rr 2szz!S Wzr,r1

1

r
WzrD50.

(17b)

Solid-Fluid Coupling. The solid-fluid coupling is described
using the following generalized effective stress principle~Schre-
fler et al.@11#!:

s i j8 5s i j 1apd i j (18)

where s i j is the total Cauchy stress tensor,s i j8 the effective
Cauchy stress tensor, andp the interstitial fluid pressure. By sign
convention, boths i j and s i j8 are positive in tension, andp is
positive in compression. The coefficienta is a positive constant
that depends on the bulk modulusK of the solid skeleton and the
bulk modulusKs of the solid grains as~Schrefler et al.@11#!

a512K/Ks . (19)

The physical parametera is mathematically convenient to mode
the solid-fluid coupling from complete~i.e., a51! to none~i.e.,
a50!. Hereafter, the superscript prime is omitted for effecti
stress because all stresses for the solid phase are effective
substituting Eq.~18! into Eq. ~17!, the axisymmetric equilibrium
equations for two-phase materials are

ŝ rr ,r1ŝzr,z1
1

r
~ ŝ rr 2ŝuu!1~s rr 2szz!Wzr,z5a ṗ,r

(20a)
Transactions of the ASME
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1

r
ŝ rz1~s rr 2szz!S Wzr,r1

1

r
WzrD5a ṗ,z .

(20b)

The fluid pressurep obeys the flow conservation equation~Schre-
fler et al.@11#!

p,rr 1
1

r
p,r1p,zz5bFaS v r ,r1

1

r
v r1vz,zD1

ṗ

QG (21)

where the parameterb is related to the fluid unit weightgw and
coefficient of permeabilityk through

b5gw /k. (22)

The parameterQ is the bulk modulus of the two-phase materia
which is related to the porosityn and the fluid bulk modulusK f as
follows ~Schrefler et al.@11#!:

1

Q
5

n

K f
1

a2n

Ks
. (23)

After introducing the following coefficients

d15C112s rr , d25C332szz (24a)

d35C442
1
2~s rr 2szz!, d45C441C131

1
2~s rr 1szz!

(24b)

d55C441
1
2~s rr 2szz!, d65C441C312

1
2~s rr 1szz!

(24c)

Eqs.~20! and ~21! become

d1S v r ,rr 1
1

r
v r ,r2

1

r 2 v r D1d3v r ,zz1d4vz,rz5a ṗ,r (25a)

d5S vz,rr 1
1

r
vz,r D1d2vz,zz1d6S v r ,rz1

1

r
v r ,zD5a ṗ,z

(25b)

ṗ,rr 1
1

r
ṗ,r1 ṗ,zz5bFaS v̇ r ,r1

1

r
v̇ r1 v̇z,zD1

p̈

QG . (25c)

Equation~25! is independent ofC12 due to axisymmetric condi-
tions. The incremental boundary value problem is finally form
lated in terms of solid velocityv r andvz and fluid pressurep after
restating Eq.~2! as follows:

vz50, vz,r50, v r ,z50 and ṗ,z50 for

z56H and 0<r<R (26a)

v r50, vz,r50, v r ,z50 and ṗ,r50 for r 5R and

2H<z<H. (26b)

Trivial and Nontrivial Bifurcating Solutions. Fields of con-
stant solid velocity gradient and fluid pressure are obvious s
tions of Eqs.~25! and ~26!. The nontrivial bifurcating solutions
are sought in the following modes:

v r5V1J1~b1r !cos~b2z1u2! f ~ t ! (27a)

vz5V2J0~b1r !sin~b2z1u2! f ~ t ! (27b)

ṗ5PJ0~b1r !cos~b2z1u2! f ~ t ! (27c)

whereJn(x) is the Bessel function of the first kind andnth order,
and u2 denotes a phase shift. These modes satisfy the boun
conditions of Eq.~26! when b1 , b2 , and u2 are selected as
follows:

b1R50, 63.832, 67.016, 610.173, . . . ~roots of J150!
(28a)

b2H5
p

2
m2 for m2 integer (28b)
Journal of Applied Mechanics
l,

u-

lu-

ary

u25H 0 ~ for m2 even!

p

2
~ for m2 odd!

. (28c)

By substituting these modes into Eq.~25! and introducingf * so
that

f * 5b
ḟ ~ t !

f ~ t !
, (29)

the following relations are obtained:

F b1
2d11b2

2d3 b1b2d4 2ab1

b1b2d6 b1
2d51b2

2d2 2ab2

ab1f * ab2f * b1
21b2

21
f *

Q

G H V1

V2

P
J 5H 0

0
0
J .

(30)

From the third line in Eq.~30!, f * is given by

f * 5
2~b1

21b2
2!P

a~b1V11b2V2!1
P

Q

. (31)

The coefficientf * is thus independent of time and space an
hence, the solution of Eq.~29! is

f ~ t !5 f 0 exp~ f * t/b! (32)

wheref 0 represents an initial amplitude of the nontrivial bifurca
ing solution. Whenf * .0, f (t) grows exponentially with time and
eventually becomes infinite. Hence, the bifurcating solution g
erates a material instability. Whenf * <0, the bifurcating solution
dies out with time, and has little physical relevance. A set
nontrivial bifurcating solutions forV1 , V2 , andP exist when the
determinant of the matrix in Eq.~30! becomes zero. After defining
the wavelength ratio of the bifurcating mode as

L5
b2

b1
, (33)

the condition for the existence of nontrivial bifurcating solutio
in Eq. ~30! is

a2f *

b1
21b2

2 5
N~L!

D~L!
.0. (34)

The numerator and denominator of the left side of Eq.~34! are

N~L!5a1L41b1L21c1 , D~L!5a2L41b2L21c2
(35)

where

a15d2d3 , b15d1d21d3d52d4d6 , c15d1d5 (36a)

a252d32a1x, b252d12d21d41d62b1x,

c252d52c1x (36b)

x51/a2Q. (36c)

Three types of instability and associated conditions can
defined:

solid-fluid ~SF! instability for N~L!/D~L!.0 (37a)

infinite solid-fluid ~SF`! instability

for D~L!50 and N~L!Þ0 (37b)

solid ~S! instability for N~L!50 (37c)

The SF instability is obtained when there are modes with wav
length ratiosL satisfying Eq.~37a!. The SF` instability is a
particularSF instability with f * →1`, which corresponds to an
NOVEMBER 2002, Vol. 69 Õ 719
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Fig. 2 Dimensionless p * -q * domains of S, SF, and SF` instabilities for hy-
poelastic material with incompressible fluid „x*Ä0, nÄ0.3…
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infinite exponential growth, and a severe solid-fluid instabili
The S instability is the material instability obtained for the sol
alone without interstitial water. TheS instability is obtained by
settinga50 in Eq. ~30!, fully decoupling the solid and fluid, and
ignoring the interstitial fluid.SF instability can be physically in-
terpreted as the result of a rapidly growing flow of interstitial flu
through the pervious solid, which may create solid-fluid inter
tion forces and promote the emergence of nonuniform mode
deformation. In theory,SF instability could be detected by mea
suring the spatial fluctuation of fluid pressure within the mate
specimens tested in the laboratory.

Applications
The one and two-phase axisymmetric instabilities will be exa

ined for three particular types of rate-type constitutive equatio
~1! hypoelastic models,~2! elastoplastic models, and~3! Rudnicki
pressure-sensitive models.

Hypoelastic Model. The constitutive moduli of isotropic hy
poelastic models are~Bardet@4#!

C115C3352m1l, C135C315l and C445m (38)
MBER 2002
y.
d

id
c-
of

-
ial

m-
ns:

wherem is the shear modulus andl the Lame’s modulus, which
are related to Poisson’s ration through

l5
2nm

122n
. (39)

It is convenient to introduce the following nondimensional stre
components and coefficients:

p* 52
s rr 1szz

2m
q* 5

s rr 2szz

2m
, and x* 5mx. (40)

The hypoelastic model is useful for developing closed-form a
lytical solutions for simple linear stability problems and compa
ing numerical and analytical results~e.g., Bardet@17#!. However,
the hypoelastic model has only two material parameters,
therefore limited capabilities in modeling realistically all types
material responses.

Figures 2 to 4 show thep* -q* domains ofS, SF, and SF`
instability for various cases of fluid and solid compressibility. B
definition, p* is positive in compression and negative in tensio
Thesep* -q* domains are symmetric about thep* - axis, and are
Fig. 3 Dimensionless p * -q * domains of S, SF, and SF` instabilities for hy-
poelastic material with compressible fluid „x*Ä0.5, nÄ0.3…
Transactions of the ASME
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Fig. 4 Dimensionless p * -q * domains of S, SF, and SF` instabilities for hy-
poelastic material with compressible fluid „x*Ä0.5, nÄ0.43…
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only represented for positive values ofq* . As shown in Fig. 2 for
incompressible fluid~i.e., x*50!, zero stress states are initiall
stable. Forq* 51 andp* .0, all types of instability emerge si
multaneously. Forp* ,22, SF and SF` instabilities appear in
areaA without S instability. As shown in Fig. 3, the size of area
shrinks with the compressibility of the interstitial fluid~i.e.,
x*50.5!. SF and S instabilities may occur simultaneously whe
p* decreases below 3. As shown in Fig. 4, the size of area A
shrinks as the solid becomes more incompressible~i.e., n50.43!,
and vanishes for incompressible material~i.e., n50.5!. In the in-
compressible limit,S, SF, and SF` instabilities may emerge
simultaneously.

Elastoplastic Mohr-Coulomb Model. The constitutive
moduli of elastoplasticity are~Hill @21# and Bardet@4#!

C1152m1l2
1

H8
@2mP111l~P3312P11!#

3@2mQ111l~Q3312Q11!#,

C3352m1l2
1

H8
@2mP331l~P3312P11!#

3@2mQ331l~Q3312Q11!#,

C135l2
1

H8
@2mP111l~P3312P11!#@2mQ331l~Q3312Q11!#,

C315l2
1

H8
@2mP331l~P3312P11!#@2mQ111l~Q3312Q11!#,

C445m

H85H1l~P3312P11!~P3312P11!12m~2P11Q111P33Q33!
(41)

whereH is the plastic modulus; andPi j andQi j are unit tensors
representing the flow and yield directions, respectively. Fo
Mohr-Coulomb material and axisymmetric conditions, the u
tensorsPi j and Qi j are related to the mobilized friction anglef
and the dilatancy anglec as follows:

P335
sinc22

A3~21sin2 c!
and P115

11sinc

A3~21sin2 c!
(42a)
echanics
n
lso

a
it

Q335
22~12sinf!

A2~322 sinf13 sin2 f!
and

Q115
11sinf

A2~322 sinf13 sin2 f!
(42b)

where the mobilized friction anglew and the dilatancy anglec are
defined by

sinf5Uszz2s rr

szz1s rr
U and

sinc5
2~d«zz

p 12d« rr
p !

d«zz
p 2d« rr

p 5
2~P3312P11!

P332P11
. (43)

Figure 5 shows an example of instability domain in thef2H/m
plane forn50.3, c5230 deg andx*50. The variations of elas-
toplastic moduli for fixed values ofn, c, andx* are characterized
solely by the values off andH/m, which are represented usin
the point M of coordinatesf2H/m in Fig. 5. When the stress
states are initially isotropic at the beginning of a shear loading,
point M is initially in the upper left corner, which corresponds
an elastic state (H@1) and no shear stress~f50!. As the shear
stress increases, point M moves down from the upper left co
and intersects the SF/S boundary, orSF`/SF boundary. Iff,8
deg, point M intersects first theSF/Sboundary for strain-softening
conditions (H,0). In this case,SF andS instabilities will occur
simultaneously. Iff.8 deg, point M will intersect theSF`/SF
boundary for either strain-softening, strain-hardening (H.0), or
perfectly plastic (H50) conditions. This implies thatSF` and/or
SF instabilities may emerge withoutS instabilities for contractant
elastoplastic materials. In other words,SF` and/orSF instabili-
ties are not necessarily generated byS instabilities.

Rudnicki Model. In the investigation of material instability
Rudnicki @22# proposed the following rate-independent consti
tive model for axisymmetric conditions, which generalizes m
constitutive models used in linear stability analyses

C1159K/41Gt , C1359Kn/2, C3159Kr * /4,

C335E/219Knr * /2, C445Gl , (44)

whereK, E, n, r * , Gl , andGt are material moduli, the physica
meanings of which are defined in Rudnicki@22# and Chau@7#.
NOVEMBER 2002, Vol. 69 Õ 721
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Fig. 5 Domain of S, SF, and SF` instabilities for elastoplastic contractant Mohr-
Coulomb material and incompressible fluid „nÄ0.3, cÄÀ30 deg and x*Ä0…

Fig. 6 Dimensionless p * -q * domains of S, SF, and SF` instabilities for Rudnic-
ki’s model for incompressible fluid „x*Ä0, Gl Õ2GtÄ0.5, K Õ2GtÄ1, nÄ0.3, and r *
Ä0.6…
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Figure 6 shows the domains of instability of Ruckniki’s model
the p* 2q* coordinates used for the hypoelastic model of Fi
2–4 for particular values of material parameters:Gl /2Gt50.5;
K/2Gt51; n50.3; r * 50.6; and incompressible interstitial flui
x*50. For this particular selection of model parameters, the
mains ofS, SF, andSF` instabilities are similar to those of Fig
2, except for the asymmetry about theq* -axis. As for hypoelastic
models,SF andSF` instabilities are not generated byS instabil-
ity in area A.

Discussion
A general mathematical framework and analytical solutio

have been derived for studying the two-phase instability of a
symmetric cylinders made of a wide variety of pervious sol
filled with a compressible/incompressible fluid. The present an
sis is based on the assumptions stated in Eqs.~17!, ~18!, and~21!.
The analysis holds provided that these mechanical assump
represent the material physics, but may break down in some
EMBER 2002
in
s.

o-
.

ns
xi-
ds
ly-

ions
cir-

cumstances, e.g., when Eqs.~18! and ~21! do not hold due to
capillary effects and bubble formation in the interstitial flu
~Schrefler et al.@11#!.

The analysis needs to be extended to nonaxisymmetric de
mations~e.g., strain localization!, which have been shown in th
case of dry solids to become the predominant modes of instab
when the axisymmetry constraints are removed~e.g., Chau
@7,23#!. The general framework and solutions also need to be
plied to constitutive models specific to geomechanics and inve
gated in the context of undrained triaxial testing. There is als
need to investigate the effects of two-phase instability on the
merical solutions of liquefaction problems in geomechanics, f
lowing the approach of Bardet@17# for hypoelastic materials.

Conclusions
The emergence of two-phase instability was investigated a

lytically in the case of pervious solid cylinders with voids fille
with an interstitial fluid. The analysis develops a mathemati
framework and analytical solutions that apply to a broad range
Transactions of the ASME
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material models, and illustrates their application for specific ty
of solids including hypoelastic and elastoplastic models. For p
ticular values of stress states and material moduli, hypoelastic
elastoplastic models were found to undergo two-phase instab
and no solid instability. Two-phase instability can emerge in sta
solids due to the interaction between fluid flow and porous s
matrix. The general results of the present analysis are releva
geomechanics for studying instabilities in undrained triaxial te
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Motorcycle Steering Oscillations
due to Road Profiling
A study of the effects of regular road undulations on the dynamics of a cornering m
cycle is presented. This work is based on an enhanced version of the motorcycle
described in ‘‘A Motorcycle Model for Stability and Control Analysis’’ (R. S. Sharp and
J. N. Limebeer, 2001, Multibody Syst. Dyn., Vol. 6, No. 2, pp. 123–142). We make use o
root-locus and frequency response plots that were derived from a linearized version o
model; the linearization is for small perturbations from a general steady-cornering e
librium state. The root-locus plots provide information about the damping and reso
frequencies of the key motorcycle modes at different machine speeds, while the freq
response plots are used to study the propagation of road forcing signals to the moto
steering system. Our results are based on the assumption that there is road forcing
ciated with both wheels and that there is a time delay between the front and rear w
forcing signals—this is sometimes referred to as wheelbase filtering. As has bee
plained before, control systems are used in the nonlinear simulation code to establis
maintain the machine’s speed and roll angle at preset values (for flat road running). T
controllers are used to find the machine’s equilibrium state and not to emulate a rid
control actions. The results show that at various critical cornering conditions, regu
road undulations of a particular wavelength can cause severe steering oscillations. A
speeds the machine is susceptible to road forcing signals that excite the lightly da
wobble and front suspension pitch modes. At higher speeds it is the weave and front
hop modes that become vulnerable to road forcing. We believe that the results and t
presented here explain many of the stability related road accidents that have bee
ported in the popular literature and are therefore of practical import. The models use
this research make use of the multibody modelling package AUTOSIM (Autosim1
Reference Manual, 1998, Mechanical Simulation Corporation) and are available a
web site http://www.ee.ic.ac.uk/control/motorcycles/. The motorcycle and tire param
can be found at the end of the code.@DOI: 10.1115/1.1507768#
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1 Introduction
It has been known for a long time that single-track vehicles

be unstable. Prior research has examined this issue in the co
of small perturbations from straight running~@1–3#!, and small
perturbations from steady-state cornering~@4–6#!. Oscillatory in-
stabilities are clearly problematic and lightly damped resonan
are commonplace. It is clear that there is a possibility that th
lightly damped modes could be excited by regular road surf
undulations. As we will now explain, there is a persuasive body
nontechnical evidence that suggests that these forced oscilla
are an illusive source of danger for the riders of powerful mot
cycles.

In the established wisdom~@7#! low-frequency weave oscilla
tions are associated with high-speed operation, while hig
frequency wobble, or wheel shimmy resonances, are assoc
with lower speeds. There is some anecdotal evidence to sug
that wobble frequency steering oscillations can also occur at m
higher machine speeds. Collectively, these phenomena are th
sis of a notable class of accidents that involve no other road us
Although this type of accident has been known for a long time
has proved remarkably difficult to obtain a complete understa
ing of the mechanics involved. There appear to be at least
reasons for this: First, single-track vehicle out-of-control accide
are usually poorly documented and are often not witnessed

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octob
21, 2001; final revision, March 6, 2002. Associate Editor: O. O’Reilly. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
724 Õ Vol. 69, NOVEMBER 2002 Copyright ©
an
text

ces
ese
ce
of
ions
r-

er-
ated
gest
uch

ba-
ers.
, it
nd-
our
nts
by

independent observers. Secondly, there appears to be a tend
on the part of the investigating authorities and manufacturer
prematurely attribute them to ‘‘rider error.’’ Thirdly, these even
only occur under an unusual combination of circumstances
volving the motorcycle type and setup, the speed, the lean an
the rider’s stature, and the road profile. This is consistent with
notion that the machine development process sometimes fai
reveal these behavioral problems. Finally, we will show that
underlying mechanisms are inherently complex.

A number of reports that describe these handling difficult
have appeared in the popular motorcycle press over the las
years. Although these reports are based predominantly on a
dotal evidence, there is a compelling level of consistency betw
them. One example of a loss-of-control event occurred dur
police motorcycle training and the circumstances of this incid
are summarized in the following extract from@8# ‘‘ . . . there is a
specific section of road which can cause severe handling diffi
ties for motorcycles being ridden at high speed . . . this section of
road has a series of small undulations in it at the beginning o
large sweeping right hand bend . . . ’’ .

Another well-publicized event occurred at a relatively lo
speed under apparently benign circumstances~@9#!: ‘‘ . . . we were
approaching a village at no more than 65/70 mph, on a smo
road, on a constant or trailing throttle when, for no apparent r
son, the bike went wildly out of control . . . ’’ . This incident and
some of the associated background are described in@10–13#.

A high-profile fatal accident occurred, when according to
eye witness, the machine being ridden went into a violent ‘‘ta
slapper’’2 at about 60 mph as the rider was going around a ge
corner ~@14#!. The offending machine model was subsequen
recalled in the U.S.~@15#! as well as in the U.K.~@16#!. In their

er
on
art-

nta
after

2This expression is used to describe an oscillation that causes the handle b
swing from lock to lock.
2002 by ASME Transactions of the ASME
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recall statement, the manufacturers said: ‘‘ . . . the front wheel
may oscillate, causing the handlebars to move rapidly from sid
side when accelerating from a corner and/or~accelerating! over a
rough road surface, commonly known as tank slapping . . . ’’ .
There was further speculation as to the possible causes o
difficulty and various tests were performed on the machine
involved changing tires, fitting a steering damper and chang
the rear damper unit~@17#!. Tire changes did not make a signifi
cant difference, but a new rear damper unit and a steering dam
made a large improvement. One article claimed that riders w
weigh over 95 kg~210 lbs! had not experienced the instabilit
phenomena~@18#!.

Resonance related difficulties are still being reported in
popular press in the context of modern motorcycles~@19#!.

A remarkable video tape of a weave-type instability was tak
during the 1999 Formula One Isle of Man TT race~@20#!. Paul
Orritt can be seen exiting the gentle left-hand bend at the to
Bray Hill on a Honda Fireblade at approximately 150 mph wh
for no apparent reason his machine went into an uncontrolla
2–3 Hz oscillation. His motorcycle subsequently ran wide a
crashed. ‘‘It just wouldn’t come out of the tank slapper,’’ he r
called. ‘‘I was no longer in control . . . the trouble began imme-
diately after I ran over a couple of bumps in the freshly laid ro
surface . . . ’’ ~@21#!. Needless to say, the financial and social co
associated with a serious motorcycle accident can be high.
Metropolitan police estimate that the cost of a fatal accident
volving one of their officers is approximately £1.2 M~$1.7 M!
~@22#!. This reason alone is sufficient that the matter should
treated as important and urgent.

The free-steering system and the associated self-steering a
is fundamental to the stability and dynamic response propertie
all motorcycles and it produces several lightly damped oscillat
modes: wobble, weave, cornering weave, patter, shake, and s
~@4,5,23#!. For the purposes of the present study, it is conven
to distinguish straight-running motorcycle behavior from the m
complex cornering case. When a motorcycle is upright and r
ning in a substantially straight line, the in-plane motions such
bounce, pitch, and wheel hop are decoupled at first-order l
from the out-of-plane motions such as the sideslip, yaw, and
When the machine is leaned over in cornering, the in-plane
out-of-plane motions are coupled and this cross-coupling
creases with increased roll angle. As a consequence of this fea
mathematical models for the straight-running case are sig
cantly simpler to derive than their cornering counterparts. N
withstanding Koenen’s excellent work~@5#!, it seems fair to say
that the effective analysis of motorcycle cornering behavior
quires an automated multibody modeling software package~@4#!.
It is clear from the motorcycle dynamics literature that the stu
of motorcycle cornering effectively stagnated for almost 20 ye
and that computer assisted multibody modeling tools were nee
to break this impasse. Such software has recently been appli
motorcycle dynamics studies~@3,4,23–25#!, facilitating consider-
able extensions to previous knowledge.

When a motorcycle is leaned over in cornering, the coupl
terms that cause the in-plane and out-of-plane motions to inte
provide a signal transmission path between road undulations
lateral motions. This mechanism provides the means wher
steering oscillations can be produced by road profiling. We beli
that the theory and results presented here provide an explan
for most of the behavioral observations described above. In e
case it will be assumed that the machine is operating in the ne
borhood of an equilibrium cornering condition and we will co
centrate on the excitation of steering oscillations.

The paper is concerned with quantifying the machine respo
to regular road undulations through theoretical analysis. More
ticularly, the strength of the steering response and the assoc
design parameter sensitivity problem are studied. The mac
condition of interest involves cornering and consequently
elaborate mathematical model of the system is needed. The e
Journal of Applied Mechanics
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ing state-of-the-art model~@4#! is extended to include road profile
induced effects. The full nonlinear model is linearized for sm
perturbations about an equilibrium cornering state that is fou
from a simulation of the motorcycle-rider system on a smoo
road. The linear, small perturbation, uncontrolled model is th
subjected to sinusoidal road displacement forcing and the
quency responses are computed. The responses to forcing
both the front and rear wheels are considered. When studying
combined effects of front and rear wheel road forcing, a whe
base travel time delay is introduced into the model that ensu
that the two road wheel inputs are correctly phased. Sectio
contains a brief description of the mathematical model and
particular motorcycle being studied~Section 2.1!, the modeling
extensions required for road forcing studies~Section 2.2!, a brief
description of the various checks that were used to qualify
computer model~Section 2.3!, and the role of the rider and the
linearization process~Section 2.4!. The results are presented an
discussed in Section 3. Section 4 contains the conclusions a
brief commentary on the directions of future work.

2 The Mathematical Model
The motorcycle model used in this study is based on that gi

in Section 3 of@4# and the account given here will only describ
the extensions needed for this study. Figure 1 shows the mac
in its nominal configuration in static equilibrium with the ke
modeling points labeled asp1 ,¯ ,p14. The symbolic multibody
modeling package AUTOSIM@26# was used to convert this con
ceptual model into a FORTRAN code that is used to produce
nonlinear simulation results, and a MATLAB M-file for the lin
earized model based studies.

The model contains the following components: a main fram
with six degrees-of-freedom, a swinging arm and its associa
rear suspension system, a body with a roll freedom relative to
main frame that is used to represent the upper body of the ride
front frame with twist and steer freedoms, telescopic front for
spinning road wheels, and dynamic tires. The road is assume
be flat, or regularly profiled, and the motorcycle can travel an
where in the horizontal plane.

2.1 The Machine. The machine and machine paramete
are based on a large touring machine of an early 1980’s de
~@5#!; some of its basic parameters are given in Table 1. The
terested reader can obtain a complete set of parameters from
website http://www.ee.ic.ac.uk/control/motorcycles/.

Fig. 1 Motorcycle model in its nominal configuration

Table 1 Machine parameters

Total mass 235 kg~518 lbs!
Maximum engine power 65 kW~87 bhp!
Steering head angle 30 deg
Steering offset 0.0659 m
Mechanical trail 0.0924 m
NOVEMBER 2002, Vol. 69 Õ 725
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Fig. 2 Wheel and tire geometry, showing the migration of the ground contact point
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2.2 Road Forcing. In order to introduce road forcing into
the model, it is necessary to examine the road wheel ground
tact geometry in some detail. We will assume that the road un
lation amplitudes are small compared to the wheel radii and
their wavelengths are long.

The road wheel ground contact geometry is shown in deta
Fig. 2.

A vector along the line of intersection between the ground a
wheel planes can be calculated via a cross product between
tors that are normal to these planes. Since the wheel spi
unit vector [fwy] is perpendicular to the wheel plane
and [yaw –frz] is a unit vector that is normal to the groun
plane, we can usecross([fwy],[yaw –frz]) to generate the
plane-intersection vector. The Appendix contains a brief desc
tion of the AUTOSIM instructions used here. The vector pointi
from the wheel center to the ground contact point must be perp
dicular to both the wheel spindle vector and the plane intersec
vector. This vector is computed using the vector triple prod
cross(cross([fwy],[yaw –frz]),[fwy]) . To ensure
that the triple product is a unit vector, we divide it by the sine
the angle between[yaw –frz] and [fwy] as follows:

cross(cross([fwy],[yaw –frz]),[fwy])/

sqrt(1-dot([fwy],[yaw –frz]) ** 2) .

Note that [fwy] is always perpendicular tocross([fwy],
[yaw –frz]) and consequently there is no need for a seco
normalization term. The vertical component of the vector joini
the origin of the yaw frame axis systemyaw–fw0 to the front
wheel centerfw0 is the height from the ground of the whe
center in the case of a smooth road and is computed as follo

dot(pos(fw0,yaw –fr0),[yaw –frz]) .

In the case of a profiled road, the height from the ground of
front wheel center is adjusted via a front wheel road height v
ableuf :

dot(pos(yaw –fr0,fw0),[yaw –frz])-uf .

Dividing the height by the camber angle gives the distance fr
the wheel center to the ground contact point:

dot(pos(yaw –fr0,fw0),[yaw –frz])-uf)/

sqrt(1-dot([fwy],[yaw –frz]) ** 2) .
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In the nominal condition, this distance is the wheel radius, so
tire radial deflection from the nominal can be found via a t
deflection calculation and this deflection is converted into a fo
change via the tire carcass radial stiffness. Combining this w
the unit vector defined above, one obtains a vector with the cor
magnitude and direction that points from the wheel spindle axi
the ground contact point:

cross(cross([fwy],[yaw –frz]),[fwy]) *

(dot(pos(yaw –fr0,fw0),[yaw –frz])-uf)/

(1-dot([fwy],[yaw –frz]) ** 2) .

The contact point can now be defined via the coordinates of
vector as a moving point on the tire circumference. This poin
used to calculate the sideslip angle and it is the point of appl
tion of the load and the sideforce. A parallel set of argume
apply to the rear road wheel.

2.3 Model Validation. The model validation processes use
here are an evolution of those described elsewhere~@3,4#!. To
maximize their effectiveness, they were designed to be subs
tially independent of the motorcycle model itself. Since we w
only describe the updates to the checks described in our ea
work ~@3,4#!, we suggest that the interested reader consults th
papers as well as the modeling code that is located at the web
http://www.ee.ic.ac.uk/control/motorcycles.

The underlying principles behind the checks are that un
equilibrium conditions:~i! the external forces acting on the mo
torcycle rider system must match the sum of the inertial and gr
tational forces,~ii ! the external moments acting on the motorcyc
rider system must sum to zero and~iii ! the power supply and
dissipation must be equal.

The Force Balance. The force balance check ensures that u
der equilibrium cornering conditions the sum of the extern
forces is equal to the sum of the inertial and gravitational forc
To check the balance, the force error

Ferror5(
i

Fi
ext1S (

j
mj D ~v3v1g!

was computed. The first sum contains the external forces, w
the second sum contains the centripetal and gravitational for
TheFi

ext’s include:~i! the aerodynamic lift and drag forces,~ii ! the
front and rear wheel normal loads,~iii ! the tire side forces,
Transactions of the ASME
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Fig. 3 Straight running root-locus with speed the varied parameter. The speed is
increased from 5 m Õs „11 mph … „h… to 60 m Õs „135 mph … „.….
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and~iv! the longitudinal driving and braking forces that act on t
wheels at the ground contact points. In the second term, themj ’s
are the machine’s constituent masses,v is the velocity of the mass
center of the main body,v is the main body yaw rate vector, an
g is the gravitational acceleration vector. In our experience,
should achieveuFerroru,4N, although many of the constituen
forces have magnitudes of several thousands of Newtons.

The Moment Balance.In much the same way, it is possible t
check that under equilibrium cornering conditions a moment e
vector is zero. We compute

Merror5(
i

l i3mi~v3v1g!1(
j

l j3Fj1(
k

M k .

The reference point for all the moment calculations is the re
wheel ground contact point. Thel i ’s are moment arm vectors tha
point from the reference point to the appropriate mass centers
mi(v3v1g) are the corresponding inertial and gravitation
forces. The indexi ranges over each of the constituent mass
The second term contains all the external force-induced mom
including: ~i! the aerodynamic lift and drag forces,~ii ! the front
wheel normal load,~iii ! the front wheel lateral tire forces and th
~iv! the front tire longitudinal force. Thel j ’s are moment arms tha
point from the reference point to the points of application of t
various forces. The third term contains the gyroscopic mome
due to the rates of change of angular momentum of the spin
road wheels under cornering, and the tyre moments. In our e
rience, one should achieveuMerroru,5 Nm, although some of the
constituent moments have magnitudes of several thousand N
ton meters.

The Power Audit. This check is based on a ‘‘conservation
power’’ audit. The power source is the engine and the most
portant dissipators are the aerodynamic forces. Not surprising
reliable checking process necessitates the inclusion of othe
fects to do with the tire forces and moments, some of which
subtle. The tires dissipate power via the longitudinal and late
slip forces and this power dissipation is, in each case, comp
via a dot product of the formF•v in which F is the force applied
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to the tread base material andv is the corresponding velocity.3 The
longitudinal component of this velocity is the machine veloc
multiplied by the tire’s longitudinal slip, while the lateral compo
nent is the machine velocity multiplied by the tangent of the t
sideslip angle. The remaining dissipation effects are associ
with the tires’ aligning moments. These dissipation effects can
computed using expressions of the formM•v in which theM ’s
are the aligning moments and thev’s are the wheel’s angula
velocity vectors. Our experience has been that the power ch
sum error should be no more than 1 W.

2.4 Linearized Models and Frequency Response Calcula
tions. The preparation of linearized models involves a two-s
procedure. In the first, AUTOSIM is used to compute, symbo
cally, the linearized equations of motion. In the second, the n
linear simulation code is used to find the equilibrium state as
ciated with the steady-state cornering condition being studied
order to expedite the convergence of the simulation to the requ
condition, the drive and steering torques are controlled by fe
back loops. The drive torque is controlled so that the mach
maintains a preset speed, while the steering torque is adjuste
maintain a desired roll angle. In a sense, the feedback contr
simply part of an algorithm that is used to solve the motorcycl
equilibrium equations of motion. We have not attempted to re
cate any active rider control actions for the following reasons

1 Individual riders have their own styles and attempting
quantify the ‘‘typical rider’’ using computer code is little mor
than potentially misleading speculation.

2 Our focus here is on phenomena of 2–4 Hz~weave! and 6–8
Hz ~wobble!. The evidence suggests that most riders would fin
difficult to react consistently to an unfamiliar weave-frequen
type phenomenon and rider control intervention could make m
ters worse. Wobble frequency effects are effectively outside
rider’s bandwidth and so in this case studying the uncontro
machine is felt appropriate. The steering damping used here,

3The required velocity is that of a material point of the tire that is currently
nominal contact point. This material point changes continuously as the wheel rot
NOVEMBER 2002, Vol. 69 Õ 727
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Fig. 4 Root-locus for a fixed roll angle of 30 deg. The speed is increased from 6 m Õs
„h… to 60 m Õs „.….
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a nominal value of 7.4 Nm/~rad/s!, is predominantly due to the
rider’s grip on the handlebars—this represents passive rather
active control.

3 Our aim is to characterize the properties of the machine
isolation, because a well-designed vehicle should behave sa
even in the hands of riders who have limited skill and experien

We will present a number of Bode~frequency response! plots
that were calculated using linearized models computed by AUT
SIM. In our case, we used two inputsuf and ur that represent
changes in the road height at the front and rear wheels’ gro
contact points, respectively. The steering angled was the only
output. Let us now suppose that the state-space model, gene
by AUTOSIM, that corresponds to a given cornering trim con
tion is

ẋ5Ax1Bu

d5Cx
in which

u5Fuf

ur
G .

The transfer functions that relate the front and rear road dis
bance input to the steering angle are given by

@gf gr #5C~sI2A!21B

in which s is the usual Laplace transform complex variable. O
can study separately the influences of the front and rear ro
wheel disturbances usinggf(s) and gr(s) independently. In the
case of studies of the combined influence of both wheels,
transfer function

g~s!5gf~s!1e2srgr~s!

is used, in whicht is the wheelbase filtering time delay given b
wb /v. The constantwb is the machine wheelbase andv its for-
ward speed. All our computations and plot outputs were obtai
using MATLAB ~@27#! M-files.
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3 Results

3.1 Introductory Comments. Straight running root-loci of
the type presented in Fig. 3 are well known in the motorcy
literature; see, for example,@1,2,28,29#.

This plot shows that the wobble mode4 is lightly damped at 13
m/s ~29 mph! and that the associated resonant frequency is
proximately 48 rad/s~7.6 Hz!. This diagram also shows that th
weave mode5 becomes lightly damped at high speeds and that
resonant frequency of this mode is approximately 22 rad/s~3.5
Hz! at a machine speed of 40 m/s~90 mph!. It should also be
noted that the front wheel hop mode,6 the rear suspension bounc
~pitch! mode,7 and the front suspension bounce~pitch! mode8 are
relatively insensitive to variations in the machine speed. This
servation reinforces the notion that the in-plane and out-of-pl
dynamics are decoupled from each other under straight run
conditions. We should also observe that in-plane disturban
such as sinusoidal road undulations will not couple at first-or
level into out-of-plane freedoms such as the roll and steer
angles.

Let us now contrast Figs. 3 and 4 with the help of Figs. 5 and
Figure 4 shows the behavior of the important machine mo
under cornering at different speeds at a fixed roll angle—in t
case 30 deg. Figures 5 and 6 show the effect of varying the
chine roll angle at two constant speed values 13 m/s~29 mph!
and 40 m/s~90 mph!. When one compares these plots, it can
seen that

4This is sometimes called the wheel shimmy mode and is associated with a
wheel castoring type oscillation.

5This is associated with a 2–4 Hz fish tailing motion involving the simultaneo
rolling and yawing of the whole machine.

6This mode is associated with an oscillation that involves the compression
expansion of the fork legs and the tire carcass.

7This mode is associated with an oscillatory motion of the swinging arm. T
movement results in the pitching, and to a lesser extent, the heaving of the mach
main body.

8This mode is dominated by a pitching motion that hinges around the rear w
ground contact point and involves the oscillatory compression and expansion o
fork leg assemblies. When this mode is excited there is also a discernible heavi
the machine’s main body.
Transactions of the ASME
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Fig. 5 Root-locus for a fixed speed of 13 m Õs „29 mph …. The roll angle in increased
from 0, „h… to 30 deg „.….
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1. cornering increases the damping of the wobble mode, w
the speed for minimum damping remains at approximat
13 m/s~29 mph!. The associated resonant frequency of t
mode is essentially unaffected.

2. cornering reduces the damping of the front wheel hop m
and it is least damped at approximately 40 m/s~90 mph!
with an associated resonant frequency of approximately
rad/s~10 Hz!. This figure is lower than the straight runnin
figure of 73 rad/s~11.6 Hz!.
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3. cornering tends to reduce the damping of the weave m
and in our case this mode becomes unstable at high sp
the weave mode is lightly damped at 40 m/s~90 mph!.

4. cornering has a destabilizing effect on the front suspens
pitch mode and it becomes particularly lightly damped
13 m/s and 30 deg of roll angle. The resonant frequency
this mode is approximately 8 rad/s~1.27 Hz! under these
conditions.
Fig. 6 Root-locus for a fixed speed of 40 m Õs „90 mph …. The roll angle in increased
from 0, „h… to 30 deg „.….
NOVEMBER 2002, Vol. 69 Õ 729
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Fig. 7 Frequency response for g f„s … „solid …, and eÀs tg r„s … „dashed … „0 dBÄ1 deg Õ
m…. The steady-state conditions are a 30 deg roll angle and a forward speed of 13
mÕs „29 mph ….

Fig. 8 Frequency response for g f„s … „solid …, and eÀs tg r„s … „dashed … „0 dBÄ1 deg Õ
m…. The steady-state conditions are a 30 deg roll angle and a forward speed of 40
mÕs „90 mph ….
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Since road forcing signals will couple into out-of-plane fre
doms under cornering, these observations lead to the follow
hypotheses:

1. The wobble and front suspension pitch modes are expose
resonant forcing due to road profiling at speeds of the or
13 m/s~29 mph!, and

2. the weave and front wheel hop modes are similarly vuln
able at high speeds.
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3. Since the coupling between road disturbances and the
of-plane dynamics increases with roll angle, we expect
find an increase in the vulnerability of the front wheel ho
mode, the weave mode, and the front suspension pitch m
with roll angle. All three modal dampings decrease with i
creased roll angle.

4. We expect the vulnerability of the wobble mode to reach
peak at some worst-case value of roll angle. We suggest
Transactions of the ASME
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Fig. 9 Bode magnitude plot of g „s … „0 dBÄ1 deg Õm…. Nominal state: 13 m Õs „29
mph …, 30 deg roll angle. The solid curve represents the nominal case, the dashed
one shows the effect of an increase of 20% in the steering damper setting, while the
dot-dash curve shows the effect of a 20% reduction in the steering damping.
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because the interplane coupling increases with roll an
while the damping of the wobble mode increases with r
angle.

It is the business of the remainder of this paper to investig
these conjectures.

3.2 Individual Wheel Contributions. Figure 7 shows Bode
plots ofgf(s) ande2stgr(s) at the relatively low speed of 13 m/
~29 mph!, a roll angle of 30 deg and with nominal paramet
values. It is clear from these plots that the resonant peaks for
the wobble and front suspension pitch modes are front-wh
input dominated. The difference between the front and rear w
excited resonant peaks for the wobble mode is 12 dB, while
for the front suspension pitch mode is approximately 5 dB.
conclude, therefore, that difficulties with either of these mod
will almost certainly be ameliorated via adjustments to the fron
the machine.

The situation at higher speeds is quite different as is show
Fig. 8. At 40 m/s~90 mph! and 30 deg of roll, we see that ther
are resonance peaks associated with the weave and the front w
hop modes. In the case of the weave mode, the front and
wheel forcing signals are making equal contributions and th
combined effect is a large one. Resonance difficulties with
mode are likely to be more difficult to isolate and prevent, beca
the problem involves potentially the geometry and parameter
the whole machine as well as the properties of both tires.
excitation of the front wheel hop mode is due almost entirely
front wheel forcing and is consequently a problem that can
isolated and tackled at the front of the bike.

At the weave mode peak, the frequency responsesgf(s) and
e2stgr(s) have a phase angle difference of approximately 56 d
As the motorcycle speed changes, the phase shifte2st associated
with the wheelbase travel time changes. In principle, therefo
changing the speed will influence the maximum gain, not o
through affecting the modal damping factor, but also through
fluencing the phase angle. However, changing the speed from
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to 42 m/s~85 mph to 95 mph! only changes the phase lag, at th
weave mode frequency of 18 rad/s~2.86 Hz!, by about 4 deg.
Quantitatively, therefore, the reinforcement/cancellation issue
small one.

3.3 Low-Speed Forced Oscillations. The root-loci pre-
sented in Fig. 5 suggest that road forcing effects may cause
wobble and front suspension pitch modes to resonate at
speeds in response to regular road profiling. We begin our inv
tigation of this possibility by referring to Fig. 9 that shows
frequency response plot that relates road forcing inputs to
vehicle’s steer angle. The road profile input is in meters, while
output is in degrees. If the vehicle is traveling at 13 m/s~29 mph!,
road undulations with a wavelength of 1.8 m~5.85 ft!, will gen-
erate a road forcing signal with a frequency of 45.4 rad/s~7.22
Hz!. Since the transfer function gain is approximately 62 dB
this frequency, Fig. 9 indicates that one can expect61.28 deg of
steering movement for road undulations with amplitude61 mm.
If we assume that the steering head mechanism can move thr
approximately620 deg from lock to lock, the linear model woul
suggest that road undulations of615 mm will produce a sustained
‘‘tank slapping’’ action.9 This figure also shows that road undul
tions could excite the front wheel hop mode, but the gain is o
approximately 44 dB in this case.

Immediately, it is of interest to consider the influences of des
and/or suspension parameter changes on the resonant peaks
ure 9 also shows the effect of changing the steering damper se
by 61.5 Nms/rad around the nominal value of 7.4 Nms/rad. D
creasing the steering damper setting causes the road forcing
to increase to 66 dB, while increasing it reduces the gain to 58

The root-loci presented in Fig. 5 demonstrate an increase in
wobble mode damping with increased roll angle. As a con
quence, we predicted that a reduction in roll angle could lead to
increase~rather than a decrease! in the wobble mode peak gain

9Note that this is only an estimate from a linearized model—see Section 3.6
more on nonlinear effects.
NOVEMBER 2002, Vol. 69 Õ 731
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Fig. 10 Bode magnitude plot of g „s … „0 dBÄ1 deg Õm…. Nominal state: 13 m Õs „29
mph …, 15 deg roll angle. The solid curve represents the nominal case, the dashed
one shows the effect of an increase of 20% in the steering damping, while the dot-
dash curve shows the effect of a 20% decrease.

Fig. 11 Bode magnitude plot of g „s … „0 dBÄ1 deg Õm…. Nominal state: 13 m Õs „29
mph …, 30 deg roll angle. The solid curve represents the nominal case, the dashed
one shows the effect of an increase of 40% in the rear damper setting, and the
dot-dash curve shows the effect of a 40% decrease.
EMBER 2002 Transactions of the ASME
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Fig. 12 Bode magnitude plot of g „s … „0 dBÄ1 deg Õm…. Nominal state: 13 m Õs „29
mph …, 30 deg roll angle. The solid curve represents the nominal case, the dashed
one shows the effect of an increase of 40% in the front damper setting and the
dot-dash curve shows the effect of a 40% decrease.
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despite an accompanying reduction in the coupling between
in-plane and out-of-plane dynamics. Figures 9 and 10 show
the peak wobble mode gain for the 15 deg and 30 deg roll an
cases are roughly equal at 62 dB for the nominal value of stee
damping. An increase of 20% in the steering damping decre
the peak wobble mode gain to approximately 55 dB~rather than
58 dB in the case of 30 deg of roll!. When the steering damping i
decreased by 20%, the peak wobble mode gain increases to 8
which is substantially higher than the peak gain achieved a
deg of roll angle.

Figure 11 shows that changing the rear damper setting has
impact on the susceptibility of the wobble and front suspens
pitch modes to road forcing. This result casts doubt on the s
pected contributions of the rear damper to the wobble mode in
bility associated with the Suzuki TL1000~@17#!.

As one would expect, the damping of the front suspension p
mode, and consequently the road forcing gain associated with
mode, is influenced by changes in the front suspension dam
setting. Figure 12 shows the effect of changing this damper se
by 6220 Ns/m about a nominal setting of 550 Ns/m. Although t
wobble mode gain is relatively unaffected by these changes,
impact on the pitch mode is significant and it can be seen th
reduction of 220 Ns/m leads to a gain increase of 8 dB over
nominal value.

3.4 High-Speed Forced Oscillations. At the beginning of
Section 3, we argued that at high speeds the weave and
wheel hop modes are vulnerable to regular road waves of cri
dimensions. The consequent forced oscillations are a signifi
potential threat to the motorcyclist, because it is a high-sp
phenomenon and for typical motorcycle parameters, lo
wavelength low-amplitude road undulations will excite the
modes. Also, regular long-wavelength low-amplitude undulatio
are virtually impossible for the rider to see. At a speed of 40 m
~90 mph! with the motorcycle parameters used here, the we
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mode will be excited by road undulations with a wavelength
approximately 14 m~45.5 ft!, while a 4 m~13 ft! wavelength will
excite the front wheel hop mode.

Figure 13 show a Bode magnitude plot of the transfer funct
that relates the steering angle to regular road height variations
nominal suspension and steering damper settings, the weave m
gain at 18 rad/s~2.86 Hz! is 58 dB, while the front wheel hop
mode gain is 52 dB. As in the case of wobble mode excitati
this diagram shows that relatively low-amplitude road undulatio
will cause the rider concern. This plot also shows that an incre
in the steering damper setting will make matters significan
worse. More particularly, a steering damping increase of 1.5 N
rad increases the road forcing gain by 10 dB, or a factor of 3

Figure 13 also shows that the steering damper setting has
impact on the front wheel hop resonance.

Figure 14 shows the effect of changes to the rear damper
ting. As with the steering damper, an increase in the rear dam
increases the weave mode gain by 5 dB, while reducing
damper setting causes the peak value of weave gain to fall b
dB. Also, it is clear that this change has virtually no influence
the front wheel hop peak gain that remains fixed at approxima
52 dB.

Figure 15 shows the effect of changes to the front damping
contrast to the previous two plots, this diagram shows that
creasing the front damper setting has a beneficial impact on
weave and front wheel hop gain peaks. An increase of 220 N
in the front damper coefficient reduces the weave gain peak
the front wheel hop gain peak by approximately 2 dB. If the fro
damping is reduced by a like amount, the weave mode gain p
increases by approximately 3 dB and the front wheel hop g
peak increases by approximately 6 dB.

3.5 Influence of Rider Parameters. There is anecdotal evi-
dence to suggest that the weight and posture of the rider
influence the vulnerability of the motorcycle-rider system
NOVEMBER 2002, Vol. 69 Õ 733



734 Õ Vol. 69, NOV
Fig. 13 Bode magnitude plot of g „s … „0 dBÄ1 deg Õm…. Nominal state: 40 m Õs „90
mph …, 30 deg roll angle. The solid curve represents the nominal case, the dashed
one shows the effect of an increase of 20% in the steering damper setting and the
dot-dash curve shows the effect of a 20% decrease.

Fig. 14 Bode magnitude plot of g „s … „0 dBÄ1 deg Õm…. Nominal state: 40 m Õs „90
mph …, 30 deg roll angle. The solid curve represents the nominal case, the dashed
one shows the effect of an increase of 40% in the rear damper setting and the
dot-dash curve shows the effect of a 40% decrease.
EMBER 2002 Transactions of the ASME
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Fig. 15 Bode magnitude plot of g „s … „0 dBÄ1 deg Õm…. Nominal state: 40 m Õs „90
mph …, 30 deg roll angle. The solid curve represents the nominal case, the dashed
one shows the effect of an increase of 40% in the front damper setting and the
dot-dash curve shows the effect of a 40% decrease.

Fig. 16 Bode magnitude plot of g „s … „0 dBÄ1 deg Õm…. Nominal state: 40 m Õs „90
mph …, 30 deg roll angle. The solid curve represents the nominal case, the dashed
one shows the effect of an increase of 20 kg „4.1 lbs … in the mass of the upper body
of the rider and the dot-dash curve shows the effect of a 20 kg „4.1 lbs … decrease.
echanics NOVEMBER 2002, Vol. 69 Õ 735
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Fig. 17 Bode magnitude plot of g „s … „0 dBÄ1 deg Õm…. Nominal state: 40 m Õs „90
mph …, 30 deg roll angle. The solid curve represents the nominal case, the dashed
one shows the effect of a forward shift of 15 cm „5.91 ins … in the center of mass of
the upper body of the rider and the dot-dash curve shows the effect of a rearward
shift of 15 cm „5.91 ins ….

Fig. 18 Bode magnitude plot of g „s … „0 dBÄ1 deg Õm…. Nominal state: 40 m Õs „90
mph …, 30 deg roll angle. The solid curve represents the nominal case, the dashed
one shows the effect of an upward shift of 15 cm „5.91 ins … in the center of mass of
the upper body of the rider and the dot-dash curve shows the effect of a downward
shift of 15 cm „5.91 ins ….
EMBER 2002 Transactions of the ASME
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Fig. 19 Transient behavior of the roll and steering angles, and the yaw rate in
response to sinusoidal road forcing that begins at tÄ1 s and has a peak amplitude
of 0.5 cm. The forcing frequency is tuned to the front suspension pitch mode. The
lean angle is 30 deg and the forward speed 13 m Õs „29 mph ….

Fig. 20 Transient behavior of the roll and steer angles and the yaw rate, in re-
sponse to sinusoidal road forcing that begins at tÄ1 s and has a peak amplitude of
0.25 cm. The forcing frequency is tuned to the weave mode. The lean angle is 30 deg
and the forward speed 40 m Õs „90 mph ….
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weave related oscillations. We will investigate the suggestion
light riders are more likely to experience difficulties with oscill
tory instabilities than are heavier ones~@18,30#!. We will also
investigate the suggestion that the rider can attenuate weav
lated oscillations by lying down on the tank~@30#!. We will carry
echanics
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out this study at a speed of 40 m/s~90 mph! and a roll angle of 30
deg, via changes in the rider’s upper body mass and mass c
location.

The effect of changes in the rider’s upper body mass on
transfer function that maps road vertical displacement to the st
NOVEMBER 2002, Vol. 69 Õ 737
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ing angle are studied in Fig. 16. As suggested in@18#, an increase
in the rider’s upper body mass by 20 kg~44.1 lbs! reduces this
gain peak by approximately 8 dB. In the same way, a reductio
the rider’s upper body mass by 20 kg~44.1 lbs! increases the pea
gain by approximately 7 dB.

The effect of variations in the longitudinal location of the ri
er’s center of mass are studied. As suggested by the video
~@30#!, a forward shift in the rider’s upper body mass appears
Fig. 17 to reduce the vulnerability of the motorcycle to wea
related instabilities. In our study, we see a small reduction in
signal transmission gain peak of 5 dB for a forward shift of 15
~5.85 ins!. If the center of mass is shifted backwards by 15 c
~5.85 ins!, the transmission gain peak increases by approxima
13 dB.

The effect of variations in the~vertical! z-direction location of
the rider’s center of mass on the transfer function that maps r
undulations to the steering angle are studied in Fig. 18. An upw
shift of 15 cm~5.91 ins! reduces the signal transmission gain pe
by 13 dB, while a corresponding downward shift increases it
approximately 7 dB.

3.6 Nonlinear Phenomena. Although it is not the primary
purpose of this paper to study the nonlinear aspects of the
forcing problem, we do not want to conclude this account with
making some introductory observations that will motivate futu
research. Figure 19 shows the build up of oscillations in the
and steer angles as well as the yaw rate in response to road
filing that is tuned into the front suspension pitch mode at 7
rad/s ~1.2 Hz!. The forward speed is 13 m/s~29 mph! and the
forcing amplitude is 5 mm. We can only study the very low
amplitude case here, because higher amplitude signals take
tyre model out of its domain of validity. It is evident that 7.5
rad/s~1.2 Hz! oscillations build up in 2 or 3 seconds. It can al
be seen that another consequence of road forcing is a tendenc
the roll angle to reduce in response to the onset of oscillatio
This is possibly the result of a slow growth rate instability of t
capsize type described in@1#. In practical terms, this effect will
cause the vehicle to run wide, a common feature of real accid
involving oscillations. As the roll angle reduces, the road-forc
signal transmission gain will also reduce and we can see evid
of this effect in the yaw rate and steering angle oscillation am
tudes. At approximately 35 s, one can see evidence of the ons
wobble frequency oscillations. This excitation of the wobble mo
is the product of nonlinear effects that remain to be analyzed

Figure 20 shows the response of the machine to low-amplit
road undulations that are tuned into the weave mode. Again, la
amplitude profiling will take the tire model out of its domain o
validity and consequently cannot be used. In common with
previous simulation result, oscillations build up in about 3 s. It
also evident that the roll angle tends to decrease. As can be se
the video tape~@20#!, weave-related instabilities cause the vehic
to run wide. It is also clear that as the roll angle reduces, the s
angle and yaw rate oscillations reduce in consequence. We be
that this is the result of transmission gain reductions that co
about in response to reductions in the roll angle. At approxima
25 s, one sees evidence of waveform distortion, a product of n
linear mechanisms.

4 Conclusions
A study of the effects of road profiling on motorcycle steeri

responses is presented. The work is based on an enhanced v
of the nonlinear cornering model presented in@4#. This model has
been qualified using tests that are based on the principle that u
equilibrium conditions all the external forces and moments ac
on the motorcycle-rider system must sum to zero. We have
checked that the drive power supplied by the engine matches
dissipated by the tires and the aerodynamic forces. An AUTOS
code was used to generate a linearized state-space mode
describes small perturbations around a general equilibrium cor
ing state. By introducing appropriate inputs into the model, we
738 Õ Vol. 69, NOVEMBER 2002
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able to describe the propagation of road undulation signals f
the tire ground contact points to the steering angle. A particu
feature of the frequency response calculations is the inclusio
the wheelbase filtering.

The results show that under cornering conditions, regular lo
amplitude road undulations that would not trouble four-whee
vehicles can be a source of considerable difficulty to motorcy
riders. At low machine speeds the wobble and front suspen
pitch modes are likely to respond vigorously to resonant forci
while at higher speeds, the weave and front wheel hop modes
similarly affected. The vigour of the oscillations is related to t
previously much studied linear stability properties insofar as l
damping factors lead to correspondingly high peak magnifica
factors. Connections between resonant responses and a cla
single-vehicle loss-of-rider-control accidents have been po
lated.

The work reported here has a number of practical con
quences. First, it appears to explain the key features of man
the stability related road traffic accidents reported in the popu
literature, and it helps to explain why motorcycles that beha
perfectly well for long periods can suddenly suffer serious a
dangerous oscillation problems. Such oscillations are likely to
difficult to reproduce and study in practice. Secondly, road bu
ers and maintainers, and motorcycle manufacturers, should
aware of the possibility of strong resonant responses to small
regular undulations under certain critical running condition
These conditions are characterized by the machine speed, the
angle, the rider’s mass and posture, and the road profile w
length. The dynamic responses are influenced by the modal da
ing factors, the road profiling, and the effectiveness of the forc
from the road. For our particular motorcycle, which is repres
tative of many large machines, the wobble mode will be exci
by road undulations with a wavelength of approximately 1.7
This will produce a forcing signal of 7.6 Hz at a road speed of
m/s ~approximately 30 mph!. The forcing will last for 2–3 s,
which is enough time for the resonance to build up, if there
15–23 periods of undulation. If the undulation period is appro
mately 11.4 m, a road speed of approximately 40 m/s~90 mph!
will produce forcing at the weave frequency of 3.5 Hz. In this ca
the forcing will last for 2–3 s if there are 7–11 periods of und
lation. It will be difficult for manufacturers to establish a set
‘‘worst case’’ operating conditions to be associated with n
products and yet it is essential that this is done. Thirdly, the k
of theoretical analysis presented here appears to be a nece
part of determining these worst case conditions in a reliable
economical way. This type of analysis should be an essential
of the motorcycle designer’s toolkit in the future.

We have studied the individual contributions to these re
nances made by each of the two road wheels. Our results s
that the wobble and front wheel hop resonance peaks are ‘‘f
wheel dominated.’’ In other words, difficulties with these mod
are likely to be caused by the design and set up of the front of
machine. The same is true, but to a lesser extent, in the case o
front suspension pitch mode. In contrast, the weave mode r
nance peak involves the road forcing to both wheels in alm
equal measure. As a consequence, weave related problems a
to be more difficult to isolate and remove.

As might be anticipated, the vulnerability of the wobble mo
responses to road forcing is decreased markedly by an effec
steering damper, but changes to the suspension dampers are
fectual. The front suspension pitch mode resonance, that is a
ciated with low-speed operation, is sensitive to the front susp
sion damping, but is insensitive to the rear suspension
steering damping.

In the case of high-speed operation, the weave and front w
hop modes are exposed to road profile induced oscillations du
their low modal damping. The results show that the weave m
resonant response is reduced by increasing the front suspe
damping, but it is made larger by increasing the rear suspen
Transactions of the ASME
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and steering damper settings. These damping results depen
course, on the nominal setup and will not be universally tr
Increasing the front suspension damping reduces the front w
hop resonance peak, but this peak does not respond to chang
steering damping, or rear suspension damper settings.

It has also been shown that light riders are more likely to su
from road forced resonant weave oscillations than are heavy o
as has been observed in practice~@18#! and on the video tape
~@30#!. The results indicate also that the peak gains associated
the weave mode are brought down by moving the rider up
body mass forwards and upwards. There is not sufficient prac
evidence at the moment to indicate whether or not these find
coincide with experience. From the rider’s perspective, a worry
feature of the road profile induced oscillations is the tendency
the uncontrolled machine to ‘‘sit up’’ and run wide. This aspect
the machine behavior can be seen on the video tape~@20#! in the
case of a high-speed weave accident.

A preliminary time domain study of these resonances by mo
simulations has shown the existence of interesting and essen
nonlinear phenomena, that seem to accord with practical exp
ence. These nonlinear phenomena are worthy of further st
together with more wide-ranging investigations of design infl
ences on the various potentially problematic running condition

Appendix

AUTOSIM Commands. This Appendix contains a brief de
scription of the AUTOSIM commands used in the paper. A mu
fuller account can be found in the AUTOSIM reference man
~@26#!.

Vector Algebra

Autosim code Mathematical interpretation

cross(v1,v2) the cross product between vectors
v1 andv2

dot(v1,v2) inner product between vectorsv1 andv2
pos(p1,p2) vector going from point p2 to point p1
[fwy] symbol is a unit-vector when enclosed

in braces
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On Mechanical Waves Along
Aluminum Conductor Steel
Reinforced (ACSR) Power Lines
The propagation of elastic waves along composite wire rope is considered. The ro
modeled as co-axial layers of cylindrically anisotropic material. Simple kinematical
sumptions lead to a ‘‘rod theory’’ for the wire rope, consisting of three coupled o
dimensional wave equations. Solutions of these equations are found. Results for
ticular aluminum conductor steel reinforced (ACSR) conductor are described in de
The slowest mode is found to be mainly torsional and mainly nondispersive in char
The other two modes are dispersive and have small torsional components.
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1 Introduction
We are interested in the propagation of mechanical waves a

overhead power lines. These are often composite structures kn
as aluminum conductor steel reinforced~ACSR! electrical con-
ductors. These are composite wire ropes consisting of a ce
steel wire rope surrounded by several aluminum wires. Our in
est stems from the potential use of mechanical waves to de
defects in ACSR power lines.

It is known that fatigue failure of strands in ACSR power lin
is the most common form of damage, resulting from vario
forms of vibrations—aeolian, galloping, and wake-induced~@1#!.
Two regions of an ACSR power line can be distinguished:
region near the points of support and the region further away, ‘‘
in the span.’’ Most fatigue damage seems to occur in the fi
region ~@1# p. 51!. In this region, the mechanical problem is ve
complicated and three-dimensional: one must take into acc
such features as interstrand slippage, suspension clamps an
mor rods. Damage may also occur in the second region, so
times induced by corrosion, and it is here that there is scope
some simpler models.

In a previous paper~@2#!, we considered the propagation o
torsional waves along a bimaterial elastic cylinder, composed
steel circular cylindrical core surrounded by a co-axial alumin
cladding. The interface between the core and the cladding
assumed to be imperfect, so that some slipping was allowed.
model accounts well for the composite nature of an ACSR po
line, and the imperfect-interface conditions include a param
that may be varied. Moreover, it is possible that this model co
be developed further, so as to treat the region near the poin
support.

However, some features of the problem are not included,
most important of these being the anisotropy of wire rope. Th
‘‘The static response of axially loaded wire rope clearly points
the coupling between the axial and rotational displacements’’~@3#,
p. 244!. It follows that any plausible model of a wire rope shou
take this coupling into account. This paper is concerned with
development of such models for the dynamic response of w
rope.

The simplest models are based on a strength-of-materials
proach, in which one writes

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept.
2001; final revision, Jan. 9, 2002. Associate Editor: A. K. Mal. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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F5A1«1A2x and M5A3«1A4x, (1)

whereF is the axial force acting at an arbitrary cross section
the wire rope,M is the axial twisting moment,« is the axial strain,
x is the rotation per unit length, andA1 , A2 , A3 , and A4 are
constants~@4#!. This model has been used for the static respo
of ACSR cables by McConnell and Zemke@5#, and it has been
extended to include bending moments~@6,7#!.

Equation~1! is a constitutive relation for the wire rope. Clearl
the coefficientsAi will depend on the details of the rope’s con
struction. Much effort has been directed at obtaining analyti
expressions forAi ; see, for example,@4,8#, and references therein
For ACSR applications, see@4#, Section 3.9 and@5#. One can also
attempt to determineAi experimentally~@9,5#!. The diagonal co-
efficientsA1 ~relating two axial quantities! and A4 ~relating two
rotational quantities! may be obtained using standard test equ
ment, but the off-diagonal coefficientsA2 and A3 require more
specialized techniques. A third option is to adopt a hybrid sche
wherebyA1 andA4 are determined by analytical approximation
or static experiments, butA2 andA3 are found using information
obtained from dynamic experiments. This option will be me
tioned in Section 2.

One question that arises is: doesA25A3? Costello@4#, Section
3.9, has calculatedAi for a particular ACSR cable, and found tha
A151.213106 lb, A251.693104 in lb, A351.613104 in lb,
and A455.553102 in2 lb, with A2 /A3.1.05. For a steel wire
rope used in marine applications, Samras et al.@9# found experi-
mentally thatA154.443106 lb, A252.233105 in lb, A352.36
3105 in lb, and A451.433104 in2 lb, with A2 /A3.0.94. Thus,
it is reasonable to assume thatA25A3 . Moreover, this equality
follows from the assumption that the wire rope is genuinely el
tic; it seems to be a good approximation for real wire ropes, wh
constituent wires may slip, for example.

Following on from Eq.~1!, one can write down equations o
motion, in the form of two coupled wave equations for the ax
displacement~w! and the angular rotation~f!,

A1

]2w

]z2 1A2

]2f

]z2 5m
]2w

]t2 , (2)

A3

]2w

]z2 1A4

]2f

]z2 5I
]2f

]t2 , (3)

wherem is the mass per unit length andI is the mass moment o
inertia per unit length about the central axis.~Further details and
references are given in Section 2.! These equations permit wav
motion, and this is investigated in Section 2. There are two w
speeds. In general, each torsional wave is accompanied by a
gitudinal wave of the same shape but with a different amplitu
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In Section 3, we develop an alternative theory, based on
exact stress equations of motion for a composite anisotropic e
tic cylinder. The cylinder consists of co-axial layers, each
which is made of a cylindrically anisotropic elastic materi
Simple kinematical assumptions are made, leading to a syste
three coupled one-dimensional wave equations:

A1

]2w

]z2 1A2

]2f

]z2 1A5

]2u

]z2 1B1

]u

]z
5m

]2w

]t2 , (4)

A2

]2w

]z2 1A4

]2f

]z2 1A6

]2u

]z2 1B2

]u

]z
5I

]2f

]t2 , (5)

A5

]2w

]z2 1A6

]2f

]z2 1A7

]2u

]z2 2B1

]w

]z
2B2

]f

]z
2B3u5I

]2u

]t2 .

(6)

Here,u gives the radial displacement. In general, this 333 system
does not reduce to the 232 system, Eqs.~2! and ~3!, when u
50, which is an underlying assumption in the derivation of t
232 system. On the other hand, the 333 system does reduce t
well known equations for the approximate description of waves
isotropic elastic rods~@10# Section 8.3!.

Our model for the wire rope is calledsemi-continuousby Car-
dou and Jolicoeur@11# in their thorough review article: all the
strands in each co-axial layer of the rope are ‘‘homogenized’’ i
an elastic continuum. This idea was first used by Hobbs and R
@12#; they regarded each layer as a thin orthotropic sheet. It
been developed further by Cardou and his students~@13–15#!.
They do not regard the layers as thin, and they permit the ort
ropy axes of the material of each layer to be aligned in directi
that differ from the global cylindrical polar coordinate axes. W
have extended this model to dynamic situations.

The coefficients occurring in Eqs.~4!–~6! are given in terms of
certain integrals of the elastic stiffnesses of each layer ove
typical cross section. Once these are known, wave propaga
along the wire rope can be studied. For an example, we pre
some numerical results for a simple seven-wire ACSR conduc
Three distinct modes are found. The slowest mode is mainly
sional and mainly nondispersive in character. Such a mode c
be excited by a device~transducer! designed to launch torsiona
waves. The two other modes are dispersive and have small
sional components.

2 The Samras-Skop-Milburn „SSM… Equations of Mo-
tion

Let z be distance along the wire rope and lett be the time. Let
w be the axial displacement and letf be the angular rotation. We
use the constitutive relations~1!, in which «5]w/]z and x
5]f/]z, whence

F5A1

]w

]z
1A2

]f

]z
and M5A3

]w

]z
1A4

]f

]z
. (7)

Then, a balance of forces and moments acting on an eleme
slice of the wire rope gives Eqs.~2! and ~3!, which are approxi-
mate, one-dimensional equations of motion for the wire ro
They were derived by Samras, Skop, and Milburn@9#; we call
Eqs.~2! and~3! theSSM system. This 232 system has been use
in several subsequent papers, including@3,16–18#.

It is of interest to obtain solutions to the SSM system. If w
eliminate f, say, we obtain a single fourth-order linear part
differential equation forw,

mI
]4w

]t4 2~ IA11mA4!
]4w

]t2]z2 1~A1A42A2A3!
]4w

]z4 50. (8)

This has traveling-wave solutions of the formw(z,t)5 f (z2ct),
wheref is an arbitrary function~with four continuous derivatives!
and there are four possible wavespeedsc, given by the roots of
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mIc42c2~ IA11mA4!1A1A42A2A350; (9)

these roots are given by

c25$IA11mA46A~ IA12mA4!214mIA2A3%/~2mI!. (10)

We observe that these are the eigenvalues of the matrix

A25S A1 /m A2 /m

A3 /I A4 /I D .

Thus, we obtain two positive values ofc and two negative values
The positive values correspond to different wavespeeds for wa
propagating in the positivez direction; we will denote these byc1
andc2 .

We can rewrite Eq.~9! asA2A35(mc22A1)(Ic22A4). If we
assume thatA25A3 and we have good estimates forA1 and A4
~perhaps obtained from fairly standard static measurements on
wire rope!, m and I, we could then calculateA2 using a measure-
ment of wavespeedc along the rope.

Returning to Eqs.~2! and ~3!, we could eliminatew instead of
f. This shows thatf satisfies exactly the same equation asw,
namely Eq.~8!, and so admits the same wavespeeds.

Next, let us look for solutions of Eqs.~2! and ~3! in the form

w~z,t !5 f ~j! and f~z,t !5g~j!, (11)

wherej5z2ct andc solves Eq.~9!. We obtain

~A12mc2! f 91A2g950,
A3f 91~A42Ic2!g950, J

so that (f 9,g9)T is an eigenvector ofA2 corresponding to the
eigenvaluec2. Integrating twice, we see that

f ~z2ct!5G~c!g~z2ct!, (12)

where the factorG is given by G(c)5A2 /(mc22A1)5(Ic2

2A4)/A3 . ~When we integrated, we discarded terms of the fo
C1j1C2 , whereC1 and C2 are constants of integration. Suc
terms do satisfy Eqs.~2! and ~3!, as do any functions that ar
linear in bothz and t, but they are not usually of interest.!

Equation~12! shows that if there is a torsional wave,f, propa-
gating at speedc, then it will be accompanied by an axial wave,w,
propagating at the same speed and with the same shape, bu
a different amplitude. For this conclusion to be valid, we requ
that there is actual coupling between axial and torsional motio
for a solid isotropic rod, we would haveA25A350, and then the
axial and torsional waves can exist independently~as Eqs.~2! and
~3! decouple!.

This completes our study of the SSM system. In the next s
tion, we attempt to give a more rational derivation of on
dimensional wave equations modeling the wire rope. We shall
that the SSM system should be replaced by a 333 system, in
general.

3 An Approximate Theory for Waves in a Wire Rope

3.1 Stress Equations of Motion. In cylindrical polar coor-
dinates (r ,u,z), the exact stress equations of motion are~@10#, p.
600!

]

]r
t rr 1

1

r

]

]u
t ru1

]

]z
t rz1

1

r
~t rr 2tuu!5r

]2ur

]t2 , (13)

]

]r
t ru1

1

r

]

]u
tuu1

]

]z
tuz1

2

r
t ru5r

]2uu

]t2 , (14)

]

]r
t rz1

1

r

]

]u
tuz1

]

]z
tzz1

1

r
t rz5r

]2uz

]t2 , (15)

where (ur ,uu ,uz) is the displacement,r is the mass density, and
t i j are the stress components. We seek approximate solution
these equations for a wire rope.
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We model the wire rope as a circular cylinder of radiusa. The
cylinder consists of a cylindrical core, 0<r ,a0 , andN co-axial
layers,ai 21,r ,ai , i 51,2, . . . ,N, with aN5a. Thus, there are
N interfaces,r 5ai 21 , i 51,2, . . . ,N. The outer surface is free o
tractions,

t rr 5t ru5t rz50 on r 5a. (16)

In general, theN interfaces may be imperfect: Slippage may o
cur. They could be modeled using one of several available mo
of imperfect interfaces; see@2# or @19#.

In order to develop a ‘‘rod theory’’ for wire rope, we begin wit
some kinematical assumptions. Thus, we assume that

ur5ru~z,t !, uu5rf~z,t ! and uz5w~z,t !, (17)

whereu, f andw are to be found. Here, the approximations forur
and uz are usually made for longitudinal motions~@10#, p. 511!,
whereas the approximation foruu means that cross sections ca
rotate about the central axis atr 50. One consequence of Eq.~17!
is that theu-derivative terms in Eqs.~13!–~15! are zero.

We are going to integrate Eqs.~13!–~15! across an arbitrary
cross sectionC of the wire rope. We have

E
0

a

r
]

]r
t rzdr5(

i 50

N E
ai 21

ai

r
]

]r
t rzdr5(

i 50

N H @r t rz#ai 21

ai

2E
ai 21

ai

t rzdrJ 5I z2E
0

a

t rzdr,

wherea2150, we have used Eq.~16!,

I z5(
i 50

N21

ai@t rz~ai ,z,t !#

and

@ f ~ai ,z,t !#5 lim
r→ai

2

f ~r ,z,t !2 lim
r→ai1

f ~r ,z,t !

gives the jump in a quantityf across an interface atr 5ai . Thus,
integrating Eq.~15! acrossC, we obtain

]

]z EC
tzzdA12pI z5m

]2w

]t2 (18)

wheredA5rdrdu andm5*CrdA is the mass per unit length o
the wire rope.

We use a similar procedure with Eqs.~13! and~14!, the differ-
ence being that we multiply both byr before integrating overC.
We obtain

]

]z EC
r t rzdA2E

C
~t rr 1tuu!dA12pI r5I

]2u

]t2 (19)

and

]

]z EC
r tuzdA12pI u5I

]2f

]t2 , (20)

where

I r5(
i 50

N21

ai
2@t rr ~ai ,z,t !#, I u5(

i 50

N21

ai
2@t ru~ai ,z,t !#

and I 5*Crr 2dA is the mass moment of inertia per unit leng
about the central axis.

Note that if the wire rope was a solid circular cylinder of radi
a, with constant density and welded interfaces, then we wo
haveI r5I u5I z50, I 5(1/2)ma2 andm5pra2.

The quantitiesI r , I u , and I z give the total contributions from
the possible discontinuities in the traction across each of thN
interfaces. We assume that
742 Õ Vol. 69, NOVEMBER 2002
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I r5I u5I z50. (21)

This simplifies the analysis, of course, but it also turns out to
realistic ~@1#, p. 54!:

Real conductors do not have frictionless strands, and, for
small amounts of flexure experienced due to vibration waves
in the span, the friction present between strands is normally g
enough to prevent gross sliding between them. The relative a
movements of the strands are absorbed in largely elastic s
strains around the small areas of interstrand contact.
amounts of movement are not great enough to build up tract
that exceed the threshold of sliding.

On the other hand, the assumption~21! cannot be justified near the
points of support.

3.2 Cylindrically Anisotropic Materials. Next, we need
constitutive relations for the materials of the wire rope. We
sume that each layer is composed of a cylindrically anisotro
elastic solid. Letting (r ,u,z)5(1,2,3), Hooke’s law becomes

t i j 5Ci jkl «kl , (22)

where« i j are the strain components, and we emphasize that
stiffnessesCi jkl are referred to cylindrical polar coordinates; s
@20# and@21# for more details. We assume further that each la
of the wire is homogeneous, so that the stiffnesses are con
within each layer. Thus,Ci jkl 5Ci jkl (r ) are piecewise-constan
functions ofr.

The strains are given as follows~@20#, p. 2399!:

« rr 5
]ur

]r
5u, «uu5

1

r

]uu

]u
1

ur

r
5u,

«zz5
]uz

]z
5

]w

]z
, « ru5

1

2 S 1

r

]ur

]u
1

]uu

]r
2

uu

r D50,

« rz5
1

2 S ]uz

]r
1

]ur

]z D5
1

2
r

]u

]z
,

«uz5
1

2 S ]uu

]z
1

1

r

]uz

]u D5
1

2
r

]f

]z
.

The corresponding stresses are given by Eq.~22! as

t i j 5Ci j 11« rr 1Ci j 22«uu1Ci j 33«zz12Ci j 12« ru12Ci j 23«uz

12Ci j 13« rz5~Ci j 111Ci j 22!u1Ci j 33

]w

]z
1Ci j 23r

]f

]z

1Ci j 13r
]u

]z
.

Thus

t rz5t135~C151C25!u1C35

]w

]z
1C45r

]f

]z
1C55r

]u

]z
,

tuz5t235~C141C24!u1C34

]w

]z
1C44r

]f

]z
1C45r

]u

]z
,

t ru5t125~C161C26!u1C36

]w

]z
1C46r

]f

]z
1C56r

]u

]z
,

tzz5t335~C131C23!u1C33

]w

]z
1C34r

]f

]z
1C35r

]u

]z
,

t rr 5t115~C111C12!u1C13

]w

]z
1C14r

]f

]z
1C15r

]u

]z
,

tuu5t225~C121C22!u1C23

]w

]z
1C24r

]f

]z
1C25r

]u

]z
,
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where we have used the usual contracted notationCab for Ci jkl
~@22#, Section 2.3!. Note that these expressions make use of 20
the 21 stiffnesses, the exception beingC66.

3.3 One-Dimensional Equations of Motion. We use the
expressions above fort i j in Eqs. ~18!, ~19!, and ~20!, together
with Eq. ~21!, and obtain Eqs.~4!–~6!, wherein

A15E
C
C33dA, A25E

C
rC34dA, A45E

C
r 2C44dA,

A55E
C
rC35dA, A65E

C
r 2C45dA, A75E

C
r 2C55dA,

B15E
C
~C131C23!dA, B25E

C
r ~C141C24!dA,

B35E
C
~C111C2212C12!dA.

Note that these expressions make use of 13 different ela
stiffnesses.

Equations ~4!–~6! are three coupled one-dimensional wa
equations foru, f, andw, defined by Eq.~17!. This 333 system
should be compared with the 232 SSM system~which was de-
rived by strength-of-materials arguments!. We do this next.

3.4 Comparison With the Samras-Skop-Milburn „SSM…

System. We see immediately that Eqs.~4! and~5! reduce to Eqs.
~2! and ~3!, respectively, ifu[0 ~no radial displacement!. Then,
the third equation, Eq.~6!, becomes

A5

]2w

]z2 1A6

]2f

]z2 2B1

]w

]z
2B2

]f

]z
50. (23)

Now, we know that the SSM system has traveling-wave solutio
given by Eqs.~11! and ~12!. When these are substituted in E
~23!, we obtain an ordinary differential equation forg(j), with
solution g(j)5egj whereg5(B1G1B2)/(A5G1A6), provided
A5 andA6 are not both zero. This particular exponential soluti
is not of interest to us, as we want to consider the propagatio
bounded pulses along the wire rope; therefore, we discard
solution. If A55A650 ~this case will arise in Section 4.1!, Eq.
~23! reduces toB1G1B250. This may be satisfied for one valu
of c2 given by Eq.~10!, but not both.

Another way to satisfy Eq.~23! identically is to require that the
stiffnesses are such that

A55A65B15B250. (24)

These conditions involve the stiffnesses and radius of each
centric layer of the composite cylinder. They will be satisfied
the material in each layer satisfiesC355C4550, C1352C23 and
C1452C24.

We conclude that, in very special circumstances, our 333 sys-
tem reduces to the SSM system, together withu[0.

Let us also calculate the forces and moments acting on a c
sectionC of the wire rope. The axial force is given by

F5E
C
tzzdA5A1

]w

]z
1A2

]f

]z
1A5

]u

]z
1B1u (25)

and the axial twisting moment is given by

M5E
C
r tuzdA5A2

]w

]z
1A4

]f

]z
1A6

]u

]z
1B2u.

Both of these reduce to Eq.~7!, providedu[0 or Eq. ~24! holds.

3.5 Waves. Before looking for solutions of Eqs.~4!–~6!, it
is convenient to introduce dimensionless variables. Letc0 be a
typical wave speed for elastic waves in the rope. For a len
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scale, we shall usea, the outer radius of the rope’s cross sectio
~Phillips and Costello@17# use the length of the rope.! Define

z85
z

a
, t85

c0t

a
, u85uA I

ma2,

f85fA I

ma2 and w85
w

a
, (26)

where the primes signify dimensionless quantities. Then, E
~4!–~6! become

A18
]2w8

]z82 1A28
]2f8

]z82 1A58
]2u8

]z82 1B18
]u8

]z8
5

]2w8

]t82 , (27)

A28
]2w8

]z82 1A48
]2f8

]z82 1A68
]2u8

]z82 1B28
]u8

]z8
5

]2f8

]t82 , (28)

A58
]2w8

]z82 1A68
]2f8

]z82 1A78
]2u8

]z82 2B18
]w8

]z8
2B28

]f8

]z8
2B38u85

]2u8

]t82 ,

(29)

where

A185
A1

mc0
2 , A285

A2

c0
2AmI

, A485
A4

c0
2I

, A585
A5

c0
2AmI

,

A685
A6

c0
2I

, A785
A7

c0
2I

, B185
aB1

c0
2AmI

, B285
aB2

c0
2I

,

and B385
a2B3

c0
2I

.

Henceforth, we drop all the primes.
The scaling introduced above may seem complicated but it

threebeneficial consequences. First, all equations and coeffici
aredimensionless. Second, it will lead to aHermitian coefficient
matrix when we seek solutions proportional to exp$ik(z2at)% ~see
Eq. ~32! below! and, third, the wave speeda will be determined
by solving an eigenvalue problem~rather than ageneralizedei-
genvalue problem!.

Thus, we seek solutions in the form

u5u0eikj, f5f0eikj and w5w0eikj, (30)

wherej5z2at, u0 , f0 , and w0 are constants,k is a nonzero
dimensionless real wave number, anda is a dimensionless wave
speed; the actual wave speed isac0 and the actual wavelength i
2pa/k. Substituting Eq.~30! in Eqs.~27!–~29! gives

~A2a2I!x50, (31)

where

A5S A1 A2 A52 iB1 /k

A2 A4 A62 iB2 /k

A51 iB1 /k A61 iB2 /k A71B3 /k2
D (32)

and xT5(w0 ,f0 ,u0). Equation~31! will have a nontrivial solu-
tion provided that

det~A2a2I!50, (33)

which is a cubic ina2. The three solutions fora2 are all real. This
follows by noting thatA is a complex Hermitian matrix so tha
x̄TAx is real ~where the overbar denotes complex conjugation!.

We would like to know that the real solutions fora2 are all
positive, so that we have six real solutions fora. With l5a2, we
can write Eq.~33! as

f ~l![l31d2l21d1l1d050, (34)

where the coefficientsdi are known in terms of the entries ofA.
We know thatf (l)50 has real roots only, so elementary cons
NOVEMBER 2002, Vol. 69 Õ 743



a

n

a

t

n

c

l

t

s

h

d
t

-

l
five

du-

r is

the
ate
ibed
erations~such as sketching the graph off (l)! will lead to condi-
tions ondi that are sufficient to guarantee that all the roots
positive. For example, we must havef (0),0, which yields
det(A).0. We must also have two positive turning points, a
this yieldsd2,0.

Let us make three further remarks. First, despite the appear
of first derivatives with respect toz, the system~27!–~29! is sym-
metric in z. In other words, if there is a solution proportional
eikz, then there is another proportional toe2 ikz, with the same
value of a. For det(Ā2a2I)5det(A2a2I), as A is Hermitian.
Second, asA depends onk, so too doesa: the waves aredisper-
sive, unlike the solutions of the SSM system. Third, having fou
the eigenvaluesa2, the relative displacement amplitudes a
given by the corresponding eigenvectorx5(w0 ,f0 ,u0)T of A.

4 Cylindrically Orthotropic Materials
The theory developed in Section 3 is fairly general. As a spe

case, we can suppose that the material of each layer is cylin
cally orthotropic. For such materials, there are nine nontriv
stiffnesses, namelyC11, C12, C13, C22, C23, C33, C44, C55,
andC66. It follows thatA25A55A65B250, so that the torsiona
componentf decouples fromu and w. Equation~28! reduces to
A4]2f/]z25]2f/]t2, the one-dimensional wave equation wi
wavespeedAA4. Equations~27! and ~29! reduce to

A1

]2w

]z2 1B1

]u

]z
5

]2w

]t2 , (35)

A7

]2u

]z2 2B1

]w

]z
2B3u5

]2u

]t2 . (36)

These can be solved, using Eq.~30!. However, we do not pursue
this here, as we are interested mainly in situations where the
sional motions donot decouple.

We remark that forisotropic materials, we can show that Eq
~35! and ~36! reduce to Eq.~8.3.148! in @10#.

4.1 Rotated Coordinate Systems. Above, we considered a
material with cylindrical orthotropy, where the principal axes a
aligned with the cylindrical-polar coordinate axes. We saw t
torsional motions decoupled from axial and radial motions.

Suppose, now, that the material of each layer is cylindrica
orthotropic with respect to a different coordinate syste
(r 8,u8,z8), with nine nontrivial elastic stiffnessesCab8 ~@14,15#!.
We want to expressCab in terms of Cab8 . ~This is a standard
calculation in tensor analysis.! Specifically, at a typical pointP,
the cylinder has three coordinate directions, namely, 1[r , 2[u
and 3[z. At the same point, the material has three principal
rections, namely, 18[r 8, 28[u8, and 38[z8. We suppose tha
the r and r 8 directions coincide~at P!, and that the (u,z) direc-
tions are obtained by rotating the (u8,z8) directions by an angleb
about ther-direction. The stiffnesses transform according to

Ci jkl ~b!5V ipV jqVkrV lsCpqrs8 ,

where

V i j ~b!5S 1 0 0

0 cosb sinb

0 2sinb cosb
D .

Explicit calculations show that the~symmetric! stiffness matrix
referred to coordinates (r 8,u8,z8), which has the structure
744 Õ Vol. 69, NOVEMBER 2002
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C85S C118 C128 C138 0 0 0

C228 C238 0 0 0

C338 0 0 0

C448 0 0

C558 0

C668

D ,

is transformed into a~symmetric! stiffness matrix referred to co
ordinates (r ,u,z) with the structure

C5S C11 C12 C13 C14 0 0

C22 C23 C24 0 0

C33 C34 0 0

C44 0 0

C55 C56

C66

D . (37)

Explicit expressions forCag in terms ofCag8 are given in Appen-
dix A. A consequence of this structure ofC is that A55A650,
leading to a slight simplification of the analysis in Section 3.

4.2 Transverse Isotropy. Transverse isotropy is a specia
case of cylindrical orthotropy. For such materials, there are
nontrivial stiffnesses; the~unrotated! stiffness matrix can be writ-
ten as

C85S C118 C128 C138 0 0 0

C118 C138 0 0 0

C338 0 0 0

C448 0 0

C448 0

1

2
~C118 2C128 !

D .

In order to use the results in@14,15#, it is convenient to introduce
engineering constants. These are the longitudinal Young’s mo
lus EL , the transverse Young’s modulusET , the longitudinal
Poisson’s rationL , the transverse Poisson’s rationT , and the
longitudinal shear modulusGL . Then, using@15# ~Eq. ~2!! and
@23# ~Eqs.~2.25! and ~2.36!!, we obtain

C118 5
12gnL

2

D
ET , C128 5

nT1gnL
2

D
ET ,

C138 5
nL~11nT!

D
EL , C338 5

12nT
2

D
EL

and C448 5GL ; here, g5EL /ET and D512nT
222gnL

2(11nT).
Note thatC668 5(1/2)ET /(11nT). After rotation, one obtains a
matrix C with the same structure as Eq.~37!.

For an isotropic material,EL5ET5E, nL5nT5n andGL5m
5(1/2)E/(11n).

Following Jolicoeur and Cardou@14,15#, we shall use this con-
stitutive model~rotated transverse isotropy! for a composite wire
rope. A specific example of a simple ACSR electrical conducto
considered in the next section.

5 A Simple Example of an Aluminum Conductor Steel
Reinforced „ACSR… Conductor

In order to use the foregoing theory, we have to specify
physical characteristics of the wire rope and we have to estim
the elastic constants. Methods for doing this have been descr
by Jolicoeur and Cardou@14,15# in their analysis of the static
Transactions of the ASME
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loading of wire rope. We follow their method closely, making u
of some calculations of Costello~@4#, Section 3.9!. Thus, we con-
sider a very simple ACSR conductor, consisting of six alumin
wires helically wound around a single straight steel-wire core. T
steel wire has radiusr s51.70 mm~0.067 in.!. All the aluminum
wires have radiusr a51.68 mm~0.066 in.!. In terms of the model
described in Section 3, we haveN51, a05r s and a15a5r s
12r a . The aluminum wires have a helical radius ofh5r s1r a
and a helical angle ofb510 deg.~These parameters are approx
mately those of the so-called Raven 6/1 ACSR conductor;
@24#, Table 1–6!.

Mass per Unit Length. Taking a cross section of the wir
rope, we see that each aluminum wire has an approximately e
tical cross section, with a semi-minor axis of lengthr a and a
semi-major axis of lengthr a secb; see@4#, Fig. 3.1. Thus, each
wire has a mass per unit length ofprar a

2 secb5ma , say, wherera
is the density of aluminum. Hence, ifrs is the density of steel,

m

praa2 5
rs

ra
S r s

a D16S r a

a D 2

secb50.998, (38)

where we have usedrs57800 kg/m3 andra52700 kg/m3. Note
that the mass of the wire rope is almost the same as that of a
aluminum cylinder of the same diameter. Note also that our
culated value form is consistent with the tabulated value of 21
kg/km for the Raven ACSR conductor; see@24#, Table 1–6.

Moment of Inertia. The moment of inertia of an ellipse
about an axis through its center~and perpendicular to its plane! is
(1/4)M (a21b2), whereM is its mass anda andb are the lengths
of the semi-major and semi-minor axes. Then, using the para
axes theorem, we obtain

I 5
1

2
prsr s

416H mah21
1

4
mar a

2~11sec2 b!J .

Hence,I 50.357ma2; about 95% of this comes from the alum
num wires.~For comparison, a solid composite cylinder compos
of a steel core of radiusa0 surrounded by an aluminum claddin
of outer radiusa hasI 50.422ma2.!

Stiffnesses. The steel core is isotropic with Young’s modulu
Es and Poisson’s rations50.25. ThusEL5ET5Es , nL5nT5ns
and GL50.4Es . The corresponding stiffnesses areC115C33
51.2Es andC125C135C445C6650.4Es .

Let aluminum have Young’s modulusEa and Poisson’s ratio
na50.33. Then, from Eqs.~3!, ~9!, and ~12!–~14! in @15#, the
aluminum wires may be modeled using

EL

Ea
5

3

2

r a

h
secb50.756,

nL

na
5

ET

EL
5

1

g
,

nT

na
5

ET

Ea
,

GL

Ea
5

r a
2~EL /Ea!

2~11na!~r a
21h2!~11cos2 b!

50.0285

and

1

ET
5

CE

p H log
p~r s1r a!

XcCE
2

1

3J ,

whereXc is the contact force per unit length and, from@25#, Table
33,

CE5
12ns

2

Es
1

12na
2

Ea
5

1.204

Ea
,

usingEs53Ea . The calculation ofXc is described in Appendix B,
using the method of Costello@4#. From Eq.~B6!, we obtain
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p~r s1r a!/~XcCE!5790.4h2Ea /F,

whereF is the~static! axial force on the wire rope. As an exampl
let us takeF55000 N ~1124 lb!. We take Ea5731010 N/m2

whenceET50.229Ea . ~Evidently, ET will increase if F is in-
creased, but the increase is not linear; in fact,ET depends loga-
rithmically on F, so that large changes inF will induce moderate
changes inET .! Hence nT50.08, nL50.10, g53.3, and D
50.92. Then, from Section 4.2, we obtainC118 50.241Ea , C128
50.028Ea , C138 50.089Ea , C338 50.816Ea , C448 50.029Ea and
C668 50.106Ea . Finally, the rotated stiffnesses are given by

C5EaS 0.24 0.03 0.09 0.01 0 0

0.23 0.11 0.01 0 0

0.78 0.11 0 0

0.05 0 0

0.03 20.01

0.10

D ,

using the relations given in Appendix A.

Averaged Stiffnesses. The coefficientsA1 , A2 , A4 , A5 , A6 ,
A7 , B1 , B2 , andB3 are defined in Section 3.3 by certain integra
of the stiffnesses over a cross section of the wire rope. Dim
sionless versions of these coefficients are defined in Section
making use ofm, I and a typical wave speedc0 , which we shall
take to be the speed of shear waves in aluminum:c0

2252ra(1
1na)/Ea . Thus, mc0

250.375pEaa2, using na50.33 and Eq.
~38!. Then

A15
1

mc0
2 E

C
C33dA5

pEaa2

mc0
2 H S r s

a D 2 Es

Ea

C33
s

Es
1F12S r s

a D 2G C33
a

Ea
J ,

where the superscripts onC33 denote steel or aluminum, as appr
priate. We have r s /a50.337, Es /Ea53, C33

s /Es51.2 and
C33

a /Ea50.78 whenceA152.94. The other coefficients are ob
tained similarly. Thus, we find that

A152.94, A250.32, A450.24, A55A650,

A750.17, B152.00, B250.096 and B3511.61.

Waves. Having specified the mechanical properties of t
ACSR conductor, we can now calculate the allowable wa
modes, according to the theory described in Section 3.5. Fo
given dimensionless wave numberk, the dimensionless
wavespeedsa are given by solving Eq.~33!, which can be written
as a cubic inl5a2, namely Eq.~34!, in which

d252~3.35111.61k22!, d151.14132.91k22 and

d052~0.10316.14k22!.

As d0 and d2 are both negative, for allk2, the cubic has only
positive real roots, so that all the wave speeds are real.

Numerical Results. We have solved Eq.~34! for a2. In Fig.
1, we have plotted the three positive values ofa, as a function of
k. Evidently, we can denote these three values bya i(k), i 51, 2,
3, with 0,a1,a2,a3 . We see thata i(k) is a decreasing func-
tion of k. In fact, the lowest wave speed,a1 , is almost indepen-
dent of k: for example,a1(1).0.448 anda1(10).0.447. Thus,
the wave corresponding toa1 is almost nondispersive: it travel
with a speed of approximately 0.45c0 , wherec0 is the speed of
shear waves in aluminum.

Figure 1 also suggests thata2(k)2a1(k)→0 ask→`. This is
false. To see this, letk→` in A, and putA55A650. Then, using
the notation of Abramowitz and Stegun@26#, Section 3.8.2, we
calculateq31r 2, whereq5(1/3)d12(1/9)d2

2 and r 5(1/6)(d1d2

23d0)2(1/27)d2
3. We find that
NOVEMBER 2002, Vol. 69 Õ 745
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q31r 252
1

108
$~A12A4!214A2

2%$A2
21~A12A7!~A72A4!%2,

which is negative, confirming that all the roots are real~when k
5`!. However, for our particular values ofAi , we obtainq3

1r 2.20.02, which is small, and soa1 anda2 will differ by a
small but finite amount for largek. In fact, we find a2(10)
.0.523 anda3(10).1.73.

Next, we have calculated the eigenvectorsxi of A, correspond-
ing to a i , wherex5(w0 ,f0 ,u0)T. We can arrange thatuxu51
and, asA55A650, it follows from Eq.~31! that we can takew0
andf0 to be real andu0 to be pure imaginary,u05 i û, say. Then,
taking the real part of Eq.~30!, we obtain

u52û sinkj, f5f0 coskj and w5w0 coskj,

wherej5z2at. Thus, the radial component is out of phase w
the axial and torsional components. Then, the normalized eig
vectors show the physical character of each mode.

The three components ofx1 , corresponding to the lowes
wavespeeda1 , are shown in Fig. 2, as a function ofk. We see that
this mode is a quasi-torsional mode: The axial and radial com
nents are small. This weakly dispersive mode is the most imp
tant in the context of our application to ACSR conductors, b
cause our transducers are designed to launch torsional wave

The components of the eigenvectorx2 , corresponding to the
wave speeda2 , are shown in Fig. 3, whereasx3 is shown in Fig.
4. We see that both of these modes have small torsional com
nents. Forx2 , the axial component decreases withk and the radial
component dominates, whereas the opposite situation occurs
x3 .

6 Conclusions
In this paper, we have attempted to give a rational model for

propagation of elastic waves along composite wire ropes. T
goal was to obtain one-dimensional differential equations
wave-equation type, with coefficients obtained from certain in
grals over the cross section of the wire rope. Such equations
well known for waves in isotropic rods. We used simple kinema
cal assumptions, Eq.~17!, but it is clear that various expansions i
r could be used; see Bostro¨m @27# for a recent discussion of suc
methods.

Fig. 1 The dimensionless wave speeds a i as functions of di-
mensionless wave number k
746 Õ Vol. 69, NOVEMBER 2002
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We derived a set of three coupled partial differential equatio
Eqs. ~4!–~6!. The coefficients in these equations are given as
tegrals involving the elastic stiffnesses of each layer of the co
posite wire rope, when regarded as a solid with cylindrical anis
ropy. A basic difficulty is how to determine these stiffnesses. W
have used a method described by Jolicoeur and Cardou@15#. This
leads to a logical inconsistency: one of the Young’s moduli,ET ,
was calculated from a knowledge of the contact forces betw
individual wires within the rope, and these forces were estima
using Costello’s theory~@4#!; the inconsistency is that the latte
theory gives Eq.~1! for F whereas we obtain Eq.~25! ~wherein

Fig. 2 The components of the dimensionless eigenvector x 1
Ä„w 0 ,f0 ,iû … corresponding to the dimensionless wave speed
a1 , as functions of dimensionless wave number k. This is the
quasi-torsional mode.

Fig. 3 The components of the dimensionless eigenvector x 2
corresponding to the dimensionless wave speed a2 .
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A550!. In fact, we applied a static tension, determined the cont
forces, and then superimposed a wave motion. In the absence
better algorithm, we feel that the present approach is adequate
note that the modulusET depends weakly on the actual magnitud
of the contact forces, so that a rough estimate should suffice.

One aspect not considered here is that ofdamping: experimen-
tally, it is observed that wave amplitude decays with distan
along the wire rope. The precise cause of this phenomeno
unknown. For a wire rope under static tensionF, it is known that
interwire slippage is not responsible~@28#!, although the damping
does vary withF and with the number of wires comprising th
rope; see@29# for a review. Further work is needed so as to d
velop a predictive model for damping.
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Appendix A

Rotated Stiffnesses. A material with cylindrical orthotropy
has elastic stiffnessesCag8 when referred to principal axes. Rota
tion about the radial axis by an angleb leads to stiffnessesCag ,
defined as follows:

C115C118 , C125C128 cos2 b1C138 sin2 b,

C135C138 cos2 b1C128 sin2 b,

C145
1

2
~C138 2C128 !sin 2b, C225C228 cos4 b1

1

2
C238 sin2 2b,

C235C238 ~cos4 b1sin4 b!1S 1

4
C228 1

1

4
C338 2C448 D sin2 2b,

C245
1

2
~C448 1C238 !sin 4b1

1

2
~C338 sin2 b2C228 cos2 b!sin 2b,

Fig. 4 The components of the dimensionless eigenvector x 3
corresponding to the dimensionless wave speed a3 .
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C335C338 cos4 b1C228 sin4 b1S C448 1
1

2
C238 D sin2 2b,

C345
1

2
~C338 cos2 b2C228 sin2 b!sin 2b2

1

2 S C448 1
1

2
C238 D sin 4b,

C445C448 cos2 2b1
1

4
~C338 1C228 22C238 !sin2 2b,

C555C558 cos2 b1C668 sin2 b,

C565
1

2
~C558 2C668 !sin 2b and C665C668 cos2 b1C558 sin2 b.

Appendix B

Contact Stresses. In order to calculateET , we have to cal-
culate the contact stresses between the aluminum wires and
steel core. Specifically, we requireXc , the contact force per uni
length acting along the line of contact. Thus, we apply a sta
load to the wire rope; the axial forceF, axial twisting momentM,
axial strain«, and rotation per unit lengthx are related by Eq.~1!.
The theory in@4# yields expressions forA12A4 , and also forX,
the contact force per unit length along the centerline of the ro
Then,Xc is given by@4#, Eqs.~3.10! and ~3.114!, as

Xc52X$cos2 b1~r s /h!2 sin2 b%21/2521.011X, (B1)

usingb510 deg andr s /h50.503 for our ACSR conductor.
The total axial force acting on the wire rope isF5F01F1 ,

whereF0 andF1 are the axial forces in the steel core and alum
num wires, respectively. We haveF05pEsr s

2«. ForF1 andX, we
have the following equations from@4#, Section 3.9:

F156~T cosb1N sinb!,

hX5~N cosb2T sinb!sinb,

hN5~H sinb2G cosb!sinb,

hG5
1

4
pEar a

4~L sin2 b2a1 sin 2b!,

hH5
1

4
p~11na!21Ear a

4~L sinb cosb2a1 cos 2b!,

with T5pEar a
2j1 andhL5nsr s«1nar aj1 . We also have

j11a1 tanb5«, (B2)

j1 tanb2a11L tanb5hx. (B3)

Comparing our notation with that used in@4#, we haveF1

5F2 , G5G28 , H5H28 , N5N28 , T5T28 , X5X2 , a15Da2 , r a
5R2 , r s5R1 , b5(1/2)p2a2 , h5r 2 , x5ts andj15j2 . Also,
m256.

We can solve Eqs. (B2) and (B3) for j1 anda1 :

j15V21$«~h cos2 b2nsr s sin2 b!1xh2 sinb cosb%,

a15V21$«~h1nsr s1nar a!sinb cosb2xh2 cos2 b%,

whereV5h1nar a sin2 b. We can then substitute back, so as
obtain an expression forF in terms of« andx.

Let us suppose that the wire rope is subject to a prescri
static loadF and that the momentM is adjusted so that the rop
does not rotate (x50). Then, we find that

T5pEar a
2«V21~h cos2 b2nsr s sin2 b!,

hG5
1

4
pEar a

4«V21$nsr s2~2h12nsr s1nar a!cos2 b%sin2 b,
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hH5
1

4
p~11na!21Ear a

4«V21$~2h12nsr s1nar a!sin2 b

2h%sinb cosb.

If we takens50.25 andna50.33, we find that

G520.0259Ear a
3«, H520.0462Ear a

3«,

T53.019Ear a
2« and N50.00151Ear a

2«.

We can takeEs53Ea , whence

F051.07Eaa2« and F151.96Eaa2«, (B4)

and soF53.03Eaa2«. Thus, given the static loadF, this equa-
tion determines the axial strain«, whence

N5~5.531025!F, T50.11F and hX520.0033F.
(B5)

Finally, we deduce from Eq. (B1) that

hXc50.0033F. (B6)

The fact thatN is much smaller thanT suggests that asymptoti
approximations valid for smallb should be useful. With errors o
O(b2) asb→0, we easily obtainV5h, j15«, T5pEar a

2«, G
5O(b2), H5O(b), N5O(b3),

F1 /~Eaa2«!56p~r a /a!252.07

~which should be compared with the ‘‘exact’’ result Eq. (B4)! and

hX;2pb2r a
2Ea«;20.0032F,

usingb50.17. This result forX is in error by about 3%.

References
@1# Rawlins, C. B., 1979, ‘‘Fatigue of Overhead Conductors,’’Transmission Line

Reference Book: Wind-Induced Conductor Motion, Electric Power Research
Institute, Palo Alto, CA, pp. 51–81.

@2# Berger, J. R., Martin, P. A., and McCaffery, S. J., 2000, ‘‘Time-Harmon
Torsional Waves in a Composite Cylinder With an Imperfect Interface,’’
Acoust. Soc. Am.,107, pp. 1161–1167.

@3# Butson, G. J., Phillips, J. W., and Costello, G. A., 1980, ‘‘Stresses in W
Rope due to Dynamic Loads Associated With Deep Shaft Hoisting System
Proc. First Annual Wire Rope Symposium, Denver, CO, Engineering Extensio
Service, Washington State University, Pullman, WA, pp. 243–273.

@4# Costello, G. A., 1997,Theory of Wire Rope, 2nd Ed., Springer, New York.
@5# McConnell, K. G., and Zemke, W. P., 1982, ‘‘A Model to Predict the Coupl

Axial Torsion Properties of ACSR Electrical Conductors,’’ Exp. Mech.,22, pp.
237–244.
748 Õ Vol. 69, NOVEMBER 2002
ic
J.

ire
s,’’

d

@6# Lanteigne, J., 1985, ‘‘Theoretical Estimation of the Response of Helica
Armored Cables to Tension, Torsion, and Bending,’’ASME J. Appl. Mech.,52,
pp. 423–432.

@7# Sathikh, S., Rajasekaran, S., Jayakumar, and Jebaraj, C., 2000, ‘‘Genera
Rod Model for Preslip Bending Response of Strand,’’ J. Eng. Mech.,126, pp.
132–139.

@8# Raoof, M., and Kraincanic, I., 1994, ‘‘Critical Examination of Various Ap
proaches Used for Analysing Helical Cables,’’ J. Strain Anal.,29, pp. 43–55.

@9# Samras, R. K., Skop, R. A., and Milburn, D. A., 1974, ‘‘An Analysis o
Coupled Extensional-Torsional Oscillations in Wire Rope,’’ J. Eng. Ind.,96,
pp. 1130–1135.

@10# Graff, K. F., 1991,Wave Motion in Elastic Solids, Dover, New York.
@11# Cardou, A., and Jolicoeur, C., 1997, ‘‘Mechanical Models of Helical Strand

Appl. Mech. Rev.,50, pp. 1–14.
@12# Hobbs, R. E., and Raoof, M., 1982, ‘‘Interwire Slippage and Fatigue Pre

tion in Stranded Cables for TLP Tethers,’’Proceedings, 3rd Intl. Conf. Behav
ior of Offshore Structures, Hemisphere, Washington, DC, pp. 77–92.

@13# Blouin, F., and Cardou, A., 1989, ‘‘A Study of Helically Reinforced Cylinde
Under Axially Symmetric Loads and Application to Strand Mathematic
Modelling,’’ Int. J. Solids Struct.,25, pp. 189–200.

@14# Jolicoeur, C., and Cardou, A., 1994, ‘‘Analytical Solution for Bending of C
axial Orthotropic Cylinders,’’ J. Eng. Mech.,120, pp. 2556–2574.

@15# Jolicoeur, C., and Cardou, A., 1996, ‘‘Semicontinuous Mathematical Model
Bending of Multilayered Wire Strands,’’ J. Eng. Mech.,122, pp. 643–650.

@16# Skop, R. A., and Samras, R. K., 1975, ‘‘Effects of Coupled Extension
Torsional Oscillations in Wire Rope During Ocean Salvage and Construc
Operations,’’ J. Eng. Ind.,97, pp. 485–492.

@17# Phillips, J. W., and Costello, G. A., 1977, ‘‘Axial Impact of Twisted Wir
Cables,’’ ASME J. Appl. Mech.,44, pp. 127–131.

@18# Raoof, M., Huang, Y. P., and Pithia, K. D., 1994, ‘‘Response of Axially Pr
loaded Spiral Strands to Impact Loading,’’ Comput. Struct.,51, pp. 125–135.

@19# Martin, P. A., 1992, ‘‘Boundary Integral Equations for the Scattering of Elas
Waves by Elastic Inclusions With Thin Interface Layers,’’ J. Nondestru
Eval., 11, pp. 167–174.

@20# Ting, T. C. T., 1996, ‘‘Pressuring, Shearing, Torsion and Extension of a C
cular Tube or Bar of Cylindrically Anisotropic Material,’’ Proc. R. Soc. Lon
don, Ser. A,452, pp. 2397–2421.

@21# Martin, P. A., and Berger, J. R., 2001, ‘‘Waves in Wood: Free Vibrations o
Wooden Pole,’’ J. Mech. Phys. Solids,49, pp. 1155–1178.

@22# Ting, T. C. T., 1996,Anisotropic Elasticity, Oxford University Press, Oxford,
UK.

@23# Jones, R. M., 1999,Mechanics of Composite Materials, 2nd Ed., Taylor &
Francis, Philadelphia, PA.

@24# Doocy, E. S., and Hard, A. R., 1979, ‘‘Introduction,’’Transmission Line Ref-
erence Book: Wind-Induced Conductor Motion, Electric Power Research Insti
tute, Palo Alto, CA, pp. 1–50.

@25# Young, W. C., 1989,Roark’s Formulas for Stress and Strain, 6th Ed.,
McGraw-Hill, New York.

@26# Abramowitz, M., and Stegun, I. A., eds., 1965,Handbook of Mathematical
Functions, Dover, New York.

@27# Boström, A., 2000, ‘‘On Wave Equations for Elastic Rods,’’ Z. Angew. Math
Mech.,80, pp. 245–251.

@28# Labrosse, M., Nawrocki, A., and Conway, T., 2000, ‘‘Frictional Dissipation
Axially Loaded Simple Straight Strands,’’ J. Eng. Mech.,126, pp. 641–646.

@29# Fang, J., and Lyons, G. J., 1996, ‘‘Structural Damping of Tensioned Pipes W
Reference to Cables,’’ J. Sound Vib.,193, pp. 891–907.
Transactions of the ASME



e is
order
dent
clude
tion

y an
usly
ed to
tives.
erge
to a

can be
tions

d by
e for

sical
ory is
riable
B. Tabarrok1

Department of Mechanical Engineering,
University of Victoria,

British Columbia, V8W 3P6, Canada

C. M. Leech
Department of Mechanical Engineering,

UMIST,
Manchester M60 1QD, UK

Fellow ASME

Hamiltonian Mechanics for
Functionals Involving
Second-Order Derivatives
Hamilton’s principle was developed for the modeling of dynamic systems in which tim
the principal independent variable and the resulting equations of motion are second-
differential equations. This principle uses kinetic energy which is functionally depen
on first-order time derivatives, and potential energy, and has been extended to in
virtual work. In this paper, a variant of Hamiltonian mechanics for systems whose mo
is governed by fourth-order differential equations is developed and is illustrated b
example invoking the flexural analysis of beams. The variational formulations previo
associated with Newton’s second-order equations of motion have been generaliz
encompass problems governed by energy functionals involving second-order deriva
The canonical equations associated with functionals with second order derivatives em
as four first-order equations in each variable. The transformations of these equations
new system wherein the generalized variables and momenta appear as constants,
obtained through several different forms of generating functions. The generating func
are obtained as solutions of the Hamilton-Jacobi equation. This theory is illustrate
application to an example from beam theory the solution recovered using a techniqu
solving nonseparable forms of the Hamilton-Jacobi equation. Finally whereas clas
variational mechanics uses time as the primary independent variable, here the the
extended to include static mechanics problems in which the primary independent va
is spatial. @DOI: 10.1115/1.1505626#
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1 Introduction
Hamilton’s principle and his celebrated canonical equations

based on Newton’s second-order differential equations of mot
The same is true for the further development of this analyt
approach to mechanics culminating in the celebrated Hamil
Jacobi equation. Excellent accounts of the theory are availab
texts in classical mechanics, e.g., Lanczos@1#, Goldstein @2#,
Whittaker@3#, Pars@4#, Synge@5#, and Logan@6#. Classical varia-
tional mechanics invokes kinetic energy functions, which are
pressed in terms of momenta or velocities. This theory is t
developed where the first derivative is the highest temporal
rivative. It is of interest to examine the extension of this theory
cases when the Lagrangian involves second-order derivat
such circumstances arise in spatial mechanics, and for such f
tionals the Euler-Lagrange equations are fourth order. Acco
ingly, the generalization of Hamiltonian theory for such system
ideally suited to problems of beam flexure. In this generalizat
the mathematical structure of the Hamiltonian theory remains
sentially in tact; the change in the independent variable from t
to space implies a change in the physics of the problem fr
determining trajectories of particles in time to finding deflect
configurations of beams in space.

Rund @7,8# examined the theory of functionals depending
second-order derivatives and in particular identified some diffic
ties when the functional is not a positive definite function in t
second derivative terms. Analogous difficulties would have ari
in Hamilton’s principle in dynamics had the kinetic energy n

1Deceased.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 2
2001; final revision, Feb. 28, 2002. Associate Editor: M. Ortiz. Discuss
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of Californi
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
Copyright © 2Journal of Applied Mechanics
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been a positive definite function in velocities. Rodrigues@9# con-
sidered Lagrangians that contained second-order differentials,
developed the corresponding Hamilton equations; since the
mulation is dynamic, he did not suggest the source of these h
derivatives. In the following a theory for the Hamiltonian mecha
ics of systems described by fourth-order differential equation
developed and is illustrated by an example invoking the flexu
analysis of beams.

2 Functionals Involving Second-order Derivatives
Consider the following functional:

dE
x1

x2

L~x,y,yx ,yxx!dx50 (1)

where

yx5
]y

]x
and yxx5

]2y

]x2 .

The Euler-Lagrange equation of this functional is given by

]L

]y
2

d

dx S ]L

]yx
D1

d2

dx2 S ]L

]yxx
D50. (2)

Now in analogy with classical mechanics a modified mome
tum is defined,

r 5
def ]L~x,y,yx ,yxx!

]yxx
, (3)

with this definition, Eq.~2! may be written as

]L

]y
5

d

dx F ]L

]yx
2

dr

dxG . (4)

If a modified momentump is also defined as

,
on
part-
–
four
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p5
defF ]L

]yx
2

dr

dxG (5)

then Eq.~4! may be expressed as

]L

]y
5

dp

dx
. (6)

This equation resembles Lagrange’s equation in dynamics,
differences being the definition of the momenta and also the
that in dynamics the independent variable is timet instead of the
space variablex. Again in analogy with classical dynamics we ca
see that ify does not appear in the Lagrangian, i.e.,]L/]y50,
then y will be ignorable with a conserved modified momentu
i.e., p5c.

The modified momentum,p shown above is used here to di
tinguish it from generalized momentum. This definition for mod
fied momentum is reserved here for use within the theory of s
tial mechanics whereas the generalized momentump5]L/]yt is
conventionally associated with temporal mechanics. This dist
tion is made so that the following development can be compa
with those associated with classical Hamiltonian theory. Fina
the modified momentumr defined above is now relabeled hyp
momentum since it is the derivative with respect toyxx and not
yx ; the second temporal derivativeytt is not intrinsic in classical
Hamiltonian mechanics.

Now consider the total derivative ofL with respect tox,

dL

dx
5

]L

]x
1

]L

]y
yx1

]L

]yx
yxx1

]L

]yxx
yxxx . (7)

Substituting for]L/]y in Eq. ~7! from Eqs.~3! and ~4!, yields

]L

]x
5

d

dx FL2yxH ]L

]yx
2

d

dx S ]L

]yxx
D J 2yxx

]L

]yxx
G

and after simplification,

d

dx
@L2yxp2yxxr #5

]L

]x
. (8)

If x does not appear explicitly inL, then Eq.~8! may be inte-
grated resulting in

2L1pyx1ryxx5H, a constant (9)

whereH is the Hamiltonian the system. The first two terms r
semble the form of the Hamiltonian for dynamics. The inclusi
of the second-order term in the functional in Eq.~1! modifies the
Hamiltonian through the third term above.

Example. In order to illustrate the application of the develo
ments in this paper, an example is included and is revisited a
various developments in this paper. A prismatic bar is subjecte
an inline compressive axial forceF and to a lateral distributed
load q(x). For small deflection theory, the Lagrangian for th
system is

L5
EI

2
yxx

2 2q~x!y2
F

2
yx

2

and the associated Euler-Lagrange equation is

EIyxxxx1Fyxx5q. (10)

The hyper momentum, the bending moment, is

r 5
]L

]yxx
5EIyxx

and the modified momentum, the effective shear, becomes

p5
]L

]yx
2

dr

dx

or
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p52Fyx2
d

dx
~EIyxx!.

If q(x)50, y will not appear inL and is therefore ignorable, th
associated momentum namely

p52Fyx2EIyxxx

will then be constant across the beam. IfEI andq are constants,
then x will not appear explicitly inL and the HamiltonianH
5pyx1ryxx2L, will have a constant value across the beam.
this case

H5
EI

2
yxx

2 1qy2
F

2
yx

22EIyxxxyx

and

dH

dx
5~EIyxxxx1Fyxx2q!yx

which vanishes by virtue of Eq.~10!. It is interesting to note that
in contrast to the case of classical dynamics the energy te
appearing in the Lagrangian that define the problem, are not
ficient to describe the Hamiltonian, i.e., an additional energy te
is needed for definition of Hamiltonian in this case.

At this point the general solution of Eq.~10! is stated, for use in
a later section,

y5A1Bx1C sinlx1D coslx1
qx2

2l2EI
(11)

where

l25
F

EI
(12)

andA, B, C, andD are constants to be determined from the boun
ary conditions.

3 The Canonical Equations
The second-order Newtonian equations of motion yield t

first-order canonical equations; for the present fourth-order s
tem, four first-order canonical equations arise. To derive th
equations, Eq.~3! is inverted,

yxx5c~x,y,yx ,r !.

Here it is assumed tacitly thatyxx appears inL in such a fashion
that the above inversion can be carried out.

The Hamiltonian is now constructed,

H~x,y,yx ,p,r !52L~x,y,yx ,c~x,y,yx ,r !!1pyx1rc~x,y,yx ,r !

and leads to the canonical equations

]H

]y
52

]L

]y
2

]L

]c

]c

]y
1r

]c

]y
52

]L

]y
1S r 2

]L

]c D ]c

]y
52

]L

]y

since the term in the brackets on the right hand side vanishe
definition of r.

Now noting Eq.~6!, the first canonical equation becomes

]H

]y
52

dp

dx
.

Similarly
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]H

]yx
52

]L

]yx
2

]L

]c

]c

]yx
1p1r

]c

]yx

5p1S r 2
]L

]c D ]c

]yx
2

]L

]yx

5F ]L

]yx
2

d

dx S ]L

]yxx
D G2

]L

]yx
52

d

dx S ]L

]yxx
D .

Again referring to Eq.~3!, the second canonical equation becom

]H

]yx
52

dr

dx
.

The third and fourth canonical equations are obtained readily

]H

]yx
5

dy

dx
and

]H

]r
5

dyx

dx
.

The four canonical equations are thus tabulated:

]H

]y
52

dp

dx

]H

]p
5

dy

dx

]H

]yx
52

dr

dx

]H

]r
5

dyx

dx
.

Now consider the total derivative ofH:

d

dx
H~x,y,yx ,p,r !5

]H

]x
1

]H

]y
yx1

]H

]yx
yxx1

]H

]p
px1

]H

]r
r x .

Substituting the canonical equations into the right-hand side,
simplifying gives

d

dx
H5

]H

]x
.

Example. Consider again the prismatic beam under the inl
compressive load and recall the Lagrangian

L5
EI

2
yxx

2 2q~x!y2
F

2
yx

2

and the Hamiltonian

H5L2pyx1ryxx

wherer 5EIyxx .

Eliminating yxx from the Hamiltonian results in the following

H52
EI

2

r 2

EI2 1qy1
F

2
yx

21pyx1
r 2

EI

or

H5
1

2

r 2

EI
1qy1

F

2
yx

21pyx

The canonical equations are then

]H

]y
5q52

dp

dx
(13)

]H

]yx
5Fyx1p52

dr

dx
(14)

]H

]p
5yx5

dy

dx
(15)

]H

]r
5

r

EI
5

dyx

dx
. (16)

Combining~13! and ~15! to eliminater results in the equilib-
rium equation
Journal of Applied Mechanics
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and

ne

Fyx1p52EIyxxx

and now substituting into~12! to eliminatep gives

q5~Fyx1EIyxxx!x

the static equilibrium equation.

4 Generalization of the Principle of Least Action
In analytical dynamics the principle of Least Action, attribute

to Maupertuis and described by Tabarrok and Rimrott@10#, is
stated as

DE
t1

t2

( piqidt50.

In this principle the independent variable timet, the generalized
displacementsqi and the momentapi are subject to variations
The principle is subject to two constraints. These are the con
vation of the Hamiltonian and the coterminations of the displa
ments~but not time! at t1 and t2 , i.e.,

H~Pi ,qi !5C

Dqi5dqi1qidt50 at t1 ,t2 .

Generalization of this principle to functionals depending
second-order derivatives results in

DE
x1

x2

~pyx1ryxx!dx50 (17)

or

E
x1

x2

d~pyx1ryxx!dx1~pyx1ryxx!~dx!ux1

x250.

Integrating the terms under the integral we write this equat
as

E
x1

x2S 2
dp

dx
dy2

dr

dx
dyx1

dy

dx
dp1yxxdr Ddx1p~dy1yxdx!U

x1

x2

1r ~dyx1yxxdx!ux1

x250. (18)

Now as in the case of dynamics we impose the constraints

H~y,yx ,p,r !5C

and

Dy5Dyx50 at x1 ,x2 .

Thus in Eq. ~29! the last two terms drop out by virtue of th
second set of constraints. It remains to show that the integran
Eq. ~17! also vanishes by virtue of constancy ofH.

Now

dH5
]H

]y
dy1

]H

]yx
dyx1

]H

]p
dp1

]H

]r
dr 50.

In terms of the canonical equations, this equation becomes

dH52pxdy2r xdyx1yxdp1yxxdr 50

the integrand in Eq.~17!

5 Canonical Transformations
Assembling the variables (y,yx ,p,r ) as a state vectors and

transforming to a new state vectorS whose components ar
(Y,Yx ,P,O) that is
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Y5Y~y,yx ,p,r ,x!

Yx5Yx~y,yx ,p,r ,x!

P5P~y,yx ,p,r ,x!

R5R~y,yx ,p,r ,x!,

it is now required to develop the canonical equations in the n
system, so that they are of the same format as those in the
coordinates; the Lagrangian in these new coordinates is thus

L5PYx1RYxx2K

whereK is the new Hamiltonian; that is

]K

]Y
52

dP

dx

]K

]P
5

dY

dx

]K

]Yx
52

dR

dx

]K

]R
5

dYx

dx
.

The two Lagrangians can differ at most by the total derivat
of an arbitrary functionS; that is

L2L̂5~pyx1ryxx2H !2~PYx1RYxx2K !5
dS

dx
(19)

or

E
x1

x2

~L2L̂ !dx5E
x1

x2

~pyx1ryxx2H !dx

2E
x1

x2

~PYx1RYxx2K !dx

5E
x1

x2 dS

dx
dx5S~x2!2S~x1!. (20)

To effect this transformationS, the generating function must b
a function of both the old (p,r ,y,yx) and the new (P,R,Y,Yx)
state variables. ThusS besides being a function ofx must depend
on the eight variables (p,r ,y,yx) and (P,R,Y,Yx); however, only
four of these can be independent since the two sets of state
ables are related by the four mapping functions. The genera
function may now be written as a function of four independe
variables in one of 56 possible ways.

Consider for example the following four generating functi
forms:

S15S1~y,yx ,Y,Yx ,x!

S25S2~y,yx ,P,R,x!

S35S3~p,r ,P,R,x!

S45S4~p,r ,Y,Yx ,x!

and specifically the first form,

~pyx1ryxx2H !2~PYx1RYxx2K !

5
dS1

dx
5

]S1

]x
1

]S1

]y
yx1

]S1

]yx
yxx1

]S1

]Y
Yx1

]S1

]Yx
Yxx . (21)

Now matching the coefficients results in

]S1

]y
5p,

]S1

]yx
5r ,

]S1

]Y
52P. (22)

]S1

]Yx
52R, and K5

]S1

]x
1H. (23)

If the second form is used,
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]S2

]y
5p,

]S2

]yx
5r ,

]S2

]P
5Y (24)

]S2

]R
5Yx and K5

]S2

]x
1H. (25)

6 The Hamilton-Jacobi Equation
Now let (P,R,Y,Yx) be theinitial state vector2, that is

y5y~y0 ,yx0 ,p0 ,r 0 ,x!

yx5yx~y0 ,yx0 ,p0 ,r 0 ,x!

p5p~y0 ,yx0 ,p0 ,r 0 ,x!

r 5r ~y0 ,yx0 ,p0 ,r 0 ,x!.

To ensure thaty0 and yx0 are constant, setK50. Then
]K/]y05dp0 /dx50 and thusp0 is constant.

If S2 is the generating function, the Hamilton-Jacobi equat
can be written

]S2

]x
1H50

or

]S2~x,y,yx ,P,R!

]x
1HS x,y,yx ,

]S2

]y
,
]S2

]yx
D50.

The variables in this nonlinear partial differential equation a
x, y andyx ; P andR are constants sinceK50. Now

dS2

dx
5

]S2

]x
1

]S2

]y
yx1

]S2

]yx
yxx1

]S2

]P
Px .

The last term vanishes sinceP is a constant and

dS2

dx
52H1pyx1ryxx

or

S25E Ldx1constant.

Example. The prismatic beam with in-line axial load

L5
EI

2
yxx

2 2
F

2
yx

22qy

where

r 5
]L

]yxx
5EIyxx

and the Hamiltonian becomes

H5
r 2

2EI
1

F

2
yx

21qy1pyx ,

the Hamilton-Jacobi equation takes the form

]S2

]x
1H50

or

]S2

]x
1

r 2

2EI
1

F

2
yx

21qy1pyx50

or

2y0 , yx0 , p0 , and r 0 are known constants, from the initial conditions whe
x50.
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]S2

]x
1

1

2EI S ]S2

]yx
D 2

1S 1

2
Fyx1

]S2

]y D yx1qy50. (26)

The above equation must now be solved forS2(x,y,yx), from
which the specific form ofy(x) can be developed. In texts o
theoretical mechanics~@1–10#!, solutions for few examples o
Hamilton-Jacobi equation are obtained by splitting the genera
function into separate additive parts, i.e.,

S25S2x~x!1S2y~y!1S2yx
~yx!. (27)

Denham and Buch@11# used a separable product forS, that is
S(q,t)5Sq(q)St(t) where in this caset, time is the independen
variable andq(t) is the generalized coordinate. Other forms forS
have been used, for example Saletan and Cromer@12#, Benton
@13#, and Sanz-Serna and Calvo@14#. The aim is to represent th
Hamilton-Jacobi partial differential equation by decoupled or
nary differential equations but the assumed form of the princ
function S2 , Eq. ~26! will not yield decoupled equations. A new
scheme for solving some nonseparable forms of the Hamil
Jacobi equation has been suggested by the present au
~@15,16#!. In this approach the generating function is formed b
polynomial in terms of the primary variables. Thus a solution
the following form is assumed for Eq.~25!:

S25a~x!yx
21b~x!yxy1c~x!y21d~x!yx1e~x!y1 f ~x!.

(28)

Using this form forS2 in Eq. ~25! we find

da

dx
yx

21
db

dx
yxy1

dc

dx
y21

dd

dx
yx1

de

dx
y

1
d f

dx
1

1

2EI
~2ayx1by1d!21~byx12cy1e!yx

1
F

2
yx

21qy50.

Collecting the various polynomial terms

yx
2:

da

dx
1

2a2

EI
1b1

F

2
50 (29)

yxy:
db

dx
1

2ab

EI
12c50 (30)

y2:
dc

dx
1

b2

2EI
50 (31)

yx :
dd

dx
1

2ad

EI
1e50 (32)

y:
de

dx
1

bd

EI
1q50 (33)

constant:
d f

dx
1

d2

2EI
50. (34)

The first three of these equations are coupled ina, b andc; these
variables form thekernel functions, ~Leech and Tabarrok@15# and
Leech @16#!. The solutions to the first three equations are n
unique and the constants of integration may be set arbitraril
solution for these equations subjected toa(0)5b(0)5c(0)50 is
presented.

The kernel functionsa, b, andc generate the solution for th
primary system functions d(x) and e(x). The latter, determined
from the last two differential equations are solved for the init
conditionsd(0)5a2 and e(0)5a1 where a1 and a2 are con-
stants associated with the initial momentaP and R. Finally the
secondary system function f(x) is determined by quadrature from
the last equation subject to the initial conditionf (0)50.
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One solution for the kernel functions is

a5
j

2
AFEI5

EI

2
v, b5c50 where j 5A21.

The loading,q(x) is known ‘‘a priori’’ and from this the following
functions are defined as follows:

Q~x!5E
0

x

q~s!ds

and

E~x!5E
0

x

evsQ~s!ds

wherev52a/EI5 jAF/EI ands is a dummy integration variable
Then from Eqs.~32! and ~33! it follows that

e~x!52E
0

x

q~s!ds5a12O~x! (35)

and

d~x!5a2e2vx2
a1

v
~12e2vx!1e2vxE~x! (36)

wherea1 and a2 the previously defined constants of integratio
are associated with the initial momenta. Finally the second
system function can now be determined from Eq.~29! as

f ~x!52
1

2EI E0

x

d2ds

52
1

2EI E0

x

e22vsFa22
a1

v
~evs21!1E~s!G2

ds.

Since the constantsa1 and a2 are ignorable~@1,2#!, there are
constants of motionb i given as follows:

b i5
]S2

]a i
i 51,2 (37a)

whereb1 may be associated with the initial displacementY and
b2 with the initial slopeYx .

Using the assumed form forS2 , then

b i5
]d~x!

]a i
yx1

]e~x!

]a i
y1

] f ~x!

]a i
i 51,2 (37b)

sincea(x), b(x), andc(x) do not depend ona i . To facilitate the
evaluation of the constants of motionb i , the following deriva-
tives of f (x) are established:

] f

]a1
5

1

EIv E
0

x

e2vsE~s!~12e2vs!ds1
a2@12e2vx#2

2EIv2

2
a1@112vx2~22e2vx!2#

2EIv3

and

] f

]a2
52

1

EI E0

x

e22vsE~s!ds2
a2@12e22vx#

2EIv
1

a1@12e2vx#2

2EIv2 .

Introducing the following integralsF(x)5*0
xe2vsE(s)ds and

G(x)5*0
xe22vsE(s)ds into the above equations yields

] f

]a1
5

F~x!2G~x!

EIv
1

a2@12e2vx#2

2EIv2

2
a1@112vx2~22e2vx!2#

2EIv3
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] f

]a2
52

G~x!

EI
2

a2@12e22vx#

2EIv
1

a1@12e2vx#2

2EIv2 . (38)

The constants of motion thus become, by substituting the pa
derivatives equations above into the two equations~36b!,

b15y2
~12e2vx!

v
yx1

F~x!2G~x!

EIv
1

a2

2EIv2 ~12e2vx!2

2
a1

2EIv3 ~2vx112@22e2vx#2! (39a)

and

b25e2vxyx2
G~x!

EI
2

a2

2EIv
~12e22vx!1

a1

2EIv2 ~12e2vx!2.

(39b)

These two equations can be solved fory, first by solving foryx in
the second equation above~38b!, in terms ofb2

yx5b2evx1
G~x!evx

EI
1evx

a2

2EIv
~12e22vx!

2evx
a1

2EIv2 ~12e2vx!2

and then substituting in the above~38a! for yx ; this yields

y5b11
~12e2vx!

v S b2evx1
G~x!evx

EI
1evx

a2

2EIv
~12e22vx!

2evx
a1

2EIv2 ~12e2vx!2D2
F~x!2G~x!

EIv
2

a2

2EIv2

3~12e2vx!21
a1

2EIv3 ~2vx112@22e2vx#2!

which can be simplified using conventional beam functions to

y5b11
~evx21!

v
b22

F~x!2G~x!evx

EIv
1

a2

EIv2 ~coshvx21!

1
a1

EIv3 ~vx2sinhvx!. (40)

For the specific beam configuration, built in atx50, where the
boundary conditions becomey5yx50, then bothb1 andb2 are
zero and the solution fory(x) is

y52
F~x!2G~x!evx

EIv
1

a2

EIv2 ~coshvx21!

1
a1

EIv3 ~vx2sinhvx!. (41a)

Also from the second equation above the solution for

yx5
G~x!evx

EI
1

a2

EIv
sinhvx2evx

a1

2EIv2 ~12e2vx!2

5
G~x!evx

EI
1

a2

EIv
sinhvx2

a1

EIv2 ~coshvx21! (41b)
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is the differential of the above equation fory(x) even though it
was generated as an independent generalized coordinate a
second part of Eq.~36b!.

7 Concluding Comments
In the foregoing the variational formulations associated w

Newton’s second-order equations of motion have been gene
ized to encompass problems governed by fourth-order ordin
differential equations. This new formulation is applied, as an
ample in the analysis of Euler-Bernoulli beams. The mathemat
structure of the Hamiltonian theory remains intact and its furt
extension to functionals depending on, say, third-order der
tives, becomes largely self-evident.

The canonical equations associated with functionals w
second-order derivatives emerge as four first-order equation
each variable. The transformations of these equations to a
system wherein the generalized variables and momenta appe
constants, can be obtained through several different forms of g
erating functions. The generating functions are obtained as s
tions of the Hamilton-Jacobi equation. This theory is illustrated
application to an example from beam theory the solution rec
ered using a technique for solving nonseparable forms of
Hamilton-Jacobi equation.

Finally it is considered important to emphasize that in this p
per, classical variational mechanics that uses time as the prim
independent variable is extended to include static mechanics p
lems in which the primary independent variable is spatial.
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Modeling of Plastic
Strain-Induced Martensitic
Transformation for Cryogenic
Applications
A simplified model of martensitic transformation in stainless steels at cryogenic tem
tures is proposed. The constitutive modeling of plastic flow under cryogenic conditio
based on the assumption of small strains (<0.2). The hardening law for the biphas
material (a8 martensite platelets embedded in theg austenite matrix) has been obtaine
from the Mori-Tanaka homogenization. A mixed hardening with combined isotropic
kinematic contributions is proposed. The constitutive model, containing a reason
number of parameters, has been numerically implemented and checked with resp
experimental data. Finally, the model is applied to compute the martensite evolutio
thin-walled corrugated shells designed for cryogenic temperatures (mechanical com
sation system of the Large Hadron Collider at CERN).@DOI: 10.1115/1.1509485#
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1 Introduction
Fe-Cr-Ni stainless steels are commonly used to manufac

components of superconducting magnets and cryogenic tran
lines since they retain their ductility at low temperatures and
paramagnetic. The nitrogen strengthened stainless steels of s
300 belong to the group of metastable austenitic alloys. Un
certain conditions the steels undergo martensitic transformatio
cryogenic temperatures that lead to a considerable evolutio
material properties and to a ferromagnetic behavior. The mar
sitic transformations are induced mainly by plastic strain fie
and amplified by high magnetic fields. Spontaneous transfor
tions due to the cooling process—identified with respect to so
alloys—are not observed in the most often used grades 30
304LN, 316L, and 316LN. The series 300 stainless steels sho
room temperature a classicalg-phase of face centered cubic au
tenite~FCC!. This phase may transform either toa8 phase of body
centered tetragonal ferrite~BCT! or to a hexagonal«-phase. The
most often occurringg-a8 transformation leads to formation o
martensite sites dispersed in the surrounding austenite matri
the course of the strain induced transformation the marten
platelets modify the FCC lattice leading to local distortions. T
amount of martensite depends on the chemical composition,
perature, stress state, plastic strains, and exposure to a mag
field. It is well known that the solutes like Ni, Mn, and N consi
erably stabilize theg-phase. For instance, the strain-induced m
tensitic content in the grades 304LN, 316LN at low temperatu
is much lower than in the grades 304L, 316L for the same leve
plastic strain~@1#!.

The increase in martensite fraction promoted by plastic de
mation can be detected by measuring the magnetic permea
m. The evolution ofm at low temperature corresponding to mon
tonic straining as well as to the cyclic loads for 304L and 31
stainless steels was investigated by Suzuki et al.@2#. Tensile prop-
erties of stainless steels at low temperatures are strongly in

1On leave from LaRama, Blaise Pascal University, Clermont-Ferrand, Franc
2On leave from Cracow University of Technology, Cracow, Poland.
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Santa Barbara, CA 93106-5070, and will be accepted until four months after
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flu-

enced by the plastic strain-induced martensitic transformation
a result of the transformation the initially homogenousg-phase
loses its homogeneity because of the inclusions of the harder
tensite phase. The martensite platelets embedded in the soft
tenite matrix provoke local stress concentration and block
movement of dislocations. Therefore the onset of martens
transformation leads to an increase in strain hardening. Res
showing the increase ofa8 martensite with strain for 304L and
304LN stainless steel at 77 K have been reported by Morris e
@1#. Similar studies for 304L and 316L stainless steels at 77 K a
at 4 K were carried out by Suzuki et al.@2#.

Transformation kinetics has been developed by Olson
Cohen @3#. The authors attribute the strain-induced martens
nucleation sites to the shear-band intersections~the shear bands
being in the form of«8 martensite, mechanical twins or stackin
fault bundles!. The analysis leads to the following equation for th
volume fraction of martensite versus plastic strain:

ja8512exp$2b@12exp~2a«p!#n% (1)

wherea represents the rate of shear band formation,b represents
the probability that a shear-band intersection will become a m
tensite site, andn is a fixed exponent. The transformation curv
~volume fraction of martensite versus plastic strain! show a typi-
cal sigmoidal shape with saturation levels below 100 percent~Fig.
1!.

Constitutive modeling of steels exhibiting strain-induced m
tensitic transformation was initiated by Narutani, Olson, and C
hen @4#. The approach was based on the Voigt model with eq
repartition of strains in both phases of the two-phase composit
more complex constitutive model has been developed by Str
fellow, Parks, and Olson@5#. Here an isotropic hypoelastic formu
lation based on large strains was used. The inelastic stretching
decomposed into two parts: slip in the austenite and marten
phases and the nucleation component resulting from the tran
mation process. Local and global stress and strain compon
were linked by using the Eshelby solutions for incompressi
spherical inclusions in an infinite, incompressible isotropic mat
The model was successfully validated on the Angel@6# set of data.
The next complex constitutive modeling has been developed
Levitas, Idesman, and Olson@7#. The phase transformation mode
is based on the mesoscopic continuum thermodynamics. Gene
zation of the Prandtl-Reuss equations with isotropic hardenin
the case of large strains for elastoplastic isotropic materials

.
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used. The deformation gradient was decomposed into three p
elastic, plastic, and the transformation one. Elastic strains w
assumed small when compared to inelastic strains. A differe
between phase transformation under displacement and stress
trolled boundary conditions was demonstrated. Some further
cent constitutive modeling of TRIP steels for the temperat
above 77 K can be found in~@8–11#!.

The constitutive modeling mentioned above was based on
assumption of large inelastic strains. However, if the stra
induced transformation occurs at very low temperatures~liquid
nitrogen 77 K, liquid helium 4.5 K! then the steep part of th
transformation curves~see Fig. 1! remains in the domain of rela
tively small strains~below 0.2!. In such a case, constitutive mod
eling can be considerably simplified and remains within the sc
of the classical theories of plasticity. The relevant elastopla
model with linear mixed~isotropic/kinematic! hardening includ-
ing the effect of strain-induced martensitic transformation is
veloped in the present paper.

2 Transformation Kinetics
Olson and Cohen@3# developed a one-dimensional model f

the kinetics of martensitic transformation, called the OC mod
The evolution of the volume fraction of martensite as a funct
of plastic strain is derived by considering shear band format
probability of shear-band intersections and probability of an in
section generating a martensitic embryo. In this model, only te
perature and plastic strain control martensite evolution. Differ
improvements have been brought to this model, covering the
fluence of stress state~@5#! and strain rate~@7#!. However, a con-
siderable number of parameters has to be identified for these m
els.

In the present paper, a simplified model will be developed
cryogenic applications. Generally, the volume fraction of mart
site j can be presented in the following form:

j5j~p,T,«̇p,s! (2)

wherep is the accumulated plastic strain defined by

p5E
0

tA2

3
«̇p:«̇pdt (3)

with «̇p the plastic strain rate ands the stress tensor.
Under isothermal conditions and for a given strain rate,

classical sigmoidal curve is shown in Fig. 2.
The curve may be decomposed into three regions:

• region I that corresponds to a nonlinear increase of the m
tensitic content with strain~primary phase!,

• region II where thea8 volume fraction~j! is linearly related
to plastic deformation («p) ~@12#! ~secondary phase!, and

• region III that corresponds to a saturation effect~tertiary
phase!.

A simplified evolution law for the martensite content may
proposed for region II as follows:

Fig. 1 Volume fraction of martensite versus plastic strain at
cryogenic temperatures
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j̇5A~T,s,«̇p!ṗH~~p2pj!~jL2j!! (4)

where

• A is a function of temperature, stress state, and strain rat
• pj is the accumulated plastic strain threshold~to trigger the

formation of martensite!,
• jL is the martensite content limit, over which the martensi

transformation rate is considered equal to 0.H represents the
Heavyside function.

The three regions shown above are thus simplified in the
lowing way:

• region I: no martensitic transformation untilpj is reached.
• region II: the volume fraction of martensite~j! is linearly

related to accumulated plastic strain~p! until jL is reached.
• region III: no martensitic transformation abovejL .

Stringfellow and et al.@5# show that the stress state dependen
is best represented by the triaxialityS, defined as the ratio of the
hydrostatic stress and the equivalent stress.

S5
1

3

trbsc
se

(5)

with se5A3/2s:s, wheres is the deviatoric stress

s5s2
1

3
tr@s#I (6)

and I is the identity tensor.

3 Constitutive Modeling of Plastic Flow at Cryogenic
Temperatures

The present section aims at developing a mesoscopic mo
capable of representing the hardening work and the evolution
martensite content for the material under different types of lo
~monotonic or cyclic!. The model is sufficiently simple to be eas
ily integrated into a finite element code.

The constitutive model is based on a classical approach to
plastic flow, that is on linear mixed hardening. Since the mate
~stainless steel!, containing a limited amount of martensite, can
described as a ductile austenitic matrix~g-phase! containing rigid
inclusions~a8-phase!, dispersed in the whole volume of the RV
~representative volume element!, it is obvious that the materia
retains its ductility also at cryogenic temperatures. As long as
plastic flow mechanism is based mainly on the motion of dislo
tions ~no serrated yielding!, classical models can be applied.

3.1 Constitutive Formulation. Generally, the model is
based on the following assumptions:

Fig. 2 Volume fraction of martensite j versus plastic strain «p
Transactions of the ASME
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1. The rate of increase of the volume fraction of the martens
phase,j̇, is given by

j̇5A~T,S,«̇p!ṗH~~p2pj!~jL2j!!. (7)
2. Small strains are considered~linear additive rule!. The total

strain is given by

«5«e1«p1«th1j«bs (8)

where «e denotes elastic strain, and«p and «th stand for
plastic and thermal strain tensors, respectively.«bs is free
deformation called bain strain. It can be expressed in te
of relative volume changeDv, due to the phase transforma
tion, as

«bs5
1

3
DvI (9)

with

Dv5
Vm2Va

Va
(10)

whereVa andVm represent the unstressed specific volum
occupied by the austenite and the martensite, respectiv
The value ofDv is about 0.02–0.05, depending on the all
composition~@13#!.

The expression for the thermal strain is given as a fu
tion of the dilatation tensor of the biphase materiala, by the
general formula

d«th5a~T,j!dT. (11)

Considering both phases isotropic and under the assump
of global isotropy of the material, the tensora can be re-
duced to

a5ahI (12)

with ah the homogenized dilatation coefficient.
3. The constitutive law is given by

s5E:~«2«p2«th2j«bs!. (13)

For isotropic material, the elastic stiffness tensorE is ex-
pressed in the form:

E53kJ12mK (14)

with

HJijkl5
1

3
dijdkl

K5I2J and Iijkl5
1

2
~dikdjl1dildjk!

(15)

and wherem5E/2(11v), k5E/3(122v) are shear and
bulk moduli, respectively. To simplify the equations, we a
sume that the elastic properties of the biphase material
not modified by the martensitic transformation~the elastic
properties of the martensite and of the austenite are q
similar!. Nevertheless, the elastic properties of the auste
1martensite structure, i.e., the elastic coefficients, can
obtained by homogenization.

4. The yield surface is defined as

fc~s,X,R!5J2~s2X!2sy2R50 (16)

where

J2~s2X!5A3

2
~s2X!:~s2X! (17)
Journal of Applied Mechanics
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is the second invariant of the stress tensor.X is the back
stress tensor andsy , R stand for the yield point and the
isotropic hardening parameter, respectively.

5. It is assumed that the material obeys the normality rule w
the yield function postulated as the plastic potential. T
plastic flow rate is given by

d«p5
3

2

s2X

J2~s2X!
dl (18)

wherel is the plastic multiplier. Furthermore, it is assume
that the yield surface of the biphase material is smooth
convex. This assumption is justified by the fact that the m
tensite inclusions are considered elastic and the auste
matrix is elastoplastic with a smooth and convex form of t
yield surface. Neither instabilities of Drucker type nor th
serrated yielding~discontinuous in terms ofds/d«) are con-
sidered in the constitutive model. Thus, a combination
elastoplastic matrix with elastic inclusions~biphase compos-
ite! preserves convexity and regularity of the yield surfac

6. The hardening variablesR andX are altered by the presenc
of martensite and the corresponding evolution laws are p
tulated in the following general form:

dR5F~j!dp (19)

dX5dXa1dXa1m5
2

3
Cd«p1G~j!d«p. (20)

Here, we assume that the back stress increment is the su
a classical term which corresponds to the behavior of
austenitic phasedXa and a new term related to the presen
of martensite in the austenitic matrix (dXa1m).

3.2 Hardening Law for the Biphase Material. The BCC
martensite is much harder than the FCC austenite. The marte
platelets do not have the same orientation as the initial lattice
the movement of the dislocations occurs~plastic flow! then the
dislocations are mobile in the austenitic matrix and are suppo
to be stopped by the martensite inclusions. Thus, an elastopl
matrix and elastic inclusions are the principal components
constitute the biphase material model.

A simple linear kinematic hardening law may be used to mo
the plastic behavior of the pure austenite phase:

dXa05
2

3
C0d«p. (21)

HereC0 represents the hardening modulus for the austenitic ph
without the presence of martensite. For the biphase material,
hardening modulusC0 is replaced by the modulusC. The coeffi-
cient C is higher thanC0 because of the interactions between t
dislocations in the austenite and the martensite inclusions. Ge
ally, a functionw~j! is defined:

C5C0w~j! for 0<j<jL (22)

with w~0!51 ~see Fig. 3!.
For the sake of simplicity, the functionw~j! has been linearized

and takes the form:

w~j!5hj11 (23)

whereh is a parameter that depends on the material. The func
w~j! represents the part of the hardening process that is relate
the increase in volume fraction of martensitic inclusions and
hanced probability that a dislocation will be stopped by an inc
sion. Here, the martensite platelets are regarded as infinitely r
small objects, embedded intog-phase, that act as the stoppers
motion of dislocations. Thus, the amount of plastic work cor
sponding to the same total strain considerably increases. Thus
back stress increment can be subdivided into two component
NOVEMBER 2002, Vol. 69 Õ 757
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dXa5dXa01dXaj5
2

3
C0d«p1

2

3
C0hjd«p (24)

wheredXaj corresponds to the interaction between the dislo
tions into the austenitic matrix and the martensite inclusions.

For the pure austenitic phase, a linearization of the constitu
equations of plastic flow in the vicinity of the current state leads
the following formula~provided that the process of plastic flow
active!

Dsa5Et:D« (25)

whereEt denotes the tangent stiffness tensor.
If the same strain increment is applied to the austen

martensite structure, the stress increment is obtained by hom
enization:

Dsa1m5EH:D«. (26)

The increment of hardening~for the biphase material! implied by
the presence of the martensite is given by

Ds5Dsa1m2Dsa5~EH2Et!:D«. (27)

The homogenization theory has been developed for elastic
terials ~matrix and inclusions! ~@14#!. The matrix is considered
isotropic. In the domain of plastic deformation~active processes!
the linearization in the vicinity of the current state allows us
apply the homogenisation technique. Thus, over one load in
ment the matrix~g-phase! is represented by the correspondin
tangent modulus:

Eta53ktaJ12m taK (28)

where

m ta5
Et

2~11v !
, kta5

Et

3~122v !
and Et5

EC

E1C
.

It is assumed that the inclusions are isotropic and elastic.
corresponding modulus of elasticity is given by

Em53kmJ12mmK (29)

where

mm5
E

2~11v !
and km5

E

3~122v !
.

Furthermore, the inclusions are supposed to be spherical
uniformly distributed in the austenite matrix. The Mori Tana
homogenization~it is assumed that the interactions between inc
sions are reduced to a homogeneous strain field in the inclus!
reads~@14,15#!

EH5EMT53kMTJ12mMTK (30)

with EMT obtained from

Fig. 3 Evolution of the hardening modulus as a function of the
martensite content
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@EMT1E* #215 (
i 5a,m

f i@Ei1E* #21 (31)

where f i denotes volume fraction of the constituant ‘‘i’’ and E*
stands for the Hill influence tensor.

Finally, the following equations are derived:

3kMT13k* 5F 12j

3~kta1k* !
1

j

3~km1k* !G
21

2mMT12m* 5F 12j

2~m ta1m* !
1

j

2~mm1m* !G
21

, (32)

k* 5
4

3
m ta and 2m* 5

m ta~9kta18m ta!

3~kta12m ta!
(32)

In what follows, it is assumed that the strain increment
mainly due to the plastic strains:D«>D«p. Thus, Eq.~27! be-
comes

Ds5~EMT2Et!:D«p. (33)

As the plastic strains are represented by a deviatoric tensor~the
trace is equal to 0! then

J:D«p50 and K:D«p5D«p.

Finally, the hardening due to martensite formation becomes

Ds52~mMT2m ta!D«p. (34)

In order to obtain a sound response under cyclic loads, hard
ing has to be expressed in terms of plastic variables:R is the
isotropic hardening parameter andX is the kinematic hardening
~back stress!.

If pure kinematic hardening is considered, the increment of
back stress due to the mixture of martensite and austenite frac
~biphase material! is obtained by

DXa1m5Ds (35)

which leads to the equation

dXa1m52~mMT2m ta!d«p. (36)

If pure isotropic hardening is considered, the increment of
hardening parameter is obtained by the second invariant of
stress tensor:

DR5DRa1m5J2~Ds!53~mMT2m ta!Dp (37)

with

Dp5A2

3
D«p:D«p.

Hence, one obtains

dR5dRa1m53~mMT2m ta!dp. (38)

This formulation is valid exclusively for a small martensi
content ~at the beginning of the strain-induced transformatio!.
Since the region II at cryogenic temperatures corresponds
proximately to«p<0.2 and the saturation level of the martens
content is reached, a more general formulation of isotropic ha
ening has to be applied. The generalization leads to the follow
model:

dR5~R`~j!2R!dp. (39)

This approach is compatible with the model of isotropic harden
with a saturation levelR` included, as proposed by Chaboch
@16#. The linearization of Eq.~39! in the vicinity of the initial state
leads back to Eq.~38!. The contributions from kinematic and iso
tropic hardening are controlled by the Baushinger parameteb
defined by 0<b<1.

Therefore, for mixed hardening, the following model is pos
lated:
Transactions of the ASME
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dX52b~j!b~mMT2m ta!d«p (40)

dR5b~j!~12b!~R`~j!2R!dp. (41)

Or in expanded form

dX52b~12j!~mMT2m ta!d«p (42)

dR5~12j!~12b!~3~mMT2m ta!2R!dp. (43)

Here, the termb(j)512j is added in order to compensate f
the strong assumption that the martensite inclusions are elast
tends to 0 for high content of martensite. In reality, the marten
inclusions shall rather be considered elasto-plastic. Therefore
contribution to the hardening of the biphase material is sligh
smaller. Also, it is assumed that whenj51 ~g phase entirely re-
placed by thea8 phase! the process of hardening linked to th
phase transformation is terminated. For the sake of simplicity
relevant functionb(j) describing these effects has been line
ized.

The experimental curves, obtained under kinematically c
trolled cycling ~@2,17#! show that, for symmetric strain loading
the compressive stresses are higher than tensile. This indica
strong Bauschinger effect that can be described in terms of
parameter introduced by Zyczkowski@18#. The parameterb is
related to the stress level at unloading~s8! and the stress leve
associated with the reverse active process (s82), see Fig. 4. It is
defined by the following formula:

b5
s81s82

2~s82s0!
. (44)

It varies between 0 for the isotropic hardening~no Bauschinger
effect! and 1 for the kinematic hardening~perfect Bauschinger
effect!. Thus, it allows to describe the ratio between isotropic a
kinematic hardening. This parameter has to be determined ex
mentally ~see Table 1!.

3.3 Final Set of the Constitutive Equations. The final set
of the constitutive equations reduces to~incremental formulation
has been replaced by time derivatives!:

Fig. 4 Illustration of the unloading and the reverse loading
processes

Table 1 Set of data for the 304L at 77 K „* obtained from Su-
zuki’s data …

E
@GPa#

n sy
@MPa#

C0
@MPa#

h A pj jL b* Dv

190.0 0.3 580.0 750.0 1.9 4.23 0.004 0.9 0.45 0.
Journal of Applied Mechanics
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• Kinetics of the martensitic transformation:

j̇5A~T,S,«̇p!ṗH~~p2pj!~jL2j!! (45)
• The constitutive law:

s5E:~«2«p2«th2j«bs! (46)
• The yield surface:

fc~s,X,R!5A3

2
~s2X!:~s2X!2sy2R50 (47)

• The normality rule:

«̇p5
3

2

s2X

J2~s2X!
l̇ (48)

• The hardening laws:

H Ẋ5
2

3
~C13b~12j!~mMT~j!2m ta!!«̇p

Ṙ5~12j!~12b!~3~mMT~j!2m ta!2R!ṗ
(49)

4 Implementation of the Constitutive Model

4.1 Numerical Versus Experimental Results. The model
has been implemented in a finite element code. The method o
type ‘‘radial return,’’ originally proposed by Wilkins@19#, is used
to integrate the constitutive equations for an active plastic proc
The radial return algorithm is based on the elastic-plastic split,
first integrating the elastic equations to obtain an elastic predic
which is used as initial condition for the plastic return~@20#!. The
numerical algorithm can be illustrated in the following way:

• current state variables at the stepn: sn , «n
p , Xn , Rn , jn ,

pn .
• elastic predictor~iteration 0 for the stepn11) obtained from

a total strain increment:sn11
0 , «n11

p0
5«n

p , Xn11
0 5Xn , Rn11

0

5Rn , jn11
0 5jn , pn11

0 5pn .
• test if the new state is elastic or not.
• if not ( f cn11

0 .0), the incrementsDp andD«p are computed.
• the incrementDj5ADp is calculated.
• the state variablesq5$s,«p,X,R,j,p% are updated from the

evolution law (qn11
i 11 5qn11

i 1Dq).
• the conditionjn11

i 11 <jL is checked. Ifjn11
i 11 .jL , no further

accumulation of martensite takes place.
• the iterative process stops forf cn11

i 11 <0.

For initial validation, the model has been compared to the
perimental results obtained on 304L samples tested at 77 K~cf.
Morris et al.@1#! under tensile monotonic loading~Fig. 5!. Iden-
tification of the material parameters is based on two curves: st
versus strain~tensile test! and volume fraction of martensite ver
sus plastic strain. The first curve is obtained from a simple ten
test at a given temperature. Simultaneously, the magnetic pe
ability of the sample is measured under a predefined magn
field. A correlation between the volume fraction of martensite~a8
martensite is ferromagnetic! and the magnetic permeability of th
sample provides the necessary information for construction of
second curve: volume fraction of martensite versus plastic str

The numerical simulation is terminated just after havi
reached the strain level 0.2 which—in this case corresponds
proximately to the martensite content saturation level~end of re-
gion II!. Figure 6 shows that the model is equally applicable
cyclic loads, even if the full set of experimental data allowin
determination of the material parameters is not yet available.
results presented in Figs. 5 and 6 were obtained from the foll
ing set of data~Table 1!.

Next, the model has been compared to the experimental da
Iwamoto et al.@21#. Figure 7 shows the comparison between t
numerical and experimental results for monotonic loading
5
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Fig. 5 Stress and martensite content versus strain for the grade 304L stainless
steel at 77 K

Fig. 6 Hysteresis loops under cyclic loading

Fig. 7 True stress as a function of the inelastic strain for grade 304 stainless steel
at 128 K
MBER 2002 Transactions of the ASME
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Fig. 8 Model of half-convolution of a cryogenic bellows

Table 2 Set of data for the stainless steel 304 at 128 K „corre-
sponding to Iwamoto’s data … „T stands for tension and C
stands for compression …

E
@GPa#

n sy
@MPa#

H b C0
@MPa#

Dv jL A pj(%)

190.0 0.3 600 1.8 0.45 1200 0.05 0.97
T

6.3
C
6.3

T
2.8

C
0.5
Journal of Applied Mechanics
SUS304 samples, tested at 128 K. Here, inelastic strain co
sponds to the plastic strain«p and the bain strainj«bs.

The results shown in Fig. 7 were obtained from the set of d
in Table 2.

In both cases~Fig. 5, Fig. 7! the numerical model shows goo
correlation with experimental data for total strain not exceed
0.2.

4.2 Application: LHC Bellows Expansion Joints. The
model has been used to determine the evolution of marten
content and its impact on the behavior of thin-walled corruga
shells ~316L bellows expansion joints! used in the mechanica
compensation system of the Large Hadron Collider~CERN,
Geneva!. These cryogenic bellows are subjected to particula
severe thermomechanical loads~cooldown/warmup between 29
K and 1.9 K and pressure loads!. Analysis of evolution of marten-
site content in the initially austenitic structure turns out to be
particular importance for the bellows remaining in direct proxim
ity of the beams of particles~protons, ions! or close to the ex-
tremities of the supraconducting magnets~in their stray field!.
Since thea8 martensite is ferromagnetic a massive phase trans
mation ~above 50%! may have a serious impact on the magne
zation of these thin-walled components. Therefore, failure of
expansion joint is related on one hand to the state of inela
strain in the convolutions, evolution of damage and propagatio
a macro-crack. On the other hand, magnetic permeability exc
Fig. 9 Accumulated plastic strain along the half-convolution of cryogenic
bellows „at 77 K …

Fig. 10 Martensite content along the half-convolution of cryogenic bellows
„at 77 K …
NOVEMBER 2002, Vol. 69 Õ 761
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ing a predefined level is also classified as a magnetic failure.
this reason, a constitutive model that gives a good prediction
the evolution of volume fraction of martensite is useful in pred
tion of the magnetic failure of the structure.

Axisymmetric analysis of half-convolution of a typical bellow
with the corresponding boundary conditions,~Fig. 8!, subjected to
axial displacements at low temperatures~for instance 77 K!, al-
lows to determine the plastic strain fields and the correspond
martensite content.

The numerically computed accumulated plastic strainp, corre-
sponding to an axial displacement equal to 185 percent of
bellows length, is shown as a function of the curvilinear absci
h in Fig. 9.

The maximum accumulated plastic strain occurs at the root
at the crest of the convolution because of particularly strong fl
ure in these zones. The martensite content has the same dis
tion as the accumulated plastic strain since the martensite ev
tion law ~45! is linear. The numerically computed martens
content along the bellows profile, corresponding to strain indu
martensitic transformation at 77 K, is shown in Fig. 10. As e
pected, the most intense martensitic transformation occurs a
root and at the crest of bellows convolution.

In this particular case, the volume fraction of martensite
mains below 20%, far from the magnetic failure of the structu
On the other hand, impact of the phase transformation on the a
stiffness of the bellows is equal to 0.5% and is rather negligib

5 Conclusions
A simplified model of the transformation kinetics, correspon

ing to phase II of martensitic transformation in stainless steel
cryogenic temperatures, has been proposed. The model is b
on a linear relation between the rate of martensite content and
accumulated plastic strain rate.

The set of constitutive Eqs.~45! through ~49!, presented in
Section 3.3, has the following advantages:

• The equations are based on the classical theory of plast
with mixed kinematic/isotropic hardening.

• The approach based on small strain («p<0.2) turns out to be
sufficient to describe region II of the martensitic transform
tion at cryogenic temperatures.

• The model can be implemented in any finite element cod
• The approach is uncoupled therefore the increment of volu

fraction of martensite~Dj! for a given load step can be com
puted during postprocessing.

• The constitutive equations were verified using two differe
sources of experimental data~@1,21#! and seem to yield co-
herent results.

• The model is easily applicable in structural analysis dev
oped for cryogenic conditions~superconducting accelerator
cryogenic transfer lines!.

• Both kinematic and isotropic hardening are obtained from
theory of homogenisation applied to biphase material co
posed of the austenitic matrix~g phase! and the martensitic
inclusions~a8 phase!.

The applicability of the presented model to cyclic loads remain
be shown. Also, further research covering the multiaxial str
states and complex paths in the strain space seems to be nec
and will certainly throw some more light on the process of str
induced martensitic transformation.
762 Õ Vol. 69, NOVEMBER 2002
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Analysis of Belt-Drive Mechanics
Using a Creep-Rate-Dependent
Friction Law
An analysis of the frictional mechanics of a steadily rotating belt drive is carried
using a physically appropriate creep-rate-dependent friction law. Unlike in belt-d
mechanics analyzed using a Coulomb friction law, the current analysis predicts no a
sion zones in the belt-pulley contact region. Regardless of this finding, for the lim
case of a creep-rate law approaching a Coulomb law, all predicted response quan
(including the extent of belt creep on each pulley) approach those predicted by the
lomb law analysis. Depending on a slope parameter governing the creep-rate profile
or two sliding zones exist on each pulley, which together span the belt-pulley co
region. Closed-form expressions are obtained for the tension distribution, the sliding-
arc magnitudes, and the frictional and normal forces per unit length exerted on the
A sample two-pulley belt drive is analyzed further to determine its pulley angular vel
ratio and belt-span tensions. Results from this analysis are compared to a dynamic
element solution of the same belt drive. Excellent agreement in predicted results is f
Due to the presence of arbitrarily large system rotations and a numerically frien
friction law, the analytical solution presented herein is recommended as a conve
comparison test case for validating friction-enabled dynamic finite element scheme
@DOI: 10.1115/1.1488663#
w
c
r

a
i

n

t

g
i

f

i

sive
p to
r

rive
ley
res
the
re-
l
e
ir-

/
end
ffi-
al

the

ten-
m.
f the
elt,
nd

and
s-
rive.
o
ive’s

h to

ive
onse
k of
the
lt-

p

1 Introduction
Belt drives are widely used to transmit power between mach

elements. Common applications include drives transmitting po
from electric motors to rotational elements in home applian
such as washing machines, vacuum cleaners, and tape d
from gas engines to cutting elements in lawn and garden eq
ment such as lawnmowers, rototillers, and snow blowers;
from the crankshaft pulley to accessory pulleys in automob
and other transportation vehicles, where the accessories inc
alternators, air conditioning compressors, and power-stee
pumps. The life of the belt drive in all these applications depe
critically on the tension magnitudes in the belt spans and the
tent of belt creep on the pulley.

Even in a belt drive transmitting a constant torque betwe
machine elements, the translating belt is subjected to cyclic
sion variations as its tension transitions from a larger to a sma
tension on the driver pulley, and then from a smaller to a lar
tension on each driven pulley, before returning again to the dr
pulley. As a result, fatigue of the belt, and the subsequent per
nent set and loss of compliance, is a large consideration in b
drive design. Additionally, the belt is subjected to sliding wear
the belt creeps against the pulley during tension transitions. T
wear can have a detrimental effect on the belt’s friction charac
istics as the belt surface deteriorates, and can lead to gross
and noisy operation. These considerations motivate the need
thorough understanding of belt-drive mechanics, and the need
belt-drive models which can accurately predict belt-span tens
and belt creep.

The earliest studies of belt-drive mechanics include Leon
Euler’s study~@1#! of a belt wrapped around a fixed pulley o
capstan, and Grashof’s study~@2#! of the frictional mechanics of

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, May 30, 200
final revision, Sept. 25, 2001. Associate Editor: R. C. Benson. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, De
ment of Mechanics and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication in the paper itself in the ASME JOURNAL OFAPPLIEDMECHANICS.
Copyright © 2Journal of Applied Mechanics
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belt drives under steady operating conditions. A comprehen
review of studies on belt-drive mechanics after Grashof and u
1981 is given by Fawcett@3#. The aforementioned studies of Eule
and Grashof developed the classical creep theory of belt-d
operation. In this theory, a Coloumb law governs the belt-pul
frictional contact, and the belt is treated as a string which adhe
to the pulley in an initial adhesion arc, and creeps against
pulley in a subsequent slip arc. Classical creep theory was
viewed by Johnson@4#, and recently updated with new inertia
effects by Bechtel et al.@5#. Other studies have considered th
mechanics of the belt-drive with belt shear effects, including F
bank @6# and Gerbert@7,8#. Gerbert@7,8# also included seating
unseating and radial compliance effects in his analysis. Towns
and Salisbury@9# derived the power loss expression and the e
ciency limit of a belt drive assuming the validity of the classic
creep theory.

Much recent emphasis of belt-drive studies has been on
dynamic response of automotiveserpentinebelt drives to crank-
shaft excitation. Serpentine belt drives include an automatic
sioner which attempts to take up belt slack in the drive syste
These studies have considered both the rotational response o
pulleys, and/or the transverse response of the axially moving b
and have simplified the belt-pulley contact to linear stretching a
viscous damping models. Barker@10# studied belt-drive tensions
resulting from rapid engine acceleration, Hwang et al.@11# studied
the periodic rotational response of the serpentine belt drive,
Beichman et al.@12–14# studied the coupled rotational and tran
verse response of a three-pulley prototypical serpentine belt d
Leamy et al.@15,16# included a Coulomb dry friction damper t
the tensioner arm element, and also studied the serpentine dr
rotational response. Kraver et al.@17# linearized the dry friction in
the tensioner arm and developed a complex modal approac
analyze the drive’s rotational response.

The two groups of studies reviewed above, namely belt-dr
mechanics studies and serpentine belt-drive dynamic resp
studies, have had little connection to each other due to the lac
dynamic excitation in the belt-drive mechanics studies, and
lack of true frictional belt-pulley modeling in the serpentine be
drive studies. Leamy et al.@18–20# attempted to bridge this gap

1;
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nta
after
002 by ASME NOVEMBER 2002, Vol. 69 Õ 763
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Fig. 1 Friction laws used in the belt-drive analysis: „a… Coulomb law, „b… creep-rate-
dependent law. The three linear regions of the creep-rate law are referred to as the
left-most, middle, and right-most sliding regions.
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by studying simplified dynamic models for small~@18#! and large
~@19,20#! rotational speeds. These studies considered individ
pulleys only, and did not calculate the global response of
entire belt drive. Furthermore, the case of medium rotatio
speeds was not addressed.

A true modeling of the belt-pulley contact and the rotation
response of a two-pulley spring-supported belt drive has rece
been completed by Leamy and Wasfy@21#. In the latter study, a
dynamic finite element model of the belt drive was develop
using truss elements for the belt, rigid constraints for the pulle
and a penalty formulation to model the belt-pulley contact.
restrictions on the rotational speed were made. The model is
eral enough to consider arbitrary excitation at the pulleys, an
capable of capturing rotational pulley and belt transverse
sponse. A trilinear creep-rate-dependent law~@22–24#! shown in
Fig. 1 and defined in Section 3, was chosen to govern the con
friction due to its physical relevance~@23#!, particularly for small
sliding velocities~@22#!, and its numerical friendliness. By appro
priate choice of a friction profile parametervs , this law can be
made to approach a Coulomb friction law.

The present study considers the belt drive studied by Lea
and Wasfy@21# and analyzes itssteadyoperation~constant angu-
lar velocities and constant applied torques!. An exact belt-drive
solution for the trilinear frictional creep-rate law is developed, a
EMBER 2002
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explored for several values of the friction profile parametervs .
The resulting sliding regions, their tension distributions, and th
locations on the pulley are discussed. Comparisons to the dyna
finite element model of@21# are made.

2 Review of Mechanics Resulting From a Coulomb
Friction Law

Before focusing attention on the creep-rate-dependent fric
law, belt-drive mechanics associated with the Coulomb frict
law are reviewed first. A steadily rotating~constant applied
torques and angular velocities! belt drive with belt-pulley contact
governed by a Coulomb friction law develops a singleadhesion
andslip zoneon each pulley. Together, the adhesion and slip zo
span the entire belt-pulley contact region. As depicted in the
ample two-pulley belt-drive of Fig. 2, the uninterrupted adhes
zone begins at the point of contact of the pulley with the incom
belt span, and terminates at the beginning of the slip zone.
slip zone then extends to the point of loss of contact between
belt and the pulley. As the name suggests, the belt adheres t
pulley throughout the adhesion zone. The arguments for the e
tence of only a single adhesion zone and not multiple, as wel
for its location at the inlet, are discussed in@4#.
Fig. 2 Location of adhesion and slip zones on the driver and driven pulley using a Coulomb
friction law
Transactions of the ASME
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If the pulley is assumed to be rigid and the belt stretching
assumed to be isothermal, the adhesion condition implies the
must maintain a constant strain in the adhesion zone. This fur
implies that the belt tension is also constant throughout this
gion, and thus no frictional forces are supported by, or exerted
the belt. In contrast, the beltcreepsagainst the pulley in the slip
zone as its strain increases~or decreases! and the tension transi
tions from low ~high! to high ~low! tension. Coulomb’s law dic-
tates that, for a nonzero creep rate of the belt relative to the pu
equal and opposite fully developed frictional forces per unit b
length of the formm* n act on the belt and the pulley, wherem
denotes a coefficient of friction andn denotes the normal force pe
unit belt length.

The steadily rotating belt drive has recently been re-addres
by Bechtel et al.@5# and their analysis has updated the know
analytical solution to include previously undocumented effe
due to belt velocity changes in the slip zone. Their work, wh
assumes a Coulomb friction law, is reviewed here before ana
ing the belt drive with a creep-rate-dependent friction law. T
review analysis differs from Bechtel et al.@5# in that a spring
support has been added to the driven pulley, and a more exac
length compatibility relationship replaces their assumption of
equally distributed tension differenceDT in the belt spans.

The tension distributionT(s) at any distances along the pulley
arc can be derived using the element control volume shown in
3. A momentum balance in the tangential and normal directi
yields the relationships

d

ds
T2 f ~s!5G

d

ds
v~s!, (1)

n~s!5
T~s!2Gv~s!

R
, (2)

where f (s) denotes a friction force per unit length,v(s) denotes
the belt velocity,n(s) denotes the normal force per unit length,R
denotes the pulley radius, and

G5r~s!v~s!A~s!5r refv refAref5constant, (3)

denotes the belt mass flow rate. The quantitiesr(s) andA(s) refer
to the belt density and cross-sectional area, respectively, wh
subscript ref refers to a convenient~fictitious! reference state de
fined as quantities evaluated at zero belt strain. The friction fo
per unit length exerted on the belt is governed by a Coulomb
~see Fig. 1! evaluated in conjunction with the isothermal adhes
and slip zone conditions,

Fig. 3 Belt element with control volume
Journal of Applied Mechanics
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f ~s!5H 2mn~s!; slip zone ~driver!

mn~s!; slip zone ~driven!

0; stick zone

, (4)

wherem denotes the coefficient of friction. A linear constitutiv
law relates the belt tension to the strain«(s),

T~s!5K«~s!, (5)

whereK5EAref denotes the belt modulus andE denotes the belt
material elastic modulus.

Conservation of mass applied to belt material entering and le
ing the control volume in Fig. 4 yields an expression for the b
velocity in terms of the tension,

v~s!5v ref~11«~s!!5v refS 11
T~s!

K D , (6)

while conservation of linear and angular momentum yield the
lationships

2TL2TH1k~ l 02D!52G~vL1vH!, (7)

~TH2TL!R1GR~vL2vH!5M , (8)

where subscriptsL andH refer to quantities evaluated for the hig
and low tension spans,M denotes the externally applied mome
on the pulleys,k denotes the support spring’s stiffness,l 0 denotes
the initial spring deflection, andD denotes the displacement of th
driven pulley’s center from its initial position. A physical initia
state, denoted by subscript 0, corresponds to the initial belt d
configuration of zero belt velocity, zero belt strain, zero appl
moment, and initial spring deflectionl 0 . Due to the presence o
l 0 , this state isnot an equilibrium state.

The adhesion condition at the inlet of the belt-pulley cont
region leads to boundary conditions relating the pulleys’ angu
velocities to the span tensions,

vH5RvDriver5v ref~11TH /K !, (9)

vL5RvDriven5v ref~11TL /K !, (10)

wherevDriver , vDriven denote the driver and driven pulley angul
velocities, respectively. A final relationship equates the refere
belt lengthL ref

belt calculated from the geometry of the deformed~or
operating! configuration to the geometrical belt length in the u
deformed initial stateL0

belt ,

S R dl

11«~ l !
5L ref

beltD5~2L0
span12pR5L0

belt!, (11)

Fig. 4 Control volume of driven pulley in the deformed con-
figuration
NOVEMBER 2002, Vol. 69 Õ 765
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wheredl is an element of length in the deformed configuratio
and L0

span denotes the initial span length. The deformed sp
lengthLspan is related to the initial span lengthL0

span through the
driven pulley displacementD,

Lspan5L0
span1D, (12)

and is used in the calculation of the closed integral in~11!. Equa-
tion ~11! is an exact relationship not utilized by Bechtel et al.@5#,
and together with Eq.~8! replaces their assumption that the te
sion differenceDT required to balance an externally applied m
ment on the pulleys is distributed equally to the low-tension a
high-tension belt spans.

Evaluation of Eqs.~1!–~6! leads to an expression for the drive
pulley belt tension in the slip region

TDriver~s!5
Kr refv ref

2 Aref

K2r refv ref
2 Aref

1C1e2~m/R!S, (13)

where 0,s,Rf, and where Eq.~4! has been evaluated using th
driver-pulley slip-zone expression and arc measures has been
taken to be zero at the start of the slip arc. The integration c
stantC1 can be obtained using the boundary conditionTDriver(0)
5TH , while the slip arc metricf can be obtained with the bound
ary conditionTDriver(Rf)5TL , yielding

TDriver~s!5
THK2r refv ref

2 Aref~TH1K !

K2r refv ref
2 Aref

e2~m/R!S1
Kr refv ref

2 Aref

K2r refv ref
2 Aref

,

(14)

f5
1

m
lnS THK2r refv ref

2 Aref~TH1K !

TLK2r refv ref
2 Aref~TL1K !

D . (15)

A similar procedure yields thedriven pulley slip arc tension,

TDriven~s!5
TLK2r refv ref

2 Aref~TL1K !

K2r refv ref
2 Aref

e~m/R!S1
Kr refv ref

2 Aref

K2r refv ref
2 Aref

,

(16)

where thedrivenpulley slip arc metric is again given by~15!. The
adhesionzone expressions for each pulley are simply given
TDriver(s)5TH andTDriven(s)5TL for 2R(p2f),s,0.

Knowing the belt’s reference density (r ref), reference cross-
sectional area (Aref), and modulus~K!, the spring’s constant~k!
and initial deflection (l 0), as well as the externally applied torqu
~M!, the pulley radius~R!, the operating speed of the driver pulle
(vDriver), the friction coefficient~m!, and the initial span length
(L0

span), the unknown quantities remaining to be found consist
the span tensions (TL ,TH), the driven pulley’s angular velocity
(vDriven), the reference velocity (v ref), and the spring displace
ment ~D!. Specifying numerical values for the known physic
quantities described above, a numerical solution of Eqs.~3!, ~7–
12!, ~14–16! yields the remaining unknown quantities. The
equations are easily reduced to a single equation forTH , for
which a root solver can be employed. This solution strategy
followed for an example belt drive in Section 4. Note that Eq.~11!
is an Eulerian description of belt compatibility, and requires
integral calculation over the entire closeddeformedbelt length. As
such, Eq.~11! includes terms arising from the belt spans, the s
zones, and the adhesion zones.

A second model can be developed when Eqs.~8! and ~11! are
supplanted by the approximate equations used by Bechtel e
@5#. Their equations~adapted to the spring-supported belt drive
this study! are as follows:

TL5Te2
M

2R
, TH5Te1

M

2R
, Te5

K

L0
spanDe , (17)

22Te1k~ l 02De!52Gve , (18)

ve5v refS 11
Te

K D , (19)
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whereTe , (l 02De), andve are the span tension, spring defle
tion, and belt velocity in anequilibriumconfiguration correspond
ing to zero applied moment and nonzero belt velocity. Equat
~17! is an assumption stating that the applied external mom
causes a redistribution of tension such that the required ten
difference is split equally between the high and low tension spa
Equation~18! follows from Eq.~7! evaluated for the equilibrium
configuration, while Eq.~19! follows similarly from Eq.~6!. This
solution is also explored numerically with the example belt dr
of Section 4.

3 Mechanics Resulting From a Creep-Rate-Dependen
Friction Law

An analysis of the belt drive depicted in Fig. 2, using a piec
wise linear creep-rate friction law, as shown in column~b! of Fig.
1, retains most of the governing equations~Eqs. ~1–3!, ~5–8!,
~11!, ~12!! derived in Section 2. In addition, the creep-rat
dependent friction law replaces the Coulomb friction law~Eq.
~4!!,

f 55
2mn~s!, v rel<2

mn~s!

vs

vsv rel , 2
mn~s!

vs
,v rel,

mn~s!

vs
,

mn~s!, v rel>
mn~s!

vs

(20)

wherevs denotes the slope of the friction profile for sliding ve
locities v rel near the origin. The sliding velocityv rel for the belt
drive is defined as

v rel[v~s!2Rv, (21)

wherev takes subscripts Driven or Driver. Note that the conta
boundary conditions of Section 2, Eqs.~9!–~10!, are no longer
valid for the present analysis due to the absence of an adhe
zone ~for reasons to be shown below! on the driven and driver
pulleys.

3.1 Single Sliding Zone on Each Pulley—Smallvs. For
small values of the friction slope parametervs , the velocity dif-
ference between the belt and the pulleys for any arc measures will
lie in the middle zone of the friction profile. Thus, for alls,

f ~s!5vsv rel5vs~v~s!2Rv!. (22)

Two possibilities exist for the existence of adhesion and s
arcs: ~1! a first possibility analogous to the state arising in t
Coulomb analysis—an adhesion arc starts at the inlet of the c
tact region and is followed by a slip arc, or~2! a second possibility
in which a single slip arc spans the entire contact region. A th
possibility in which a slip arc begins at the contact region in
and is followed by an adhesion arc cannot occur since increa
arc metrics always results in movement on the friction profi
away from the origin, and thus away from the possibility of ha
ing an adhesion arc. This is true regardless of the magnitude o
friction slope parametervs . The aforementioned movement con
straint can be seen most clearly by example: if the belt is mov
slower @faster# than the pulley, the friction force will be negativ
@positive#, which will tend to decrease@increase# the tension and
thus decrease@increase# the belt velocity by Eq.~6!, which will
ultimately result in a more negative@positive# velocity difference
v rel and thus movement along the friction profile away from t
origin.

The first of the two adhesion/slip arc possibilities would app
to be most likely since the creep-rate law shares with the Coulo
law the same zero friction point at zero relative velocity. Th
would allow the belt to move in the adhesion zone with the sa
velocity as the rigid pulley, and thus to maintain a constant str
and to experience no friction forces, as in the Coulomb analy
Transactions of the ASME
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To examine this possibility, Eqs.~1–3!, ~5!, ~6!, ~21!, ~22! are
evaluated for the driver pulley in order to determine the driv
pulley’s tension distribution in the slip zone:

TDriver~s!5C1evsvref /~K2Gvref!s1KS RvDriver

v ref
21D , (23)

whereC1 denotes an integration constant. The arc metrics can be
chosen to be zero at the start of the slip zone, without loss
generality. Thus, using the boundary conditions

TDriver~0!5TH , vDriver~0!5v ref~11TDriver~0!/K !5RvDriver
(24)

to calculateC1 andv ref , it is found that

v ref5
KvDriver

~11TH /K !
, C15TH2KS RvDriver

v ref
21D50, (25)

with the result thatTdriver(s)5TH throughout the sliding region
As a result, the tension is a constantTH over the entire belt-pulley
contact region, and hence an unacceptable prediction is made
no torque is transmitted by the driver pulley, violating Eq.~8!. A
similar violation occurs for an analysis of the driven pulley, a
more generally, for any proposed solution which includes an
hesion zone anywhere on either pulley. Therefore only soluti
proposed with no adhesion arcs appearing on the pulleys
valid—an unexpected result considering the existence of adhe
arcs in the Coulomb analysis.

In light of the previous discussion, only the second possi
solution remains plausible, and is examined next. The tension
tribution given by Eq.~23! now holds for the entire contact re
gion, 0,s,Rp, with boundary conditions:

TDriver~0!5TH , (26)

TDriver~Rp!5TL . (27)

Satisfaction of Eq.~26! gives an expression forC1 , and thus the
tension distribution:

TDriver~s!5FTH2KS RvDriver

v ref
21D Ge@vsvref /~K2Gvref!#s

1KS RvDriver

v ref
21D . (28)

Satisfaction of Eq.~27! also gives an expression for the referen
velocity v ref , but not in a convenient closed form. This express
will be evaluated numerically for an example belt drive in Sect
4.

A similar analysis for the driven pulley with the boundary co
ditions

TDriven~0!5TL , TDriven~Rp!5TH (29)

yields the tension distribution and the driven pulley angular
locity

TDriven~s!5FTL2KS RvDriven

v ref
21D Ge@vsvref /~K2Gvref!#s

1KS RvDriven

v ref
21D , 0,s,Rp, (30)

vDriven5
v ref

KR~e@vsvref /~K2Gvref!#pR21!
@~TL1K !

3e@vsvref /~K2Gvref!#pR2~TH1K !#. (31)

Expressions for the normal force and belt velocities for each p
ley (nDriver(s),nDriven(s),vDriver(s),vDriven(s)) follow from Eqs.
~2! and ~6!, respectively.
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3.2 Single Sliding Zone on Driven Pulley, Dual Sliding
Zones on Driver Pulley—Moderatevs. At larger values of the
friction slope parametervs , the transition from high to low ten-
sion on the driver pulley cannot be compensated for by a sin
sliding zone, and movement along the friction profile~as arc met-
ric s is increased! results in development of a second sliding zo
composed of fully developed frictional forces lying in the lef
most zone of the friction profile. The driven pulley boundary co
ditions, angular velocity, and tension distribution of Section 3
~Eqs.~29!–~31!! remainvalid. A further discussion on the abov
is given in Section 3.4. The tension distribution for the driv
pulley must here be divided into a distribution for the midd
sliding region, represented byTDR,1(s), and a distribution for the
left-most sliding region, represented byTDR,2(s). Solution of Eqs.
~1–3!, ~5!, ~6! ~20! results in the driver pulley tension distribu
tions:

TDR,1~s!5C2e@vsvref /~K2Gvref!#s1KS RvDriver

v ref
21D ,

0,s,RfDR1 , (32)

TDR,2~s!5
KGv ref

K2Gv ref
1C3e2m/Rs, 0,s,RfDR2 , (33)

where to reduce complexity, the arc metrics is initialized to zero
at the start of each sliding region, and where (fDR1 ,fDR2) denote
slip arc magnitudes for the two distributions. The updated bou
ary conditions for the driver pulley are expressed as

TDR,1~0!5TH , TDR,1~RfDR1!5TDR1

5TDR,2~0!, TDR,2~RfDR2!5TL , (34)

vs~vDR,1~RfDR1!2RvDriver!52mnDR,1~RfDR1!, (35)

fDR11fDR25p, (36)

where Eq.~34! represents tension boundary conditions andTDR1
denotes the tension at the transition between the two sliding
gions, Eq.~35! expresses a friction force matching condition, a
Eq. ~36! insures that the two sliding regions span the entire c
tact region. Satisfaction of Eqs.~34!, ~35! yields the integration
constants (C2 ,C3) and final expressions for the tension distrib
tions, the transition tensionTDR1 , and the slip arc magnitude
(fDR1 ,fDR2):

TDR,1~s!5FTH2KS RvDriver

v ref
21D Ge@vsvref /~K2Gvref!#s

1KS RvDriver

v ref
21D , (37)

TDR,2~s!5
KGv ref

K2Gv ref
1FTDR12

KGv ref

K2Gv ref
Ge2m/Rs, (38)

TDR15
K@vsR

2vDriver2vsRv ref1mGv ref#

vsRv ref1mK2mGv ref
, (39)

fDR15
K2Gv ref

vsRv ref
lnF RvDriver2v refS 11

TDR1

K D
RvDriver2v refS 11

TH

K D G , (40)

fDR25
1

m
lnF TDR12Gv ref2

Gv ref

K
TDR1

TL2Gv ref2
Gv ref

K
TL

G . (41)
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The final boundary condition~Eq. ~36!! is evaluated numerically
for an example belt drive in Section 4 in order to determine
reference velocityv ref .

3.3 Dual Sliding Zones on Each Pulley—Largevs. For
still larger values of the friction slope parametervs , the driven
pulley also develops a second sliding zone composed of f
developed frictional forces, similar to the driver pulley of Secti
3.2, but with frictional forces lying in the right-most zone of th
friction profile. The driver pulley boundary conditions, slip a
magnitudes, and tension distribution of Section 3.2~Eqs. ~32!–
~41!! remainvalid. The tension distribution for the driven pulle
must here be divided into a distribution for the middle slidi
region, represented byTDN,1(s), and a distribution for the right-
most sliding region, represented byTDN,2(s). Solution of Eqs.
~1!–~3!, ~5!, ~6!, ~20! results in the driven pulley tension distribu
tions:

TDN,1~s!5C4e(vsvref /K2Gvref )s1KS RvDriven

v ref
21D ,

0,s,RfDN1 , (42)

TDN,2~s!5
KGv ref

K2Gv ref
1C5e~m/R!s, 0,s,RfDN2 , (43)

where the arc metrics is once again initialized to zero at the sta
of each sliding region, and where (fDN1 ,fDN2) denote driven
pulley slip arc magnitudes for the two distributions. The upda
boundary conditions for the driven pulley are expressed as

TDN,1~0!5TL ,TDN,1~RfDN1!5TDN1

5TDN,2~0!, TDN,2~RfDN2!5TH , (44)

vs~vDN,1~RfDN1!2RvDriven!5mnDN,1~RfDN1!, (45)

fDN11fDN25p, (46)

whereTDN1 denotes the tension at the transition between the
sliding regions. Satisfaction of Eqs.~44!, ~45! yields the integra-
tion constants (C4 ,C5) and final expressions for the tension di
tributions, the transition tensionTDN1 , and the slip arc magni-
tudes (fDN1 ,fDN2):

TDN,1~s!5FTL2KS RvDriven

v ref
21D Ge@vsvref /~K2Gvref!#s

1KS RvDriven

v ref
21D , (47)

TDN,2~s!5
KGv ref

K2Gv ref
1FTDN12

KGv ref

K2Gv ref
Ge~m/Rs!, (48)

TDN15
K@2vsR

2vDriven1vsRv ref1mGv ref#

vsRv ref2mK1mGv ref
, (49)

fDN15
K2Gv ref

vsRv ref
lnF RvDriven2v refS 11

TDN1

K D
RvDriven2v refS 11

TL

K D G , (50)

fDN25
1

m
lnF TH2Gv ref2

Gv ref

K
TH

TDN12Gv ref2
Gv ref

K
TDN1

G . (51)

The final boundary condition~Eq. ~46!! is evaluated numerically
for an example belt drive in Section 4 in order to determine
driven pulley angular velocityvDriven.
768 Õ Vol. 69, NOVEMBER 2002
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3.4 Discussion on the Existence of Multiple Sliding Zones
As mentioned in Sections 3.2 and 3.3, a second sliding zone
pears on the driver and driven pulleys for larger values ofvs . This
value ofvs can be analyzed for each pulley from closer inspect
of Eqs.~35!, ~45!.

Specifically, the critical value ofvs for which a second sliding
zone appears on the driver pulley can be determined from Eq.~35!
by settingfDR15p and noting that thenTDR,1(fDR1)5TL and
vDR,1(fDR1)5vL ,

vs,cr
Driver5

m~TL2GvL!

R~RvDriver2vL!
, (52)

where vs,cr
Driver denotes the critical profile slope required for th

existence of two sliding regions on the driver pulley. Similarly,
expression for the critical value ofvs for the driven pulley results
from settingfDN15p, TDN,1(fDN1)5TH andvDN,1(fDN1)5vH
in Eq. ~45!,

vs,cr
Driven5

m~TH2GvH!

R~vH2RvDriven!
, (53)

where vs,cr
Driven denotes the critical profile slope required for th

existence of two sliding regions on the driven pulley. Due to t
appearance ofTL in the numerator of Eq.~52! versusTH in the
numerator of Eq.~53!, a smaller value ofvs,cr

Driver than vs,cr
Driven is

generally required for two sliding regions to exist on the driv
pulley as opposed to the driven pulley. The denominators of E
~52!, ~53! are close in magnitude due to the need to transition o
the same tension difference, and to thus occupy nearly equal
tive velocity domain measures on the friction profile.

4 Results and Discussion for an Example Belt Drive
A sample two-pulley belt drive, as defined in Table 1, is an

lyzed further to determine important system parameters suc
the high and low belt tensions, the number of slip arcs presen
each pulley and their extent, the friction and normal forces
unit belt length, and the driven pulley’s angular velocity. Althou
the analysis considers a two-pulley belt drive, the solution pro
dure is easily generalized to consider multipulley drives with
arbitrary number of pulleys.

As discussed in Section 3, the magnitude of the friction pro
parametervs determines whether or not multiple slip zones ex
on each pulley. Each of the three possible slip-zone combinat
~Sections 3.1–3.3! are illustrated by evaluating solutions forvs
54.0E13,1.0E15,8.0E15, respectively. In addition to the
closed-form expressions for most of the response quantities g
in Section 3, the conservation of angular momentum yield
closed-form expression for the low tension:

TL5
RTH~K2Gv ref!2KM

R~K2Gv ref!
. (54)

The only remaining response quantities to be determined~numeri-
cally! are then (TH ,v ref) in Section 3.1, computed using Eq.~11!
and the final unevaluated boundary condition, Eq.~27!; (TH ,v ref)
in Section 3.2, computed using Eq.~11! and Eq. ~36!; and
(TH ,v ref ,vDriven) in Section 3.3, computed using Eqs.~11!, ~36!
and Eq.~46!. A numerical solution of the Coulomb law example
also evaluated using the solution procedure forTH described in
Section 2. Results are given in Table 1 and Figs. 5–6.

The friction forces and normal forces per unit length are co
pared in Fig. 5 for each value ofvs , and the computed driven
pulley angular velocities are given in Table 1. For convenien
Transactions of the ASME
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Table 1 Left two columns of table: parameter space assigned to the example two-pulley belt
drive. Right five columns of table: computed drive parameters using the creep-rate law and the
Coulomb law.

Belt Drive
Parameter

Assigned
Value

Belt Drive
Parameter vs54.0E13 vs51.0E15 vs58.0E15

Coulomb
Law

r ref 1036 kg/m3 TL 165.18 168.3 169.57 169.47 N
Aref 1.0E-4 m2 TH 719.1 722.2 723.48 723.38 N
K 80.068 kN vDriven 106.63 119.09 119.177 119.177

rad/s
k 150 kN/m v ref 9.1564 9.659 9.66269 9.66270

m/s
l 0 0.01 m VL 9.175 9.679 9.68315 9.68315

m/s
M 45 N-m vH 9.24 9.746 9.750 9.750 m/s
vDriver 120 rad/s D 4.22E-3 4.19E-3 4.176E-3 4.177E-3

m
m 1.2 f N/A N/A N/A 1.247 rad
R 0.08125 m fDR1 N/A 2.516 2.013 rad N/A
L0

span 0.5105 m fDR2 N/A 0.624 1.128 rad N/A
fDN1 N/A N/A 2.033 rad N/A
fDN2 N/A N/A 1.108 rad N/A

G 0.985 1.0006 1.001055 1.001056
kg/svDriven

vDriver
0.8886 0.9924 0.9931 0.9931
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Fig. 5 Friction and normal forces per unit belt length for „a…
driver and „b… driven pulleys. Values of v s represented: 4.0E ¿3
„–…, 1.0E¿5 „" " " "…, 8.0E¿5 „ …. The Coulomb law solu-
tion is represented by „ " " " .….
ied Mechanics
the pulley location is given by an angleu measured counterclock
wise from the right-horizontal~or three o’clock! position on each
pulley. For small values ofvs , represented byvs54.0E13, the
friction and normal force profiles have a nearly constant slo
over the entire belt-pulley contact region. As the value ofvs is
increased, these forces become increasingly more exponentia~in
appearance! and begin to approach the profiles for the Coulom
law analysis, as expected. Note that forvs58.0E15, the profiles
are nearly identical to the Coulomb profiles, even though no
hesion zone exists on the pulley and the first sliding-zone
measures over two radians~seefDR1 in Table 1!. But, the relative
velocities are small enough for the friction forces to be near z
throughout this entire zone, as shown in the figure. Also, as
slope profile parameter is increased, the driven pulley’s ang
velocity increases, until it is nearly equal to that using a Coulo
law. Smaller values ofvs require a large amount of initial slip
between the belt and the pulley in order for the friction forces
transition the tension fromTL to TH .

Using the belt-drive parameter space of Table 1 and Eqs.~3!,
~7!, ~9!, ~10!, ~17!–~19!, the assumption of a constant tensio
differenceDT in each belt span can be evaluated for its approp
ateness. A numerical solution yieldsTe5500.8 N, TL5223.9 N,
TH5777.7 N, ve59.716 m/s, v ref59.656 m/s, vL59.683 m/s,
vH59.75 m/s, andD>De53.148E23 m. Based on the above
computed parameters and those computed for the Coulomb a
sis ~Table 1!, for this belt drive the assumed tension differen
results in tension errors of 7.5 percent for the high-tension s
and 32 percent error for the low-tension span. It is not shown h
but it is remarked that these errors decrease with decreasing
ternally applied torqueM. Based on these results, it is suggest
that the more exact compatibility relationship be used for b
drives transmitting large external torques.

A final comparison is made between the analytical solution p
sented herein and a finite element solution of the same drive
detailed in@21#. Figure 6 depicts the friction and normal forc
distributions of both solutions for each value ofvs . For compari-
son’s sake, the distribution is shown as nodal forces, where
analytical force per unit length is converted to the necessary n
force through multiplication with the numerical model’s eleme
belt length. As evidenced by the figure, a high degree of corr
tion between the two solutions is found, confirming the pred
tions of the analytical solution.
NOVEMBER 2002, Vol. 69 Õ 769
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Fig. 6 Comparisons of analytical and finite element predicted frictional and normal forces at
belt nodes for several values of the slope profile parameter v s . Results are for a discretiza-
tion of 100 belt elements per half pulley. In all plots, the finite element driver solutions are
represented by „–…, finite element driven by „" " " "…, analytical driver by „ …, and ana-
lytical driven by „ " " " ….
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5 Conclusions
Belt-drive mechanics associated with a physically appropr

creep-rate-dependent friction law have been analyzed. The a
sis shows no adhesion zones can exist on the pulleys, in con
to the existence of adhesion zones in belt-drive analyses wi
Coulomb friction law. Two types of slip zones have been iden
fied, and the existence of one or both slip zones on the pulleys
been shown to depend on the magnitude of the friction pro
slope vs . Closed-form expressions have been generated for
location and magnitude of the slip zones, the associated ten
distributions, and the frictional and normal forces per unit len
exerted on the belt by the pulleys. The analytical solution w
applied to an example belt drive and then compared to a dyna
finite element solution of the same drive. Excellent agreement
found when predicted quantities from each solution were co
pared over a large range ofvs .
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A Possible Limiting Case
Behavior for Brittle Material
Fracture
The self-consistent scheme is used to model the state of an elastic material with
high density of nearly connected cracks. Then fracture mechanics is used to po
problem of the complete and final failure of the material under uniaxial and eqibia
tension. These failure states are taken to be those of the extreme case of brittle frac
specific form for the resulting extreme brittle failure criterion is given.
@DOI: 10.1115/1.1483835#
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This communication is concerned with the type of homog
neous, isotropic materials that exhibit highly brittle behavior wh
stressed to failure. The limit of extreme brittle behavior is taken
be that of fracture when the elastic material is so heavily dama
by a concentrated distribution of cracks that it is near to causin
state of disintegration under load. The problem will be studied
the two-dimensional context, although three-dimensional beha
will be inferred.

Classical fracture mechanics was first developed to treat
failure inducing behavior of a single isolated and thereby non
teractive crack in an elastic medium under load. The methodol
was enormously successful and much effort has been given
to solving more complex problems involving crack interaction
both for determining the effective elastic properties~Kachanov
@1#! and for the overall fracture-induced failure problem~Kan-
ninen and Popelar@2#!. If the behavior of the single, isolated crac
represents one limit of the fracture problem, the question arise
to what the appropriate characterization may be for the other
sible limit of the fracture problem involving a dense population
highly interactive cracks. The self-consistent scheme~SCS! will
be used to deduce possible fracture behavior at this other
condition.

The SCS for isotropic cracked media has been criticized
being too severe compared with other crack models that give
effective moduli as vanishing only when the crack density
comes unboundedly large, the SCS does so at a finite value o
crack density. However, there probably is no single crack mo
appropriate for all purposes. In any case, the SCS is ideally su
for the present purpose of studying behavior as the crack den
severely degrades the elastic properties approaching the sta
vanishing properties.

The SCS for cracked media was developed by Budiansky
O’Connell @3# in the three-dimensional isotropic context. In th
method a single crack is embedded in a medium of the unkn
elastic properties which are to be determined. In the limit of v
ishing crack density the effective properties must revert to
properties of the given starter material. The problem is well po
and yields an explicit result forE and n, the effective isotropic
properties as a function of the crack density and the base or m
material properties,Em andnm . The problem was further consid
ered by Laws and Brokenbrough@4#, and two-dimensional prob
lems of certain crack types were considered by Gottesman e

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Janu
2, 2001; final revision, October 19, 2001. Associate Editor: K. Ravi-Chandar.
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Department of Mechanical and Environmental Engineering University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
772 Õ Vol. 69, NOVEMBER 2002 Copyright ©
e-
en
to

ged
g a
in
ior

the
in-
gy
ver
s,

k
s as
os-
of

imit

as
the
e-

f the
del
ited
sity
te of

and
is
wn
n-

the
ed

trix
-

t al.

@5#. Crack problems of this general type were very extensiv
treated by Kachanov@1#, including the two-dimensional case o
randomly oriented cracks modeled by the SCS as well as by o
methods.

The problem of interest here is that of the two-dimensio
cracked medium modeled by the SCS. Following Kachanov@1#,
the solution for the effective isotropic propertiesE andn are given
by

E

Em
512

r

ro
(1)

n

nm
512

r

ro
(2)

where the crack densityr is given by

r5
1

A (
i

l i
2 (3)

for cracks of lengths 2l i within area,A. At a crack density ofr
5ro the cracks form an interconnective network and mate
collapse occurs. The SCS solution gives the crack density at
terial disintegration as

ro5
1

p
50.318 (4)

where perfectly elastic deformations have been assumed.
properties~1! and~2! are for two-dimensional plane stress cond
tions. For plane-strain conditions these properties must be rein
preted as the corresponding plane-strain forms.

Not only are the expressions~1!–~4! the correct forms for a
dilute distribution of cracks, they are rigorously the full rang
form obtained from the SCS idealization and solution.

It is interesting to compare the crack density at collapse~4!
with the corresponding crack densities for a regular pattern
connected cracks forming hexagonal and equilateral triang
cells. The latter two values are given by

rH5
1

2)
50.289 ~hexagonal! (5)

and

rT5
)

2
50.866 ~ triangular!. (6)

Comparing~4! and~5! it is seen that the SCS is in close proximi
to the response expected from a hexagonal network of cra

ry
is-

king,
a–
four
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Fig. 1 Uniaxial stress fracture pattern
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While such a pattern and corresponding behavior is highly id
ized, its relationship to the SCS may be helpful toward the pres
objective of modeling brittle fracture.

Take the case of single size cracks and withl 5a establishing
the crack connectivity network. Thenr andro become

r5
nl2

A
(7)

and

ro5
na2

A
(8)

wheren is the number of density of the cracks. With~7! and ~8!
there results from~1! and ~2!

E

Em
5

n

nm
512S l

aD 2

. (9)

Let D be the gap size where

l 5a2D. (10)

Thus D is the dimensional size needed to establish continuity
the cracks. With~10!, ~9! takes the form

E

Em
5

n

nm
5S D

a D F22S D

a D G . (11)

Initial consideration here will be with the fracture behavior f
uniaxial tension,s11. Interest here is in the case of (D/a) being
very small because fracture behavior near the condition of m
rial collapse is what is being sought. Thus, only the first term
~11! need be retained as

E

Em
5

n

nm
52S D

a D1OS S D

a D 2D . (12)

The strain energy density is conveniently expressed through
effective property~12! as

U5
s11

2

4S D

a DEm

. (13)

The strain energy per crack is needed at this point. From
definitions ofr and therebyro and the value ofro from ~4!, the
area per crack is given by

A5pa2. (14)
hanics
al-
ent

of

r

te-
in

the

the

Then the strain energy per crack is

Û5
pa2s11

2

4S D

a DEm

. (15)

Now consider the surface energy needed to cause total mat
fracture under stresss11. Take the fracture pattern as shown b
the dashed lines in Fig. 1. This pattern is that suggested by
agonal symmetry, with three initial cracks near to joining at 12
deg angular intervals. The fracture pattern is taken as that w
presumably has the greatest strain energy release rate as the
ture process commences. This involves crack opening under
mal stress components, leading to complete material disinte
tion. The surface energy or work to create surface energy
initial crack follows from Fig. 1 as

W54)GD (16)

whereG is the surface energy per unit length for each surface
the newly created cracks.

Take the classical fracture condition such that the strain ene
lost balances the surface energy gained by the fracture proc
Then equating~15! and ~16! gives

s115
4~3!

1
4

~p!
1
2
S D

a DAEmG

a
. (17)

The result~17! in addition to requiring the characteristic crac
size l >a, also requires the relative crack size for ultimate cra
connectivity, specified through (D/a).

Now consider the state of eqibiaxial tension,s115s225s. Ac-
cordingly, the propertiesE andn must be converted to the prope
two-dimensional bulk modulus form. The identity for this conve
sion is given by

K5
E

2~12n!
(18)

where K is the two-dimensional bulk modulus. UsingE and n
from ~11! in ~18! and keeping only the lowest order term in (D/a)
gives

K

Em
5S D

a D1OS S D

a D 2D . (19)

The strain energy densityU5s2/2K then becomes
NOVEMBER 2002, Vol. 69 Õ 773
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U5
s2

2S D

a DEm

. (20)

Now using~14! the strain energy per crack is given by

Û5
pa2s2

2S D

a DEm

(21)

The hydrostatic tensile stress state has the maximum degre
symmetry. In coordination with this, take the resulting fractu
pattern as also having the maximum possible degree of symm
and similitude. Specifically for the region of initial crack conflu
ence in Fig. 1, take the three cracks as co-linearly extending
ward by distanceD to the joining point, causing crack continuit
and material collapse. The work to create the surface energy
initial crack is then given by

W54GD. (22)

Forming the energy balance by equating~21! and~22! gives the
eqibiaxial stress to cause fracture as

s52S 2

p D 1/2S D

a DAEmG

a
. (23)

The two fracture criteria~17! and ~23! for uniaxial and eqibi-
axial stress states are thus given by

s1152.970S D

a DAEmG

a

and

s115s2251.596S D

a DAEmG

a
. (24)

These two results have followed from the SCS methodolo
Now, a generalization will be given.

Observe that the general form

s i i 5k ~ i , j 51,2! (25)

very nearly includes the specific results~24!. Form ~25! when
optimally taken to fit the results in~24! does so with a deviation o
only 3.6%. This limit form, mean normal stress fracture criterio
~25!, is the main result presented here. If in the derivations of
two results in~24! the fracture events were taken to be initiated
just one of the three surfaces in each case, rather than all
surfaces, then each result in~24! would be scaled by the sam
factor and the conclusion leading to~25! would be unchanged
Although there is some uncertainty involved with the assum
fracture patterns, the major effect is that the strain energy to
774 Õ Vol. 69, NOVEMBER 2002
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released is half as much for the uniaxial case as for the eqibia
case at the same stress levels, thus giving a lower fracture s
for the eqibiaxial case.

It is not implied that brittle fragmentation occurs in the high
idealized hexagonal pattern. The SCS and its relationship to
hexagonal pattern case merely provides a convenient mecha
for examining brittle behavior. The significant thing here is not t
explicit formulas in~24! but rather that their ratio leads to~25!.
There probably would be other mechanistic ways to approach
criterion rather than through the SCS, but it is possible, but
proven, that all physical methods would approach the same l
form. Further research in this area would be of considerable in
est. Although the present results are for the two dimensional c
the same general theme would appear to apply in thr
dimensional form although the SCS in that case is more comp

The very brittle material fracture criterion~25! sometimes has
been used on an ad hoc basis for generally brittle materials.
present derivation, however, shows that it should only be u
with considerable caution. It is intended to represent limiting c
behavior, whereas most brittle materials would not be near
limit condition and would require a more comprehensive fract
criterion.

It is conceptually interesting that in the present treatment,
limiting brittle behavior for homogeneous isotropic elastic ma
rials ~under positive normal stresses! is fracture type, dilatational
stress controlled. In the limiting ductile case, it is well understo
that the controlling mechanism is of the yielding type, distortion
stress. Thus, stress related behavior at one extreme is here
gested to be distortionally limited while the other extreme is di
tationally limited. These two opposite extreme cases would co
prise a mechanistically balanced and complementary behavio
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Scattering From an Elliptic Crack
by an Integral Equation Method:
Normal Loading
The scattering of normally incident elastic waves by an embedded elliptic crack i
infinite isotropic elastic medium has been solved using an analytical numerical me
The representation integral expressing the scattered displacement field has been re
to an integral equation for the unknown crack-opening displacement. This integral e
tion has been further reduced to an infinite system of Fredholm integral equation o
second kind and the Fourier displacement potentials are expanded in terms of Ja
orthogonal polynomials. Finally, proper use of orthogonality property of Jacobi’s po
nomials produces an infinite system of algebraic equations connecting the expa
coefficients to the prescribed dynamic loading. The matrix elements contains sin
integrals which are reduced to regular integrals through contour integration. The
term of the first equation of the system yields the low-frequency asymptotic express
scattering cross section analytically which agrees completely with previous results. I
intermediate and high-frequency scattering regime the system has been truncated pr
and solved numerically. Results of quantities of physical interest, such as the dyn
stress intensity factor, crack-opening displacement scattering cross section, and
scattered displacement amplitude have been given and compared with earlier resu
@DOI: 10.1115/1.1483834#
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1 Introduction
Quantitative nondestructive evaluation~NDE!/quantitative non-

destructive testing~NDT! is becoming the state of the art in de
tecting and locating cracks in material structures by the obse
tion of the crack’s effect on an externally applied ultrasonic fie
To promote this to a full-fledged technology requires the solut
of the direct scattering problem, i.e., calculating the response
to applied dynamic load on the structure with a known cra
embedded in it. But except for highly idealized cases it is alm
impossible to obtain analytical solutions to the problems. T
handicap has resulted in the evolution of various numerical m
eling techniques for solving scattering problems. Such techniq
have been reviewed by Bond@1#. De Hoop@2# has also noted tha
except for the cannonical problems whose solution can be
pressed in terms of analytical functions of a not too complica
nature, and for analytic approximation techniques, wave propa
tion and scattering problems in elastodynamics have to be
dressed with the aid of numerical methods. Here we will pres
an analytical-numerical technique for the solution of the ti
problem which may be treated as a benchmark to test all num
cal methods when applied to such problems of scattering f
elliptic cracks.

Scattering of elastic waves from an embedded planar crack
ten occurs in ultrasonic nondestructive evaluation. But there
only a limited number of rigorous solutions and these have b
obtained almost exclusively for the special case of scattering f
penny-shaped cracks. For a brief review of the previous wo
related to scattering from a penny-shaped crack, one can ref
Martin and Wickham@3#. For planar cracks other than penn
shaped cracks, previous works were mostly restricted to the
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nove
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McMeeking, Department of Mechanical and Environmental Engineering Univer
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication of the paper itself in the ASME JOURNAL OF
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of long-wavelength scattering. Most of these works were c
cerned with scattering from an elliptic crack~e.g., see Roy@4,5#,
Lin and Keer@6#, Hirose @7#, and Shifrin@8#!. But Visscher@9#
concluded that only very accurate experiments can distinguis
flat crack of general shape from a penny-shaped crack by lo
wavelength elastic-wave scattering. Hence the need for mid
high-frequency scattering solution. Recently the numerical bou
ary integral equation method has developed into a discipline o
own and a surge of interest has been seen for solving problem
high-frequency scattering by planar cracks applying this meth
Other numerical methods, like the boundary element meth
variational-difference method, etc., have also been applied in
allel to solve such problems. In the recent past few work in t
field has been reported in the literature and these works invo
both scattering from elliptic and rectangular cracks. For det
one may refer to Budreck and Achenbach@10#, Nishimura and
Kobayashi@11#, Zhang and Gross@12#, Alves and Ha Duong@13#,
Schafbuch et al.@14#, Itou @15#, Guan and Norris@16#, and Glush-
kov and Glushkova@17# for the solution of scattering from elliptic
and rectangular cracks. Also one may refer to Bostrom and Er
son @18# for the solution of crack scattering in anisotropic an
layered media.

In the present study our interest is confined to problems
scattering from embedded elliptic cracks only, and here
present an analytical-numerical method which is best suited
solve such problems in mid and high-frequency regime. A rece
developed integral equation method of Roy and Chatterjee@19#
has been used here for the present method. The method
reduce the integral equation obtained from the representation
tegral expressing the scattered displacement field into an infi
system of algebraic equations by the judicious expansion of
Fourier displacement potentials in terms of Jacobi’s orthogo
polynomials and the application of the orthogonality property
Jacobi’s polynomials. The first term of the first equation of t
infinite algebraic system does yield the low-frequency asympt
for a scattering cross section which has been evaluated ana
cally and these results agree completely with the existing res
The algebraic system is then solved numerically for the expan
coefficients after properly truncating it. Each term of the trunca

-
us-
t M.
ity
pted
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matrix contains an improper integral with singularity which
reduced to a more suitable integral for numerical computa
through the contour integration technique of Mal@20# and Krenk
and Schmidt@21#. The complex valued expansion coefficien
have been computed for a normally incident plane longitudi
wave in the mid and high-frequency regime. The quantities
physical interest, namely, the dynamic stress intensity fac
crack-opening displacement, and scattering cross section are
puted for both an embedded penny-shaped crack and elliptic c
and are compared with previous results given by Mal@22#, Krenk
and Schmidt@21#, Martin and Wickham@3#, Keogh@23#, Budreck
and Achenbach@10#, Zhang and Gross@12#, and Alves and Ha
Duong @13#. The convergence of the system has been tested
increasing the order of the truncated matrix step by step star
with a fourth-order truncated system and going upto a 12th-o
truncated system. The crack-opening displacement for a partic
crack with incident wave having a fixed frequency have be
computed with results from these different truncated systems
the plots of these results reveal the convergence of the syste

2 The Integral Equation
Consider a homogeneous, isotropic, infinite three-dimensio

elastic solid containing a finite planar crackSof the elliptic shape
embedded in it~Fig. 1!. The crack occupies the region

S:
x2

a2 1
y2

b2 <1, z50 (1)

where ‘a’ and ‘b’ are the semi-major and semi-minor axis
the elliptic crack, respectively. Suppose a time-harmonic pl
longitudinal wave, of angular frequencyv, is the incident nor-
mally on the crack surfaceS. The time-harmonic factor is omitted
throughout this paper. Letui andt i j be the scattered displaceme
and stress field, respectively. Then we are to determine the
tered displacement fieldu satisfying the elastodynamic equatio
of motion

k1
22 grad divu2k2

22curl curl u1u50 (2)

where the wave numbersk1 andk2 are defined by

rv25~l12m!k1
25mk2

2 (3)

andl, m are Lame´ constants,r is the density of the medium, an
the boundary condition on the crack faces are

njt i j ~x!52njt i j
~ i !~x!;xPS6 (4)

Fig. 1 Scattering geometry of an elliptic crack. u i is the inci-
dent displacement field and u sc is the scattered field.
776 Õ Vol. 69, NOVEMBER 2002
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wheren is the unit normal vector,t i j
( i ) is the incident stress field

andS1, S2 are the two opposite faces of the elliptic crack.
Since the material is isotropic the elastic tensor is given by

Ci jkl 5ld i j dkl1m~d ikd j l 1d i l d jk! (5)

whered i j is the Kronecker delta.
The scattered displacement field for a crack of general orie

tion can be expressed by the following representation inte
~Martin, @24#!:

uk~xq!5E E
S
ui~x!t i jk

f ~x;xq!njdS2E E
S
Gik

f ~x;xq!t i j ~x!njdS

(6)

wherexq is the position vector of the observation point,x denotes
the position vector of the source point, andt i jk

f is the stress tenso
corresponding to fundamental Green’s tensorGi j

f given by

Gi j
f ~x;xq!5m21H d i j C1k2

22
]2

]xi]xj
~C2F!J (7)

F5
eik1R

4pR
, C5

eik2R

4pR
, R5ux2xqu, (8)

t i j ~x!5Ci jkl

]ul~x!

]xk
(9)

and

t i jm
f ~x;xq!5Ci jkl

]Glm
f ~x;xq!

]xk
. (10)

Now, sincet i j , Gi j
f , t i jk

f are continuous acrossS, we get

uk~xq!5E E
S
@ui~x!#t i jk

f ~x;xq!njdS (11)

where @ui(x)#5ui
1(x)2ui

2(x) is the crack-opening displace
ment.

Applying the boundary condition then reduces the determi
tion of @ui(x)# to the solution of the following integro-differentia
equation:

2nktkl
~ i !~x8!5nkCklmn

]

]xm
E E

S
@ui~x!#t i jn

f ~x;xq!njdSuxq5x8.

(12)

Equation~12! is valid for any arbitrary crack surfaceS, but we are
interested in scattering from elliptic cracks only. In this case E
~12! partially decouples and the normal displacement disconti
ity satisfies the following integro-differential equation~Roy @5#!:

4F S ]2

]x2 1
]2

]y2D 2

1k2
2S ]2

]x2 1
]2

]y2D G E E
S

@uz#

4pR
~eik1R2eik2R!dS

1k2
4E E

S

@uz#

4pR
eik1RdS5

tzz
~ i !

m
. (13)

Now, we have the well-known integral representation:

eik jR

R
5

1

2p E
2`

` E
2`

` exp@ i j~x2x8!1 ih~y2y8!#

n j
djdh

~ j 51,2! (14)

where

R5@~x2x8!21~y2y8!2#1/2

and

n j5~j21h22kj
2!1/2, Re~n j !.0~ j 51,2!. (15)

Substituting~14! in ~13! we get the following integral equation
Transactions of the ASME
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1

2p E
2`

` E
2`

` E E
S
@uz#

~2l0
22k2

2!224l0
2n1n2

2n1

3exp@ i $j~x2x8!1h~y2y8!%#dx8dy8djdh

5
2ptzz

~ i !~x,y!

m
(16)

where

l05~j21h2!1/2. (17)

Now, we introduce a normalized crack-opening displacem
related to@uz(x8,y8)# through the relation

w~x8,y8!5k2
2~12s2!2@uz~x8,y8!# (18)

where

s5
k1

k2
5

c2

c1
(19)

where c1 , c2 are the P and S wave velocities, respectively
given by

c15S l12m

r D 1/2

, c25S m

r D 1/2

. (20)

We get the integral equation in the form

1

2p E
2`

` E
2`

` E E
S
l0@11F~j,h!#w~x8,y8!

3exp@ i $j~x2x8!1h~y2y8!%#dx8dy8djdh

52
2ptzz

i ~x,y!

m
(21)

where

11F~j,h!52
~2l0

22k2
2!224l0

2n1n2

2k2
2~12s2!2n1l0

. (22)

3 Fredholm’s Integral Equations of the Second Kind
Fredholm’s integral equations of the second kind are obtai

following the reduction procedure of Roy and Chatterjee@19#.
The Cartesian coordinate system is transformed to cy

drical polar coordinate system through the following set
transformations:

~x,y!5~ar cosu,br sinu!

~x8,y8!5~ar cosf,br sinf!. (23)

We assume that the normalized crack-opening displacem
w(x8,y8) and the prescribed stresstzz

( i )(x,y) have complete
Fourier series expansion of the form

@w~x8,y8!,tzz
~ i !~x8,y8!#5(

n50

`

@wn~r!,tn~r!#cosnf

1(
n51

`

@w̄n~r!, t̄ n~r!#sinnf. (24)

The following transformation is also made:

~ja,hb!5~k cosx,k sinx! ~0,k,`;0<x<2p!. (25)

Use of standard representation for exp(6iz cosu) in terms of
Bessel function and application of the orthogonality property
trigonometric functions then gives rise to infinite systems of in
gral equations involvingwn(r), w̄n(r). Further reduction is af-
fected by relatingwn(r), w̄n(r) to displacement potentialsFn(t),
F̄n(t) through the following Abelian transformations:
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@wn~r!,w̄n~r!#5rnAn@ t2n$Fn~ t !,F̄n~ t !%;r# (26)

and

@Fn~ t !,F̄n~ t !#5tnAn
21@r2n$wn~r!,w̄n~r!%;t# (27)

where

An@ f ~ t !;r#5
2

p E
r

1 f ~ t !dt

~ t22r2!1/2

and

An
21@g~r!;t#52

d

dt Et

1 rg~r!dr

~r22t2!1/2.

Using standard results on Bessel functions~Roy and Chatterjee,
@19#! one finally obtains the following sets of Fredholm integr
equations of the second kind:;s50,1,2, . . . ,̀ , (n1s) even;
jP@0,1#

S I s,s
c Fs~j!

I s,s
s F̄s~j!

D 1(
n50
nÞs

` E
0

1

Ln,s~j,t !S I n,s
c Fn~ t !

I n,s
s F̄n~ t ! D dt

1(
n50

` S Kn,s@Fn~ t !#

K̄n,s@F̄n~ t !# D 5S Fs~j!

F̄s~j!
D (28)

where

S I n,s
c

I n,s
s D5

1

2
i s~2 i !nE

0

2p

~12k0
2 cos2 x!1/2S cosnx cossx

sinnx sinsx Ddx

(29)

k0
25S 12

b2

a2D (30)

Ln,s~j,t !5~jt !1/2E
0

`

kJn11/2~kt!Js11/2~kj!dk (31)

S Kn,s@Fn~ t !#

K̄n,s@F̄n~ t !# D 5
1

2
i s~2 i !nE

0

`E
0

2pE
0

1

k~jt !1/2

3F~k,x!~12k0
2 cos2 x!1/2

3Jn11/2~kt!Js11/2~kj!

3S Fn~ t !cosnx cossx

F̄n~ t !sinnx sinsx Ddtdxdk (32)

S Fs~j!

F̄s~j!
D 52

pbj2s

mes
E

0

j r s11

~j22r 2!1/2 S ts~r !

t̄ s~r !
Ddr. (33)

4 Reduction to Algebraic Systems of Equations
Part of the reduction follows from Roy and Saha@25#.

The displacement potentials are expanded in term of Jacobi p
nomials as

@Fn~ t !,F̄n~ t !#5(
j 50

`

@Wj
n ,W̄j

n#ts11Pj
~s11/2,0!~122t2!. (34)

Then following Roy and Saha@25#, Eq. ~28! reduces to

;s50,1,2, . . . ,̀ , ~n1s! even; j,r P@0,1#

(
n50

`

(
j 50

` S I n,s
c Wj

n

I n,s
s W̄j

nD js11Pj 2~s2n!/2
~s11/2,0! ~122j2!1(

n50

` S Kn,s@Fn~ t !#

K̄n,s@F̄n~ t !# D
5S Fs~j!

F̄s~j!
D . (35)

For Kn,s@ .# and K̄n,s@ .#, the following transformation is made
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~k cosx,k sinx!5~au cosc,bu sinc!. (36)

Then, writing

p5~12k0
2 sin2 c!1/2, (37)

and after making use of the following result~Gradshteyn and
Ryzhik, @26#!

E
0

1

tn13/2Pj
~n11/2,0!~122t2!Jn11/2~aput!dt5

J2 j 1n13/2~apu!

apu
,

(38)

both sides of~35! are multiplied byjPm
(s11/2,0)(122j2) and inte-

grated with respect toj between 0 and 1 and the following o
thogonality property of Jacobi’s polynomial is used~Gradshteyn
and Ryzhik,@26#!:

E
0

1

t2s12Pj
~s11/2,0!~122t2!Pk

~s11/2,0!~122t2!dt5
d jk

2s14 j 13
(39)

to obtain the following set of algebraic equations:

;s50,1,2, . . . ,̀ , ~n1s! even

(
n50

s22 S I n,s
c Wm1~s2n!/2

n

I n,s
s W̄m1~s2n!/2

n D 1S I s,s
c Wm

s

I s,s
s W̄m

s D 1 (
n5s12

2m1s S I n,s
c Wm2~n2s)/2

n

I n,s
s W̄m2~n2s!/2

n D
1~4m12s13!(

n50

`

(
j 50

`
1

2
i s~2 i !n

b2

a2 E
0

2pE
0

`

p23u21

3F~u!J2 j 1n13/2~apu!J2m1s13/2~apu!

3S Wj
n cos@n tan21~

b
a tanc!#cos@s tan21~

b
a tanc!#

W̄j
n sin@n tan21~

b
a tanc!#sin@s tan21~

b
a tanc!#

D dudc

5~4m12s13!E
0

1

js11Pm
~s11/2,0!~122j2!S Fs~j!

F̄s~j!
Ddj (40)

where

F~u!5212
~2u22k2

2!224u2~u22k1
2!1/2~u22k2

2!1/2

2uk2
2~12s2!2~u22k1

2!1/2 . (41)

Let

I 5E
0

`F 2
1

u
2

4

2k2
2~12s2!2

H S u22
1

2
k2

2D 2

u2~u22k1
2!1/22~u22k2

2!1/2J G
3Jw11/2~apu!Jx11/2~apu!du (42)

wherew52 j 1n11 andx52m1s11.
This integral can be recast into a form more suitable for

merical integration. The principle is to extend the integrand i
the complex half-plane Re$u%>0 and to use contour integration
The procedure is taken from Mal@20# and Krenk and Schmid
@21#.

For w>x, the result is

I 5
1

s2~12s2!2 E
0

1 F i ~2s2j221!2

2j2~12j2!1/2 Jw11/2~apk1j!

3Hx11/2
~2! ~apk1j!1

1

p~2w11!

dwx

j2~12j2!1/2Gdj1
2i

~12s2!2

3E
0

1

~12j2!1/2Jw11/2~apk2j!Hx11/2
~2! ~apk2j!dj
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2
8 j 1n2s/2,m

~4m12s13!
. (43)

For w,x one must interchangew andx in ~43!.
Substituting~43! in ~40! and noting that

1

2
i s~2 i !n

b2

a2 E
0

2p

~12k0
2 sin2 c!23/2

3S cos@n tan21~
b
a tanc!#cos@s tan21~

b
a tanc!#

sin@n tan21~
b
a tanc!#sin@s tan21~

b
a tanc!#

D dc

5S I n,s
c

I n,s
s D . (44)

Eq. ~40! may be written as

;s50,1,2, . . . ,̀ , ~n1s! even and;m>0

(
n50

`

(
j 50

`
1

2
~21!3~n1s!/2

b2

a2 E
0

2p

p23

3S Wj
n cos@n tan21~

b
a tanc!#cos@s tan21~

b
a tanc!#

W̄j
n sin@n tan21~

b
a tanc!#sin@s tan21~

b
a tanc!#

D
3Cjm

ns~c!dc5E
0

1

js11Pm
~s11/2,0!~122j2!S Fs~j!

F̄s~j!
Ddj (45)

whereCjm
ns(c) is obtained from~43! by deleting the last term and

replacing the values ofw and x. The detailed calculation of
Cjm

ns(c) is given in the Appendix.

5 Low-Frequency Asymptotic for Scattering Cross
Section

In the present and subsequent discussions we take the inc
stress field corresponding to the normally incident planeP-
wave as

tzz
i 5 ik1~l12m!A0 (46)

so that

t0~r !5 ik1~l12m!A0

ts~r !5 t̄ s~r ![0;s>1. (47)

Hence, in the present situation

W̄j
n[0;n>1 and j >0, (48)

so there is no contribution to the physical quantities from
second algebraic system of Eq.~45!. All subsequent results are
obtained under this incident field withA051/ik1 .

Here we obtain an analytical expression of the low-frequen
asymptotic for scattering cross-section.

Puttings50, m50, n50, j 50 in the first algebraic system o
Eq. ~45! we get

1

2

b2

a2 E
0

2p

p23W0
0C00

00~c!dc5E
0

1

jP0
~1/2,0!~122j2!F0~j!dj.

(49)
Using the expression fort0(r ) from ~47! we get

right-hand side of~49!52
pb

3

2~12n!

~122n!
. (50)

For the left-hand side of~49! we retain terms inC00
00(c) up toki

3,
( i 51,2) only because thekis are small. Hence, after some sim
plification we get

C00
00~c!5

1

3
2

a2p2k1
2~224s213s4!1a2p2k2

2s2

30s2~12s2!2

1 i
a3p3k1

3~15240s2132s4!18a3p3k2
3s2

135ps2~12s2!2 . (51)
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Substituting this value ofC00
00(c) at the left-hand side of~49! and

noting thatW0
0 is complex valued we obtain, after separating t

real and imaginary parts from both sides of~49!, and solve

real part ofW0
052

3pb

4s2E2~k0!
F2

3
E~k0!

1
b2$k1

2~224s213s4!1k2
2s2%

15s2~12s2!2 F~k0!G (52)

and

imaginary part ofW0
05

3pab3k2
4

4k1E2~k0! F8115s240s3132s5

135s~12s2!2 G .
(53)

Now, a scattering cross section is a measure of an obstacle’s
ity to scatter the incident field. Following Budreck and Achenba
@10# the normal displacement of the far-field scattered longitudi
wave has the form

u3
sc~x!;u~c!

exp~ ik1r !

4pr
as r→`, (54)

wherec is the angle of observation in the (xa ,x3)-plane~a51,2!
as measured from thex3-axis, uxu5r and

u~c!52 ik1@2s2 cos2 c1~122s2!#

3coscE E
S

exp~2 ik1 sinc!w~x8,y8!dS. (55)

For normal observation,c50, so that

u~0!52 ik1E E
S
w~x8,y8!dS. (56)

For an elliptic crack

E E
S
w~x8,y8!dS5

4ab

3
W0

0. (57)

Now, the scattering cross section is given by

(P5Re@u~0!#. (58)

Hence the dimensionless scattering cross section for an ell
crack is

(P

pab
5ReF2

4

3p
ik1W0

0G (59)

which is also the expression of dimensionless scattering cross
tion for a circular crack. Hence applying the expression for
imaginary part ofW0

0 from ~53! in the above expression we get th
low-frequency asymptotic for the dimensionless scattering cr
section as

(P

pab
5

ab3k2
4~8115s240s3132s5!

135s~12s2!2E2~k0!
(60)

which agrees exactly with the same expressions given earlie
Roy @4#. Putting a5b in this expression and noting thatE(k0)
5p/2 for a5b we get back the result of the scattering cro
section for a penny-shaped crack given earlier by Robertson@27#
and Piau@28#. Thus we conclude that the present method d
yield the known asymptotic approximation analytically.

6 Quantities of Physical Interest
We give here the formulas for computing the quantities

physical interest, namely, the dynamic crack-opening displa
ment, dynamic stress intensity factor, scattering cross section,
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back-scattered displacement amplitude for an elliptic crack in
mid and high-frequency regime in terms of the unknown displa
ment coefficientsWj

n .

6.1 Dynamic Crack-Opening Displacement. Using the
following results~Gradshteyn and Ryzhik,@26#!

Pj
~n11/2,0!~122t2!5~21! jFS j 1n1

3

2
,2 j ;1;12t2D (61)

and

E
0

1

~12x!m21xn21F~a1 ,a2 ;n;ax!dx

5
G~m!G~n!

G~m1n!
F~a1 ,a2 ;m1n;a! (62)

~Rem.0,Ren.0 and uau,1!

whereF(.,.;.;.) is thehypergeometric function, the normalize
dynamic crack-opening displacement for an elliptic crack is o
tained from~18! as

w~x8,y8![w~r,f!

5
2

p (
n50

`

rnA12r2 F(
j 50

`

~21! jWj
n

3FS j 1n1
3

2
,2 j ;

3

2
;12r2D Gcosnf. (63)

Now applying the result~Gradshteyn and Ryzhik@26#!

C2n11
l ~ t !5

~21!n2t

B~l,n11!
FS 2n,n1l11;

3

2
;t2D (64)

whereCn
l(.) is the Gegenbauer polynomial andB(.,.) is thebeta

function, and noting that fors even,n is even, we get

w~x8,y8![w~r,f!

5
1

p (
m50

`

(
j 50

`

Wj
2m

j !GS 2m1
1

2D
GS 2m1 j 1

3

2D
3C2 j 11

2m11/2~~12r2!1/2!r2m cos 2mf (65)

which coincides with the result for static crack-opening displa
ment for an elliptic crack given by Martin@29#, except for a con-
stant.

The normalized dynamic crack-opening displacement for a
cular crack is given by

w~x8,y8!5
2

p
A12r2 (

j 50

`

~21! jWj
0FS j 1

3

2
,2 j ;

3

2
;12r2D .

(66)

It must be noted thatWj
n are complex valued so thatw(x8,y8) is

also so.
The exact solution of the static crack-opening displacement

a circular crack has been given by Sneddon@30#. So that the
dimensionless dynamic crack-opening displacement for circ
crack is

~122n!p

4a~12n!
uw~x8,y8!u. (67)

Similarly the dimensionless dynamic crack-opening displacem
for an elliptic crack is given by
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~122n!E~k0!

2b~12n!
uw~x8,y8!u (68)

wherew(x8,y8) is given above, and now the exact solution of t
static problem for an elliptic crack is obtained from Mura@31#.

6.2 Dynamic Stress Intensity Factor. Following Roy and
Chatterjee@19#, the dynamic stress intensity factor for an ellipt
crack is given by

KI~f!5
2m

p~12n!b S b

aD 1/2

~a2 sin2 f1b2 cos2 f!1/4

3F(
n50

`

Fn~1! cosnf1(
n51

`

F̄n~1!sinnfG (69)

which in the present case reduces to

KI~f!5
2m

p~12n!b S b

aD 1/2

~a2 sin2 f1b2 cos2 f!1/4

3(
n50

`

(
j 50

`

~21! jWj
n cosnf. (70)

The corresponding expression for a circular crack is

KI~f!5
2m

p~12n!Aa
(
j 50

`

~21! jWj
0. (71)

Hence the nondimensional dynamic stress intensity factor fo
elliptic and circular crack, obtained by dividing the norm
KI(f) by the corresponding static valueKI

s , are respectively,

~122n!E~k0!

pb~12n! U(
n50

`

(
j 50

`

~21! jWj
n cosnfU (72)

and

~122n!

2a~12n! U(j 50

`

~21! jWj
0U . (73)

Fig. 2 Present method „lines …, BIEM „triangles …, and Mal „bul-
lets … nondimensional dynamic crack-opening displacement for
circular crack for k 2a equal to „a… 0.0; „b… 1.4; „c… 3.2; „d… 4.4;
and „e… 6.0.
780 Õ Vol. 69, NOVEMBER 2002
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6.3 Scattering Cross Section and Back-Scattered Displace
ment Amplitude. The expression for dimensionless scatteri
cross section for both elliptic and circular cracks are given by
single expression of Eq.~59!.

The norm of the dimensionless back-scattered displacem
amplitude is given by

Uu~0!

A U,
i.e.,

U2 4ik1

3p
W0

0U, (74)

whereA represents the area of the crack surface.

Fig. 3 „a… Dimensionless crack-opening displacement of an
1:1Õ& elliptic crack with k 2a equal to 4.5. „b… Dimensionless
crack-opening displacement of an 1:1 Õ& elliptic crack with k 2a
equal to 5.5.
Transactions of the ASME
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7 Numerical Results
Numerical results of various quantities of physical intere

which are given in the previous section, are presented for b
penny-shaped and elliptic cracks in the mid and high-freque
regime.

7.1 Dynamic Crack-Opening Displacement. Figure 2
shows the ratio of the norm of the complex normalized cra
opening displacement for a circular crack and the correspon
~i.e., due to the same stress amplitude! static crack-opening dis
placement evaluated at the crack’s center. The results are for
son’s ratio 0.25 and fork2a50.0, 1.4, 3.2, 4.4, and 6.0.

The dimensionless crack-opening displacements for a circ
crack computed by the present method are compared to t
presented by Mal@22# and Budreck and Achenbach@10#. It is
seen that the present results match well with the results of
@22# and Budreck and Achenbach@10#. Oscillations in the curves
at mid frequencies indicate multiple reflections inside the crack
interpreted by Mal@22#. At low frequency the dynamic crack
opening displacement is greater than that for the static case b
mid frequencies this goes down below the static crack-open
displacement.

In Fig. 3 the same quantity of Fig. 2 has been plotted againr
for an elliptic crack of aspect ratio 1:1/&. It shows plottings for
two distinct frequencies viz.k2a54.5 and 5.5. Due to the sym
metric nature of the crack-opening displacement with respec
thex andy-axis in this case, results are presented for only the fi
quarter of the crack. The lines marked~a! and ~b! represent data
for f50 deg andf590 deg, respectively, and these are compa
with those presented by Budreck and Achenback@10#. The plot-
tings given by us and Budreck and Achenbach@10# differ signifi-
cantly. This may be due to the fact that the data of Budreck
Achenbach@10# were obtained at the centroid of each element i
which the crack was meshed. The question that now natur
arises is whether the present scheme converges or not. A the
ical discussion regarding the convergence of the present sche
out of scope of the present study. We expect to persue it la
However, for the present we verify the convergence of the sch

Fig. 4 Dimensionless crack-opening displacement of an 1:1 Õ&
elliptic crack with k 2a equal to 5.5 „a… fourth-order system fÄ0
deg; „b… sixth-order system fÄ0 deg; „c… eighth-order system
fÄ0 deg; „d… fourth-order system fÄ90 deg; „e… sixth-order
system fÄ90 deg; „f … eighth-order system fÄ90 deg
Journal of Applied Mechanics
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through a numerically particular example. The data plotted in F
3~b! are replotted in Fig. 4 forf50 deg andf590 deg after
truncating the infinite system to a fourth order, sixth order, a
eight-order matrix equation, respectively. It is obvious from t
plotting that the present scheme does converge.

Figure 5 shows the same quantity plotted againstr as in Fig. 3
except that now the plotting is for two distinct frequency vi
k2a54.5 and 5.5 with the elliptic crack having aspect ratio 1:1
The markings in Figs. 5~a! and ~b! represent data betweenf50
deg andf590 deg, i.e., along thex-axis andy-axis, respectively.
The dependence of the crack-opening displacement on the s
of the crack and on the frequency of the incident wa
is clear from the figures. The highest value of the crack-open
displacement is attained along the major axis. Also the gen
trend is the higher the frequency lower the crack-open
displacement.

7.2 Dynamic Stress Intensity Factor. Figure 6 shows the
results of a nondimensional dynamic stress intensity factor fo

Fig. 5 „a… Dimensionless crack-opening displacement of an
1:1Õ2 elliptic crack with k 2a equal to 4.5. „b… Dimensionless
crack-opening displacement of an 1:1 Õ2 elliptic crack with k 2a
equal to 5.5.
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circular crack with Poisson’s ratio 0.25, and these results are c
pared with the existing results of Mal@22# and Zhang and Gros
@12#. The results are seen to match well with the existing resu
except at the peaks. The peaks are attained at frequenciesk2a
51.5, 4.25, 7.25 which are nearer to the resonant frequen
k2a51.44, 4.33, 7.22, . . . . Theresult reveals that the amplifica
tion of the stress intensity factor is withink2a50 andk2a52. For
the rest of the higher frequencies the result is only that of shi
ing, although it is of oscillatory nature. Hence the crack, if prop
gating will start its propagation for the value ofk2a near 1.5.

Figure 7 shows the results of a nondimensional dynamic st
intensity factor for elliptic crack with aspect ratios 1:1/2 a
1:1/5. The Poisson ratio is now taken to be 0.3 for the sake
comparing the present results with those presented by Zhang

Fig. 6 Present method „lines …, Zhang and Gross „bullets … and
Mall „triangles … nondimensional dynamic stress intensity factor
for a circular crack for nÄ0.25

Fig. 7 Present method „lines … and Zhang and Gross „bullets …

nondimensional dynamic stress intensity factor for elliptic
cracks with aspect ratio „a… 1:1Õ2, fÄ90 deg; „b… 1:1Õ2, fÄ0
deg; „c… 1:1Õ5, fÄ90 deg; „d… 1:1Õ5, fÄ0 deg. nÄ0.3.
782 Õ Vol. 69, NOVEMBER 2002
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Gross@12#. Here the stress intensity factor has been compute
the two pointsf50 deg andf590 deg of the crack edge. Fo
results of the 1:1/2 elliptic crack, comparison with results p
sented by Zhang and Gross@12# shows that there is almost n
difference in the two results. The peaks of the curves are relate
resonant frequencies. It is observed that maximum amplifica
of the stress intensity factor is attained at the edge of the m
axis and hence crack propagation, if initiated, will initiate at t
blunt edge of the elliptic crack. Also it may be noted that t
narrower the crack, the higher the frequency required to reach
maximum amplification.

7.3 Scattering Cross-Section and Back-Scattered Displace
ment Amplitude. Another important parameter is the scatteri
cross section of the crack. Table 1 lists the dimensionless sca
ing cross section for normally incidentP-wave on a penny-shape
crack as computed by Krenk and Schmidt@21#, Keogh@23#, Mar-
tin and Wickham @3#, Budreck and Achenbach@10#, and the
present method. The computations are done forn50.25.

In Fig. 8 the nondimensional scattering cross sectionSP /A ~A
being the area of the crack surface! has been plotted as a functio
of the dimensionless wave numberk2a. Figure 9 shows the result
of the norm of the dimensionless back-scattered displacem
field given by uu(0)/Au plotted against the dimensionless wa
number. Both the results of Figs. 8 and 9 have been comp
with existing results of Budreck and Achenbach@10# and Alves
and Ha Duong@13#. It is found that the present result match
well with both the results of Budreck and Achenbach@10# and

Table 1 Dimensionless scattering cross section for normal in-
cidence of a longitudinal wave on a penny-shaped crack as
computed by †21‡, †23‡, †3‡, and †10‡ and the present method

k2a
Krenk and

Schmidt@21#
Keogh
@23#

Martin and
Wickham @3#

Budreck and
Achenbach@10#

Present
Method

1 0.214 - 0.214 0.262 0.224
2 2.894 3.066 2.895 3.066 3.030
3 1.910 1.836 1.910 1.904 1.999
4 1.655 1.612 1.600 1.649 1.673
5 2.106 2.364 2.314 2.342 2.422
6 1.801 1.851 1.877 1.890 1.969
7 1.987 1.770 1.831 1.920 1.887
8 1.941 2.212 2.208 2.207 2.341

Fig. 8 Scattering cross section of „a… 1:1; „b… 1:1Õ&; „c… 1:1Õ3,
and „d… 1:1Õ5 elliptic cracks under normal incidence of a longi-
tudinal wave
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Alves and Ha Duong@13#. The peaks of the curves in the figure
are related to resonant wave motion on the faces of the crack.
interesting features of the figures are that the first peaks bec
lower as the crack becomes narrower starting from the pen
shaped crack, and also the narrower the crack the higher the
quency required to reach the first peak.

8 Conclusion
The problem of the scattering of the normally incident co

pressional wave by a plane elliptic crack has been solved in
analytical numerical way in the intermediate and high-freque
domain. An infinite system of algebraic equations is obtain
each element of whose coefficient matrix contain a singular in
gral which is converted by contour integration into a suitable fo
amenable for numerical computation. The expression for lo
frequency asymptotic of scattering cross section has been obta
analytically, which agrees exactly with previous known resu
The system has been truncated suitably for computational w
Results have been obtained for the dynamic crack-opening
placement, dynamic stress intensity factor, scattering cross
tion, and norm of the back-scattered displacement amplitude
both circular and elliptic cracks of various aspect ratios. The co
putational work has been carried out with the help of a perso
computer. Even retaining only six terms~s50, 2, 4,m50, 1, n
50, 2, 4, andj 50, 1! in the truncated system has yielded resu
which are accurate enough to match with the existing results
the boundary integral equation method. The convergence of
results has been tested numerically and this has been de
strated by plotting results of the crack-opening displacement f
test case obtained from the fourth-order, sixth-order, and eig
order truncated systems, respectively. This method may be loo
upon as an alternative to the boundary integral equation me
for solving three-dimensional scattering problems. We do
claim that this is the best method or the most general metho
solve such types of problems, but its importance lies in the
that it is an analytical method. The solutions obtained from t
method may be used to validate the various numerical meth
which are used by most of the researchers to solve such a typ
elliptic crack problems. The method can be easily extended
variety of problems including crack interaction problems und
dynamic loading and solutions can be obtained without he

Fig. 9 Back-scattered displacement amplitudes of „a… 1:1; „b…
1:1Õ&; „c… 1:1Õ2; „d… 1:1Õ3, and „e… 1:1Õ5 elliptic cracks under
normal incidence of a longitudinal wave
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computational work as required by the other methods. The pr
lem of scattering of shear waves by an elliptic crack is un
consideration and will be communicated shortly.
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Appendix

We demonstrate here the evaluation ofCjm
ns(c) in Eq. ~45!. For

this we begin with Eq.~42!.

I 5E
0

`F 2
1

u
2

4

2k2
2~12s2!2

H S u22
1

2
k2

2D 2

u2~u22k1
2!1/22~u22k2

2!1/2J G
3Jw11/2~apu!Jx11/2~apu!du (A1)

wherew52 j 1n11 andx52m1s11.
We have~Gradshteyn and Ryzhik@26#!

E
0

`

2
1

u
Jw11/2~apu!Jx11/2~apu!du52

dwx

~2w11!
. (A2)

For the remaining part of~A1! we extend the argument of th
integrand to the complex half-plane Rez5u>0 and follow the
following steps.

Let

G~z!5

S z22
1

2
k2

2D 2

z2~z22k1
2!1/22~z22k2

2!1/2. (A3)

For w>x, we write

Jw11/2~apz!Jx11/2~apz!5
1

2
Jw11/2~apz!

3@Hx11/2
~1! ~apz!1Hx11/2

~2! ~apz!#. (A4)

Then we have the following asymptotic relations asz→0 ~in
the complex plane!:

G~z!Jw11/2~apz!Hx11/2
~1! ~apz!

5~apz!w2xF2
2~2x21!!!

4p~2w11!!!

k2
4

k1

1

z2 1(
j 50

`

cjz
j G (A5)

wherecj are constants. Similarly,

G~z!Jw11/2~apz!Hx11/2
~2! ~apz!

5~apz!w2xF 2~2x21!!!

4p~2w11!!!

k2
4

k1

1

z2 1(
j 50

`

cjz
j G . (A6)

Now, choosing the different contours following Krenk an
Schmidt @21# and noting that the larger quarter-circles and t
small semicircles make no contribution to the integral in eith
case we find that asz→0 the only contribution from the smalle
quarter-circles is due to the term~sincew>x, the only contribu-
tion is for w5x!

7
2~2x21!!!

4p~2w11!!!

k2
4

k1
~ap!w2xzw2x22. (A7)

Hence, the second part of the singular integralI reduces to the
following regular integral:
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0

`F S u22
1

2
k2

2D 2

u2~u22k1
2!1/22~u22k2

2!1/2G Jw11/2~apu!Jx11/2~apu!du

52 iE
0

k1
S u22

1

2
k2

2D 2

u2~k1
22u2!1/2 Jw11/2~apu!Hx11/2

~2! ~apu!du

2 iE
0

k2

~k2
22u2!1/2Jw11/2~apu!Hx11/2

~2! ~apu!du

2
k2

4

2pk1

dwx

~2w11!e
(A8)

where e is the radius of both the smaller quarter circles of t
contours choosen.

Making the transformationsu5k1j in the first integral andu
5k2j in the second integral and noting by Krenk and Schm
@21#

lim
e→0

1

k1e
5E

0

1 dj

k1
2j2~12j2!1/2 (A9)

we finally get~43!.
Now, replacingw by (2j 1n11) and x by (2m1s11) and

substituting this result of~43! in ~40! and noting the result~44!
and the following result,

(
n50

`

(
j 50

` S I n,s
c Wj

n

I n,s
s W̄j

nD d j 1~n2s!/2,m5 (
n50

2m1s S I n,s
c Wm2~n2s!/2

n

I n,s
s W̄m2~n2s!/2

n D , (A10)

we ultimately get the Eq.~45! with the expression forCjm
ns(c)

obtained from~43! after deleting the last term.
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Large Deflection of Thin Plates in
Pressure Sensor Applications
The present paper examines the large deflections of a clamped circulate thin pla
pressure sensor applications and establishes a simple solution using the singular p
bation technique. The perturbation solution for the slope of the lateral deflection is
closed form in terms of the load-induced radial stress resultant. The nonlinearity h
strong stiffened effect. The nondimensional load-induced stress resultants are functi
the nondimensional initial stress resultant, lateral load, and Poisson’s ratio.
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1 Introduction
Silicon-based thin films are frequently used in microelectron

for the measurement of pressure, temperature, and other phy
quantities. The film is often under initial tension and its thickne
is of the order microns. The tension can be as large as 1 GPa~@1#!.
Sheplak and Dugunji@2# examined the large deflection characte
istics of circular plates in detail by integrating the full set of t
nonlinear equations of motion. The present paper re-examine
problem and establishes a simpler solution using the singular
turbation technique. The results compare well with those of Sh
lak and Dugunji@2#.

2 Basic Equations
Consider a circular plate of radiusa and thicknessh under

initial tension N0 . The plate is stretched initially by a uniform
load N0 and then subjected to a uniform pressureP. The equilib-
rium equations are~@2,3#!

dNr

dr
1

Nr2Nu

r
50, (1)

dNu

dr
2

Nr2Nu

r
1

Eh

2r S dW

dr D 2

50, (2)

DS d3W

dr3 1
1

r

d2W

dr2 2
1

r 2

dW

dr D2Nr

dW

dr
5

Pr

2
, (3)

whereNr ,Nu are the in-plane stress resultants,r is the radius,W
is the lateral deflection, and

D5
Eh3

12~12n2!

is the bending rigidity withE, n being Young’s modulus and
Poisson’s ratio, respectively.

We define

Nr~r !5N01Sr~x!, Nu~r !5N01Su~x!,

and the following nondimensional quantities:

w5
W

h
, x5

r

a
, S Pa4

Eh4D 1/3

u5
dw

dx
,
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n05N0 /~EP2a2h!1/3, sr5Sr /~EP2a2h!1/3,

su5Su /~EP2a2h!1/3,

p5
Pa4

Eh4 , 1/«5A12~12n2!p1/3, k5p1/3A12~12n2!n0,

ke5p1/3A12~12n2!@n01sr~1!#,

whereSr ,Su are the in-plane stress resultants induced by the
eral load that

Sr5Nr2N0 , Su5Nu2N0 . (4)

Only two of the parametersn0 , p, «, k, andke are independent.
The value of the different parameters controls different charac
istics of the plate and thus are used for the specific circumstan

The present definitions of the nondimensional stress result
sr ,su differ slightly from that of Sheplak and Dugunji@2#, who
defined them asp2/3sr ,p2/3su . The choice here is for mathemat
cal convenience. However, it does make the physical interpr
tion of sr ,su ,n0 somewhat indirect as they involve both stre
resultants and lateral load. The present definition leads to cons
asymptotic values forsr ,su at higher values ofp as shown later
in the results. The definitions forp and k are the same as thos
of @2#.

In nondimensional form, Eqs.~1!–~3! become

dsr

dx
1

sr2su

x
50, (5)

dsu

dx
2

sr2su

x
1

u2

2x
50, (6)

«2S d2u

dx2 1
1

x

du

dx
2

u

x2D2@n01sr~x!#u5
1

2
x. (7)

The boundary conditions are

u50, sr5su at x50, (8)

u50, su2nsr50 at x51. (9)

The governing equations depend on the non-dimensional in
stress resultantn0 and «. Poisson’s ratio appears only in th
boundary condition.

3 Solution
The parameterke@5An01sr(1)/«# characterizes the behavio

of the plate. Ifke@1, it indicates that the plate is either very th
or the in-plane stress resultant is large that the membrane beh
is dominant. In this case, we can construct the solution by
singular perturbation method~@4#!.
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-
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We first construct the outer solution that is valid everywhe
except nearx51. The zeroth-order outer solution foru is obtained
from Eq. ~7! by neglecting the terms proportional to«2, i.e.:

u52
x

2@n01sr~x!#
1O~«2! (10)

for sufficiently small« ~or largeke).
In principle, we can determine the zeroth-order solution forsr

andsu from Eqs.~5! and~6! by numerical integration subjected t
the boundary conditions Eqs.~8! and ~9!. The solution depends
only on the nondimensional parametern0 and Poisson’s ration.
Unfortunately, the outer solution foru does not satisfy the bound
ary condition Eq.~9! at x51. The integratedsu will give incorrect
result atx51. Thus the solution is not good near the bounda
but valid everywhere else. This is also the reason thatu given in
Eq. ~10! is called the outer solution.

Let us construct the solution valid nearx51 and call it the
inner solution. We introduce the inner variable

Y5«~12x! (11)

and the perturbation solution in the form

u~x!5u0~Y!1«u1~Y!1O~«2!

sr~x!5sr0~Y!1«sr1~Y!1O~«2! (12)

su~x!5su0~Y!1«su1~Y!1O~«2!

nearx51. Substituting the perturbation solution into Eqs.~5!, ~6!,
and ~7! and collecting terms of the same order of«, we find the
zeroth-order equations

d

dY
sr0~Y!50,

d

dY
su0~Y!50,

d2u0

dY2 2@n01sr0~0!#u05
1

2@n01sr0#
,

and the first-order equations

d

dY
sr1~Y!5sr02su0 ,

d

dY
su1~Y!5su02sr01

1

2
u0

2,

d2u1

dY2 2@n01sr0~0!#u15sr1u01
du0

dY
2

1

2
Y.

The zeroth-order solution is

su05nsr05nsr05constant, (13)

u052
12exp~2AbY!

2b
, (14)

and the first order solution is

sr15~12n!sr0Y (15)

su152~12n!sr0Y1
1

8b2 S Y1
2

Ab
e2AbY2

1

2Ab
e22AbY2

3

2Ab
D

(16)

u15
1

4 FY

b
2

1

2b
~12n!sr0S Y2

Ab
1

Y

b D Ge2AbY

1
1

2 F ~12n!
sr0

b
11G Y

b
(17)

where

b5n01sr0 .

We shall first establish a uniformly valid solution foru. By
matching the inner solution given by Eq.~12! and the outer solu-
tion given by Eqs.~5!, ~6!, and~10!, we can show that
786 Õ Vol. 69, NOVEMBER 2002
re
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ry,

sr05sr~1!

and the common part of the inner and outer solutions ofu is

2
1

2b
1

«

2 F ~12n!
sr0

b
11G Y

b
.

Thus the uniformly valid solution~the sum of the inner and oute
solutions minus their common part! for u is thus

uu52
x

2@n01sr~x!#
1

eke(x21)

4b

3H 32x1
~12n!~12x!@~12x!ke11#sr0

2b J 1O~«2!.

This solution does not equal zero atx50 but is exponentially
small for small«. Without invalid the solution, we may add
small term touu making it exactly zero at the origin. Thus

uu52
x

2@n01sr~x!#
1

eke(x21)

4b

3H 32x1
~12n!~12x!@~12x!ke11#sr0

2b J 1c~x21!

1O~«2! (18)

where

c5
e2ke

4b F31
~12n!~ke11!sr0

2b G .
The deflectionw is obtain by integrating Eq.~18! with respect to
x:

w

p1/35E
x

1 xdx

2@n01sr~x!#
1

c~12x!2

2

1
1

4bke
F3~12n!sr0

2bke
222

1

ke
G1

eke(x21)

4bke

3H 32x1
1

ke
2

1

2 F ~12x!2ke13~12x!1
3

ke
G ~12n!sr0

b J .

(19)

Thusw is proportional top1/3 for n0 ,sr being of the order 1. For
small ratio of sr(r )/n0 , the induced stress resultant can
neglected to give the linear solution forw and u. We obtain
the linearized solution forw by settingsr5sr050 andke5k in
Eq. ~19!:

w

p1/35
1

2n0
F12x2

2
2

1

k
2

1

2k2 1
ek(x21)

2k S 32x1
1

kD
1

3e2k

4
~12x!2G . (20)

We may obtain the uniformly valid solutions ofsr andsu as that
for u. However, it will be more direct to integrate the following s
of equations:

dsr

dx
1

sr2su

x
50, (21)

dsu

dx
2

sr2su

x
1

uu
2

2x
50. (22)

We shall change the independent variablex to

y512x,

and integrate the equations with respect toy is from 0 to 1 with
the boundary conditions
Transactions of the ASME
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su5nsr at y50, (23)

sr5su at y51. (24)

The reason for starting the integration fromy50 ~i.e., x51)
rather thany51 ~i.e., x50) is becauseuu depends explicitly on
the value ofsr at y50.

Equations~21! and ~22! have a removable singularity aty51.
We can numerically integrate the equations only to a point,y0 ,
which is close 1. Thus we have to modify the boundary conditio
Eq. ~24! as

su5sr2
~12y0!2

64~n01sr !
at y5y0 , (25)

which is obtained by expanding Eqs.~21! and ~22! around
y5y0 . We normally choosey050.99. We integrate Eqs.~21! and
~22! by the choosing appropriate value ofsr at y50 to satisfy
Eq. ~25!.

4 Results
The solution depends of three nondimensional parame

namelyn0 , p, andn. All results given are forn50.3. Figure 1
gives the induced radial stress resultant ratiossr /n0 at the center
and at the boundary versusn0 . The solid and dotted curves ar
sr(0)/n0 ,sr(1)/n0 , respectively, forp51000. The points ‘‘s’’
and ‘‘h’’ are sr(0)/n0 ,sr(1)/n0 for p5100. The figure shows
thatsr(0)/n0 ,sr(1)/n0 decrease rapidly asn0 increases. The mag
nitude of the ratio is an indication of the importance of nonline
ity. For small ratio, we can approximate the solution by line
approximation. The values ofsr(0)/n0 ,sr(1)/n0 for p5100 are
smaller than those forp51000, an indication of less nonlinea
effect as p reduces. Results of the nonlinear solutions
log@sr(0)# ~solid curve! and log@sr(1)# ~dash curve! versus log(p)
for k55, 10, 20 are given in Fig. 2. We see thatsr(0) andsr(1)
are proportional top4/3 at low loadings and approaches 0.43 a
0.331, respectively, asp approaches infinite. ThusSr(0) and
Sr(1) are proportional top2 at smallp and top2/3 for large p,
which are the same as those of Sheplak and Dugunji@2#. A higher
value ofk delays the transition.

Figures 3 and 4 plotsr and su , respectively, for differentp.

Fig. 1 Induced radial stress resultant to initial stress resultant
ratios at xÄ0 „solid curve … and 1 „dot curve … for pÄ1000; cor-
respondingly points ‘‘ s’’ and ‘‘ h’’ are for pÄ100
Journal of Applied Mechanics
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ar
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The top three curves are forn050.0 and the lower three forn0
50.5 with solid, dot and dash curves forp5100, 1000, and
10,000, respectively. The former case corresponds tok50 and
ke57.2, 17.6, 39.6 and the latter case corresponds tok510.8,
23.4 50.3 andke511.6, 25.5, 53.4. The two figures show th
influence of initial stress resultant on the induced ones. Gener
the smaller the initial stress resultant, the larger are the indu
stress resultants for the same lateral load. The top three curve
for k50, which compare well with those of Sheplak and Dugu
@2# in Figs. 13 and 14.

Figure 5 denotes log@w(0)# versus log(p). Curves are the presen
results fork55 ~solid!, 10 ~dot!, 20 ~dash!; points are from Ref.

Fig. 2 log †sr„0…‡ „solid curve … and log †sr„1…‡ „dash curve … ver-
sus log „p… for kÄ5, 10, 20

Fig. 3 Induced stress resultant s r . The top three curves are
for n 0Ä0 and the lower three for n 0Ä0.5 with pÄ100 „solid …,
1000 „dot …, 10000 „dash …, respectively. The former case corre-
sponds to kÄ0 and k eÄ7.2, 17.6, 39.6 and the latter case cor-
responds to kÄ10.8, 23.4, 50.3 and k eÄ11.6, 25.5, 53.4.
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@2# for k55(s), 10(1), 20 ~h!. At low loadings andn0@sr ,
w(0) is linearly proportional top as given by the linear theory
Note thatn05k2/@12(12n2)p2/3#. For higherp andn0!sr , the
nonlinear stiffened effect from the normalized induced rad
stress resultantsr is significant andw(0)'p1/3. A large k delays
the transition from linear to nonlinear behavior. The results co
pare well with those given by Sheplak and Dugunji@2# who inte-
grated the full nonlinear Eqs.~5!–~7!.

Figure 6 illustrates the distribution of the deflectionw. The
solid curves are the nonlinear solution and the dotted curves
the linear solution. The lowest pair of curves are the deflectionw

Fig. 4 Induced stress resultant s u . The top three curves are
for n 0Ä0 and the lower three for n 0Ä0.5 with pÄ100 „solid …,
1000 „dot …, 10000„dash …, respectively. The former case corre-
sponds to kÄ0 and k eÄ7.2, 17.6, 39.6 and the latter case cor-
responds to kÄ10.8, 23.4 50.3 and k eÄ11.6, 25.5, 53.4.

Fig. 5 Center deflection versus nondimensional pressure.
Curves are the present results for kÄ5 „solid …, 10 „dot …, 20
„dash …; points are from Ref. †2‡ for kÄ5„s…, 10„¿…, 20 „h….
788 Õ Vol. 69, NOVEMBER 2002
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for n050.5 andp5100. The difference between the linear an
nonlinear solutions is minimum. The top three pairs of curves
for n050.2 andp510,000, 1000, and 100, respectively. The d
ference between linear and nonlinear solutions is much larger
the previous case of largern0 . The difference is more pronounc
for higher load~e.g., the top pair of curves!. The top three pairs of
curves show, as expected, increasing deflection with increa
load. Comparing the lowest two pair of curves, one sees that
initial stressn0 makes the plate stiffer. Similar characteristics c
be seen in the slopes ofw shown in Fig. 7. In Fig. 7, the top pai
of curves is for the linear~dash-dot! and nonlinear~solid! solu-
tions with n050.5 andp5100. The next three curves are forn0

Fig. 7 Normalized slope u. The top two curves are the linear
„dash-dot … and nonlinear „solid … solutions for n 0Ä0.5 and p
Ä100. The next three curves are for n 0Ä0.2 and pÄ10000
„dash …, 1000 „dot …, and 100 „solid …. The lowest curve „dash-dot …
is the linear solution for n 0Ä0.2 and pÄ100.

Fig. 6 Linear „dot … and nonlinear „solid … normalized deflec-
tions w . The lowest pair of curves are for n 0Ä0.5 and pÄ100.
The top three pairs of curves are for n 0Ä0.2 and pÄ10000,
1000, and 100, respectively.
Transactions of the ASME
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50.2 andp510,000~dash!, 1000~dot!, and 100~solid!. The low-
est curve ~dash-dot! is the linear solution forn050.2 and p
5100. The slopeu is very much like a linear line except near th
boundary where the slope changes rapidly to become zerox
51, more so for higher values ofp ~e.g.,p51000 and 10,000!.
This is the phenomenon of the boundary layer in which bend
effect becomes dominant makingu satisfy the boundary condition
The size of the boundary layer is proportional to«/An01sr(1)
@5p21/3/A12(12n2)(n01sr(1)#, which is precisely the inverse
of ke . The top solid curve is forke511.6. The lower solid curve
and the dotted and dash-dotted curves are forke59, 20.6, and
45.4, respectively. The lowest dash-dotted curve is the linear
lution for ke59.

As pointed out before, only two of the five parametersn0 , p, «,
k, and ke are independent. Figure 8 shows the relationship
tween log(ke) and log(p) for k55, 10, 20. For smallp, ke ap-
proximately equals tok. For largep, ke is proportional top1/3.

5 Remarks
The deflection of plate is characterized by nondimensional

rameters, such as the nondimensional initial stress resultantn0 ,

Fig. 8 log „ke… and log „p… for kÄ5, 10, 20
Journal of Applied Mechanics
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the nondimensional pressure loadp and Poisson’s ration. We
establish the singular perturbation solution on the basis
«@5An01sr(1)/ke# is small. For reasonably largeke ~see Fig. 6!,
the slope of the deflection is dominated by membrane beha
everywhere except the small region near the boundary. Using
singular perturbation technique, one first obtains a uniformly va
solution for the slopeuu in terms of the load-induced radial stres
resultantsr . One then integrates numerically two simple firs
order nonlinear ordinary differential equations to determine b
sr andsu in terms ofuu . Sinceuu depends explicitly on the value
of sr at the boundary, it is more convenient to integrate the eq
tions for sr and su from the boundary (x51) to the center (x
50) of the plate. The uniformly valid perturbation solution forw
can be integrated directly fromuu . The perturbation solution~Fig.
2! shows thatsr(0) and sr(1) are proportional top4/3 at low
loadings and approach 0.43 and 0.331, respectively, asp ap-
proaches infinite. In other words,Sr(0) and Sr(1) are propor-
tional to p2 for small p and top2/3 for largep. The perturbation
solution~Fig. 5! shows also thatw is proportional top1/3 for large
p and proportional top for smallp. The nonlinear effect generally
stiffens the plate. A higher value ofk delays the transition. The
results compare well with those of Sheplak and Dugunji@2# who
obtained the solution by integrating the full set of nonlinear d
ferential equations Eqs.~5! and ~7! for ke.5 ~Fig. 5!.
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Thermomechanical Buckling of
Laminated Composite Plates
Using Mixed, Higher-Order
Analytical Formulation
A novel, analytical mixed theory based on the potential energy principle has been
sented in this paper to investigate buckling response of laminated composite plate
jected to mechanical and hygrothermal loads. Two sets of higher-order mixed m
have been proposed on the basis of an individual layer as well as equivalent single
theories by selectively incorporating nonlinear components of Green’s strain tensor.
placements, as well as transverse stress continuities, have been enforced in the fo
tion of models by incorporating displacements and transverse stresses as the degr
freedom. The modal transverse stresses have been obtained as eigenvectors and th
separate calculations have been advantageously avoided. Solutions from the mode
been shown to be in excellent agreement with the available three-dimensional ela
solutions. Few benchmark solutions have also been presented for the bi-
compression-tension loading.@DOI: 10.1115/1.1490372#
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Introduction

Increasing use of composite materials in high-performa
structures has created a need to understand their structural b
ior under different conditions. Mechanical buckling has been id
tified to be a primary mode of failure for layered composite pla
subjected to in-plane compressive loads. Laminates may also
perience thermal buckling due to change in temperature, and
groscopic buckling due to change in moisture concentrations.

Accurate prediction of the buckling response can be made
the three-dimensional elasticity analysis. However, solution
three-dimensional elasticity equations may be intractable, e
cially for thick plates with a large number of layers. Equivale
single layer~ESL! approaches using displacement-based high
order shear deformation theories, on the other hand, have
widely used for buckling analysis of laminated plates. Reddy a
Phan@1#, for example, presented analytical solutions for the pl
buckling problem by using the higher-order theory~@2#! with
stress-free boundaries at the top and bottom surfaces of pl
Senthilnathan et al.@3# derived closed-form solutions for the pla
buckling problem by using the higher order theory~@2#! and by
employing Von Karman nonlinear strains. Results for isotrop
orthotropic, and two-layered antisymmetric crossply~0 deg/90
deg! and angle ply~45 deg/245 deg! square plates under uniaxia
compression were presented. Khdeir@4# had also used Reddy’
~@2#! higher-order theory for buckling of crossply laminated pla
by adopting the Levy-type solutions of the governing equatio
Different combinations of simply supported, clamped, and f
boundary conditions were considered. Later, Khdeir@5# extended
the work to consider antisymmetrical angle-ply laminates. Bu

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1
2001; final revision, Dec. 5, 2001. Associate Editor: M.-J. Pindera. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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ling loads of laminated composite plates were also evaluated
lytically by Doong @6#, Doong et al.@7#, Ren and Owen@8#,
Savithri and Varadhan@9#, Matsunaga @10#, and Kant and
Swaminathan@11#.

All the ESL theories mentioned above were displacem
based, where one set of Cartesian coordinates was invariabl
cated on the mid surface of the entire laminate and the glo
displacement fields were assumed to be of first-order or h
order polynomial series, across the entire laminate thickness.
though the continuity of the displacement field through thickn
was satisfied, continuity of the transverse stresses at the inte
could not be enforced. Thus, these theories may yield poor res
for thick or moderately thick laminates. Furthermore, pointw
recalculations are required by integrating the equilibrium eq
tions, to evaluate transverse stress distribution through the th
ness of a laminate.

Pagano@12,13# illustrated that the displacement functions
laminated plates can be represented by piecewise continuous
order polynomial series, layer by layer, in the thickness directi
Subsequently, Wu and Chen@14# proposed a local higher-orde
theory to determine natural frequencies and buckling loads
laminated composite plates. The displacement continuity co
tions at an interface between laminae were introduced into
Lagrangian functional of the laminate, by the Lagrange multipl
method. However, the fundamental elasticity relations could
be satisfied exactly, as the stress fields were assumed indepe
of the displacement fields. Further, analytical solutions to bu
ling problems were presented only for a simple loading condit
of uni-axial buckling, except Khedir@4#, who presented analytica
solutions for a bi-axial compressive loading condition. No analy
cal solutions by using higher-order theories are available in
literature, to the author’s knowledge, for buckling loads due
bi-axial compression-tension loading, thermal loading, and a
due to the change in moisture concentrations. The same has
presented in this paper by employing a unified analytical appro
based on mixed theory.

Mixed formulation has been developed by considering
degrees-of-freedom, viz. three displacement components,u, v,
and w ~along thex, y and z-directions, respectively! and three
transverse stress components,txz , tyz , andsz . These transverse
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2002 by ASME Transactions of the ASME



d
t

a

b

a
s
-
e
-

a

f

t

e

e

s
.

e

nts,

nd
rin-

cen-
stresses have been invoked from the assumed displacement
by using constitutive law. Equilibrium equations have been
rived by using the minimum potential energy principle. Thus,
method presented here differs from the higher-order theo
available in the literature in following ways:

~i! A novel analytical approach using mixed theory has be
presented that is based on minimum potential ene
principle.

~ii ! Fundamental elasticity relations between stress and
placement fields have been maintained at all points of
elastic continuum. It is a distinct feature of the prese
formulation that the stress-displacement relations are s
fied at the beginning of the formulation itself.

~iii ! The method explicitly satisfies the requirements
through-thickness continuity of transverse stress com
nents and continuous displacement fields as both are in
porated in the degrees-of-freedom.

~iv! Modal stresses~transverse stress components! have been
directly evaluated as eigenvectors, as the same have
considered to be basic degrees-of-freedom.

Two sets of mixed models HYF1 and HYF2 have been p
sented in this paper by selectively incorporating nonlinear com
nents of Green’s strain tensor. Individual layer models HYF1 h
been formulated by considering a local Cartesian coordinate
tem at the mid surface of each individual layer. Six degrees
freedom are assigned to the bottom as well as the top surfac
each individual layer. Therefore, the total number of degrees
freedom in HYF1 always equals@(N11)36# for the N layered
laminate. On the other hand, the global mixed models HYF2 h
been formulated by considering the Cartesian coordinate syste
the mid surface of the entire laminate and by assigning
degrees-of-freedom to the bottom as well as the top surface o
entire laminate. Hence, the total number of degrees-of-freed
always remains 12 in HYF2 models. The condition of the tractio
free surface is not enforced in the case of HYF2 for a consis
comparison with the data available in the literature.

Formulation

A rectangular laminated plate of plan dimensionsLx by Ly and
thicknessH has been considered as shown in Fig. 1. The plat
composed of uniform thickness layers of homogeneous and or
tropic material. Three-displacement componentsu(x,y,z),
v(x,y,z) andw(x,y,z) at any point in a lamina can be expand
in terms of the thickness coordinate,z, by using the Taylor’s series
expansion as

uk~x,y,z!5(
i 50

3

ziaki~x,y!. (1)

Here,uk (k51,2,3) represents three displacement componentu,
v, w, respectively, andaki indicate the generalized coordinates

Constitutive Law. Each lamina in a laminate has been co
sidered to be in a three-dimensional state of stress. Constitu
relations for a typicali th specially orthotropic lamina can b
expressed as
Journal of Applied Mechanics
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sx

sy

sz

txy

txz

tyz

6
i

53
C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

sym. C55 0

C66

4
i

35
«x2axDT2bxDm
«y2ayDT2byDm
«z2azDT2bzDm

gxy

gxz

gyz

6
i

(2a)

$s% i5@C# i$«% i . (2b)

Here,$s% i and$«% i are stresses and the linear strain compone
respectively, referred to the lamina coordinates andCmn (m,n
51,2,3) are the elastic constants of thei th lamina. Further,a j and
b j ( j 5x,y,z) represent the coefficients of thermal expansion a
coefficients of moisture variations, respectively, in the three p
cipal material directions of ani th lamina.DT and Dm, on the
other hand, indicate changes in temperature and moisture con
tration, respectively.

Fig. 1 Laminated plate geometry, coordinate axes and
degrees-of-freedom for „a… i th layer of a laminated plate in con-
junction with HYF1 model, „b… laminated plate
NOVEMBER 2002, Vol. 69 Õ 791
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Green’s Strain Tensor. Components of Green’s strain tens
are

«x5
]u

]x
1

d1

2 S ]u

]xD 2

1
d2

2 S ]v
]xD 2

1
d3

2 S ]w

]x D 2

«y5
]v
]y

1
d1

2 S ]u

]yD 2

1
d2

2 S ]v
]y D 2

1
d3

2 S ]w

]y D 2

«z5
]w

]z
1

1

2 S ]u

]zD 2

1
1

2 S ]v
]zD 2

1
1

2 S ]w

]z D 2

(3a)

gxy5
]u

]y
1

]v
]x

1d1S ]u

]x

]u

]yD1d2S ]v
]x

]v
]y D1d3S ]w

]x

]w

]y D
gyz5

]w

]y
1

]v
]z

1
]u

]y

]u

]z
1

]v
]y

]v
]z

1
]w

]y

]w

]z

gxz5
]u

]z
1

]w

]x
1

]u

]x

]u

]z
1

]v
]x

]v
]z

1
]w

]x

]w

]z

$«%5$«%L1$«%NL . (3b)

The linear part of strain-displacement relations$«%L has been used
to derive the lamina property matrices. On the other hand,
nonlinear strain-displacement relations$«%NL have been employed
to derive the geometric property matrices of a lamina. Theds are
not included deliberately in the third, fifth, and sixth, of Eq.~3a!
as laminates do not buckle under the application of exte
stresses in thez-direction (sz) and the transverse shear stress
txz and tyz . Therefore, the nonlinear terms from the strains«z ,
gxz , and gyz will not contribute to the work done by externa
stresses. Different hybrid models are defined based on value
the Kronecker deltasd1 to d3 used in Eq.~3a!.

Various Mixed Models. Contributions of nonlinear strain
terms related with theu andv displacements have been neglect
in most higher-order theories available in the literature to simp
analysis. Following HYF1 and HYF2 hybrid models have be
proposed, based ond1 to d3 , to evaluate the influence of thes
terms on buckling loads of the laminates.
HYF13 and HYF23—all nonlinear strain terms are incorpora
in the formulation,

i.e., d15d25d351.

HYF12 and HYF22—nonlinear strain terms related withv dis-
placements are neglected,

i.e., d250, but d15d351.

HYF11 and HYF21—nonlinear strain terms related withu dis-
placements are neglected,

i.e., d150, but d25d351.

HYF10 and HYF20—nonlinear strain terms related with bothu
andv displacements are neglected,

i.e., d15d250, but d351.

It can be noted from Eq.~3a! that Von Karman strain-
displacement relations are utilized in models HYF10 and HYF

Kinematics. The stress-displacement expressions have b
derived by substituting Eq.~1! in the linear part of the strain
displacement relations from Eq.~3a! and substituting the resulting
equation into the stress-strain relations from Eq.~2a!. Conse-
quently, equations for the stress degrees-of-freedom can be
rived by substituting,z56z in the resulting equations. Here,z is
half the thickness of thei th lamina (h1) for all individual layer
mixed models~HYF1!, or half the thickness of entire laminat
(H1) for all HYF2 models. Similarly, the equations for displac
ment degrees-of-freedom can be derived by substitutingz56z in
792 Õ Vol. 69, NOVEMBER 2002
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Eq. ~1!. By solving two sets of equations simultaneously, the d
placement field can be expressed in terms of degrees-of-free
as

H u
v
w
J 5@N1#$q%1@N2#$q%81@N3#$q%* 1@N4#$qc%. (4)

Here,@N1#, @N2#, @N3#, and@N4# are 3312 shape function ma-
trices and are defined more conveniently in the Appendix. On
other hand,$q% and$qc% are

$q%5$ur ~txz!r wr ~sz!r v r ~tyz!r us ~txz!s ws ~sz!s vs ~tyz!s%
t

(5a)

$qc%5@$qcr%
t$qcs%

t#~1312!
t

$qc j%5$ax jDT bx jDm ay jDT by jDm az jDT bz jDT% t,

j 5r ,s. (5b)

The prime~8! and star~* ! appearing in Eq.~4! represent deriva-
tives of vector$q% with respect to thex andy-coordinates, respec
tively. Subscriptsr ands, in Eq. ~5a! indicate the bottom and top
surface of thei th layer in the HYF1 models. However, they rep
resent the bottom and top surfaces of the entire laminate in
HYF2 models.

Strain-Displacement Relations. Substitution of Eq.~4! in
the linear part of Eq.~3a! yields the linear strain-displacemen
equation

$«%L5@a#$q%1@b#$q%81@d#$q%91@e#$q%* 1@ f #$q%**

1@g#$q%* 81@ t#$qc% (6)

where @a#, @b#, @d#, @e#, @f#, @g#, and @t# are 6312 nodal strain-
displacement matrices. Nonzero coefficients of these matr
have been presented in the Appendix. Equations~4!, ~6!, and~7!
are the general equations representing displacements, li
strains, and the relevant nonlinear strains, respectively, at
point in the laminate.$q% in these equations represents the mat
of the degrees-of-freedom given by Eq.~5a!. By substituting Eqs.
~4! in the nonlinear part of Eqs.~3a!, the relevant nonlinear strain
terms can be expressed as

S ]uk

]x D 2

5@$N1k%$q%81$N2k%$q%91$N3k%$q%* 8#2

(7)

S ]uk

]y D 2

5@$N1k%$q%* 1$N2k%$q%8* 1$N3k%$q%** #2

where$Njk% ( j ,k51,2,3) indicate the elements of thekth row of
the j th shape function matrix presented in the Appendix.

Potential Energy of a Lamina. The potential energy,P i of a
typical i th lamina enclosing a space volume,V, can be expressed
as

P i5Ui2Wi (8)

whereUi represents the strain energy stored in the lamina andWi

indicates the work done by externally applied stresses,s x
pi and

s y
pi acting in thex andy-directions, respectively. By substitutin

the expressions for strain energy and the work done in Eq.~8!, the
potential energy of a lamina can be written as

P i5
1

2 Ev
$«%L

T@C# i$«%Ldv2F E
v
s x

pi~«x!NLdv

1E
v
s y

pi~«y!NLdvG . (9)
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Lamina Equilibrium Equations. The following trial solu-
tions have been considered, which satisfy simple supp
conditions.

uj5Aj cosl1x sinl2y ~txz! j5Bj cosl1x sinl2y

wj5Cj sinl1x sinl2y ~sz! j5D j sinl1x sinl2y (10)

v j5Ej sinl1x cosl2y ~tyz! j5F j sinl1x cosl2y,

j 5r ,s.

Here,l15mp/Lx , l25np/Ly , m and n are the wave number
indicating a specific buckling mode.
n
g

r

-
a

u

Journal of Applied Mechanics
ort
By substituting Eq.~10! by Eq. ~9!, the ensuing equilibrium

equation can be obtained by applying variational principle as

@@K# i2sx
pi@KG1# i2sy

pi@KG2# i #$qa%50 (11)

where

$qa%5$A1B1C1D1E1F1A2B2C2D2E2F2%
t. (12a)

The property matrix@K# i and the geometric property matrice
@KG1# i and @KG2# i of the i th lamina are given by
@K#5F @Saa#1l1~@Sab#2@Sba# !2l1
2~@Sad#1@Sda#2@Sbb# !1l2~@Sae#2@Sea# !

2l2
2~@Sa f#1@Sf a#2@See# !1l1l2~@Sag#1@Sga#2@Sbe#2@Seb# !

1l1
3~@Sdb#2@Sbd# !1l1

2l2~@Sgb#2@Sbg#1@Sde#2@Sed# !1l1
4@Sdd#

1l1
2l2

2~@Sd f#1@Sf d#1@Sgg# !1l1
3l2~@Sdg#1@Sgd# !1l2

3~@Sf e#2@Se f# !

1l1l2
2~@Sf b#2@Sb f#2@Seg#1@Sge# !1l2

4@Sf f #1l1l2
3~@Sf g#1@Sg f# !

G (12b)

@KG1#5(
j 51

3

s jFl1
2@Gbb j#1l1

4@Gaa j#1l1
2l2

2@Gcc j#1l1
3~@Gab j#2@Gba j# !

1l1
2l2~@Gcb j#2@Gbc j# !1l1

3l2~@Gac j#1@Gca j# !
G

(12c)
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Layerwise property matrices@Saa#, @Sab#, etc., and geometric
property matrices@Gaa#, @Gab#, etc., are presented in the Appe
dix. The signs of the few elements of the matrices would
modified due to the substitution of Eq.~10! into Eq. ~9!. Such
matrices have been represented with bars atop them. Furthe
perscripti has been omitted in Eqs.~12! for convenience.

LaminateÕGlobal Equilibrium Equations.

HYF1—Individual Layer Models.Matrices@K# i and@KG# i of
various laminae are assembled by enforcing continuities of
displacements and transverse stresses at the interfaces of the
nae to form the global matrices@K# and@KG# for the entire lami-
nate. The global equilibrium equations can then be written as

@K#2lcr@KG#5@0# (13a)

where

@KG#5sx
p@KG1#1sy

p@KG2#. (13b)

The critical buckling coefficientlcr can be evaluated by employ
ing a generalized eigenvalue solver. Subsequently, the buck
stresses can be expressed assxcr

p 5lcrsx
p andsycr

p 5lcrsy
p .

HYF2—Equivalent Single-Layer Models.Global matrices of
the entire laminate are evaluated by summing the respective
trices of all the laminae for HYF2 models as

@K#5(
i 51

N

@K# i and @KG#5(
i 51

N

@KG# i . (14)

By substituting these global matrices in Eq.~13a!, the critical
buckling coefficientlcr can be evaluated.

Hygrothermal Buckling. A general formulation was pre
sented in the preceding sections for stability analysis of lamin
subjected to mechanical as well as hygrothermal loads. Whe
laminate is subjected to change in temperature or moist
stresses are developed at the supports due to the restriction to
-
et

, su-

the
lami-

-
ling

ma-

tes
n a
re,
free

expansion or contraction. These stresses may be evaluated by
ply performing a prebuckling analysis of laminates with the he
of the nonhomogeneous equation

@K#$q%5$F% (15)

where $F% represents the load vector associated with the gi
change in temperature or moisture concentration. Because is
pic and orthotropic laminates are in a state of plane stress du
temperature or moisture changes, onlysx

p andsy
p would develop

at the supports. These in-plane stresses can be evaluated by
the plane stress-strain relations. Such an approach has been
ployed for the first time here for thermal buckling analysis
laminated plates.

Shear Buckling. Laminates may also buckle under the acti
of externally applied in-plane shear stressestxy

p . However, the
presence of derivatives, such as]4w/]x3]y or ]4w/]x]y3 prevent
separation of variables~Narita and Leissa@15#!. Therefore, the
problem of shear buckling cannot be solved with the help of
assumed trial solution. Instead, the series solutions satisfying
boundary condition can be used. Such solutions, however, h
not been attempted here. Thus, the Kronecker deltas were
shown in the expressions for transverse strain component
Eq. ~3!.

Illustrative Examples
Various mixed models were applied to compute buckling loa

of simply supported, isotropic, orthotropic, as well as lamina
plates. Discretization of each layer of a laminated plate into
sublayers was found to yield converging solutions for the HY
models. However, such divisions did not improve results wh
HYF2 models were used. Critical buckling loads were compu
for uni-axial compression, bi-axial compression, bi-ax
compression-tension, and thermal and hygroscopic loading co
tions. Results were validated by comparing them with thr
dimensional elasticity and other analytical solutions available
the literature.
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Table 1 Various material property sets used in the illustrative examples

Material
Set Properties

1 C12 /C1150.233190, C13 /C1150.010776, C22 /C1150.543103,
C23 /C1150.098276, C33 /C1150.530172, C44 /C1150.262931,
C55 /C1150.159914, C66 /C1150.266810
~Source: Srinivas and Rao@17#!

2 E1 /E253 to 40, E35E2 , G12 /E25G13 /E250.60, G23 /E250.50,
n125n235n1350.25
~Source: Noor@18#!

3 E1 /E2540, E35E2 , G12 /E25G13 /E250.50, G23 /E250.20,
n125n235n1350.25

4 E1 /E2515, E35E2 , G12 /E25G13 /E250.50, G23 /E250.3356,
n125n1350.30, n2350.49, a1 /a050.015, a2 /a05a3 /a051.00
~Source: Noor@20#!

5 Elastic moduli graphite epoxy lamina at different moisture concentrations
C ~%!,
E15130 GPa, G135G1256.0 GPa, G2350.5G12 , n125n235n1350.3,
b150 andb25b350.44. ~Source: Sai-Ram, and Sinha@21#!

C ~%! 0.00 0.25 0.50 0.75 1.00 1.25 1.50
E2 GPa 9.5 9.25 9.0 8.75 8.5 8.5 8.5
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Different material property sets considered in the illustrat
examples are tabulated under Table 1. Buckling loads have b
expressed in terms of the following nondimensional parame
for facilitating comparison.

~ i! l5HA~sxcrl1
21sycrl2

2!/h (16)

where sxcr , sycr represent critical stresses in thex and
y-directions of a plate, referred in Example 1, andh indicates
normalization factor that is equal toG for isotropic plates andC11
for orthotropic plates.

~ ii ! lU5lB5lCT5
sxcrLy

2

E2H2 (17)

wherelU , lB , andlCT are, respectively, the uni-axial, bi-axia
and compression-tension bi-axial buckling stress parameters.

~ iii ! lT5a0Tcr (18)

wherelT represents the thermal buckling parameter,a0 indicates
normalization factor for the coefficient of thermal expansion, a
Tcr refers to the critical temperature.

Example 1—Orthotropic Plate Subjected to Uni-axial and
Bi-axial Compression. Buckling load parametersl for an
orthotropic plate~Material 1! for various values of (Ly /H) have
been tabulated under Table 2. The table is applicable for uni-a
~eithersxcr50 or sycr50! as well as bi-axial loading conditions
It can be observed from Table 2 that results obtained by using
HYF13 model are in excellent agreement with the thre
dimensional elasticity solutions presented in@16# and @17#. It is
evident from the table that the values ofl estimated by the
HYF10 model are inferior to those estimated by other HYF1 m
NOVEMBER 2002
ve
een
ers

,

nd

xial
.
the
e-

d-

els as the nonlinear strain-displacement terms related withu as
well asv displacements have been neglected in the HYF10 mo
However, results from the HYF12 model are inferior to tho
from the HYF11 model for an orthotropic plate. Numerical expe
mentation show that the difference in the results of two mod
~HYF12 and HYF11! go on increasing as the degree of orthotro
(E1 /E2) increases, particularly for thick plates. Further, it h
been observed that the results from HYF12 and HYF11 mod
are identical for an isotropic plate. However, these numerical
sults are not presented here for brevity. Thus, it can be tentati
concluded that the contribution of nonlinear strain-displacem
terms related withv displacement is significant in buckling re
sponse, probably due to the Poisson’s effect.

Variation of stresses and displacements~evaluated by using the
HYF13 model! across a thickness for a homogeneous, orthotro
square plate~Material 1! are also in excellent agreement with th
three-dimensional elasticity results presented by Srinivas and
@17#. However, the results are not presented for brevity.

Example 2—Crossply Laminated Plate Subjected to Uni-
axial Compression. Uni-axial buckling load parameterslU for
crossply, antisymmetric laminated plates~Material 2! have been
presented in Table 3. Results are compared with the th
dimensional elasticity solutions by Noor@18# and with the follow-
ing analytical solutions by using displacement-based higher-o
theories:~i! Putcha and Reddy@19#—higher order shear deforma
tion theory ~HSDT!; and ~ii ! Wu and Chen@14#—displacement-
based local higher-order shear deformation theory~LHSDT!.

It can be seen from Table 3 that the HSDT overestimate bu
ling loads compared to the results from the present study and
2965
3100
4161
7276
4776
Table 2 Buckling load parameters l for an orthotropic plate in Example 1

Ly /H
3-D

Elast.a

HYF1 HYF2

HYF13 HYF12 HYF11 HYF10 HYF23 HYF22 HYF21 HYF20

2.0 0.70338 0.70338 0.72473 0.70653 0.72879 0.70406 0.72553 0.70726 0.7
2.5 0.51342 0.51342 0.52680 0.51676 0.53067 0.51368 0.52710 0.51704 0.5
10/3 0.33200 0.33200 0.33858 0.33473 0.34153 0.33207 0.33866 0.33480 0.3

5 0.16942 0.16942 0.17141 0.17070 0.17275 0.16942 0.17142 0.17071 0.1
10 0.04742 0.04742 0.04760 0.04758 0.04776 0.04742 0.04760 0.04758 0.0

aSrinivas and Rao@17#
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2
8
9
54
9
6
61
86
80
4
7
31
25
35
9
6
92
60
54
Table 3 Buckling load parameter lU for square, antisymmetric crossply laminate in Example 2 when L x ÕHÄ10

N E1 /E2

3-D
Elast.a

HYF1

HYF13 HYF12 HYF11 HYF10 HYF23 HSDTb LHSDTc

3 4.6948 4.6953 4.7385 4.7385 4.7824 4.6960 4.7749 4.695
10 6.1181 6.1202 6.1881 6.1881 6.2575 6.1300 6.2721 6.120

2 20 7.8196 7.8237 7.9128 7.9128 8.0038 7.8727 8.1151 7.823
30 9.3746 9.3809 9.4867 9.4867 9.5949 9.4952 9.8695 9.380
40 10.8167 10.8253 10.9454 10.9454 11.0681 11.0262 11.5630 10.82
3 5.1738 5.1739 5.2139 5.2139 5.2545 5.1788 5.2523 5.173
10 9.0164 9.0176 9.0858 9.0858 9.1550 9.0607 9.2315 9.017

4 20 13.7429 13.7461 13.8405 13.8405 13.9361 13.8944 14.2540 13.74
30 17.7829 17.7886 17.8993 17.8993 18.0114 18.0771 18.6670 17.78
40 21.2796 21.2879 21.4089 21.4089 21.5313 21.7342 22.5790 21.28
3 5.2673 5.2674 5.3067 5.3067 5.3466 5.2711 5.3420 5.267
10 9.6051 9.6057 9.6724 9.6724 9.7401 9.6296 9.7762 9.605

6 20 15.0014 15.0030 15.0949 15.0949 15.1878 15.0802 15.3520 15.00
30 19.6394 19.6425 19.7489 19.7489 19.8565 19.7901 20.2010 19.64
40 23.6689 23.6734 23.7881 23.7881 23.9038 23.9008 24.4600 23.67
3 5.3159 5.3159 5.3548 5.3548 5.3943 5.3189 5.3882 5.315
10 9.9134 9.9136 9.9794 9.9794 10.0461 9.9281 10.0560 9.913

10 20 15.6685 15.6692 15.7593 15.7593 15.8505 15.7116 15.9140 15.66
30 20.6347 20.6360 20.7398 20.7398 20.8446 20.7149 20.9860 20.63
40 24.9636 24.9654 25.0763 25.0763 25.1882 25.0855 25.4220 24.96

aNoor @18#
bPutcha and Reddy@19#
cWu and Chen@14#
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LHSDT. The shortcomings of the HSDT can be attributed to t
facts: ~i! the theory is two-dimensional equivalent single-lay
theory; and~ii ! the nonlinear strain terms related withu as well as
v displacements have been neglected while evaluating the e
nal work in this theory. Thus, it can be summarized that the E
theories cannot predict buckling loads accurately for a large
gree of orthotropy and for large difference in material propert
of different layers in a laminate. Individual layer theories wou
certainly be required in such situations. Further, the nonlin
strain-displacement terms related with at leastv displacement
should be incorporated in the external work equations for be
accuracy.

Though the buckling load parameters obtained by LHSDT a
the present HYF13 model are the same, the present mixed
proach has many advantages over the LHSDT. The LHSDT
displacement-based layerwise theory while the present HYF1
layerwise theory that is based on the mixed approach. Contin
of transverse stresses between the laminae is to be specifi
satisfied through Lagrange multipliers in the LHSDT. However,
the HYF1 the transverse stress continuity is inherently satisfie

Fig. 2 Variation of biaxial buckling load parameter lB with
L y ÕH for a crossply †0 deg Õ90 deg Õ0 deg ‡ laminated plate con-
sidered in Example 3
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these stresses are incorporated in the degrees-of-freedom. M
over, in the HYF1 the transverse stresses are evaluated direct
eigenvectors. Therefore, pointwise recalculation of stresses is
required in the present approach.

Example 3—Crossply Laminated Plate Subjected to Bi-
axial Compression. The buckling load parameterlB for a
square, crossply~0 deg/90 deg/0 deg! laminate~Material 2 with
E1 /E2540! under bi-axial compressive loading~sx

p51 andsy
p

51! are presented in Fig. 2. Results are compared with the a
lytical solutions by Khdeir@4#. The minimum buckling loads in
the table correspond to a buckling modem51 and n52. It is
observed that the results obtained by Khdeir@4# ~HSDPT! are
close to those obtained by the global HYF20 model and are hig
compared to the HYF13 model due to the reasons cited abov

Modal stresses and displacements have been plotted in F
3~a! to 3~f! for the bi-axial compressive loading condition~sx

p

51 andsy
p51! with E1 /E2540 andLx /H510. Pointwise recal-

culation of modal stresses and displacements is required w
ESL theories are used. On the other hand, the local mixed HY
model directly provides these parameters as eigenvectors, w
is a distinct advantage of the mixed theory presented here. So
ness and applicability of the proposed formulation has been
ther demonstrated through the continuity of the transverse m
stresses and displacements.

Example 4—Orthotropic Plate Subjected to Bi-axial
Compression-Tension Loading. Few analytical benchmark so
lutions for the buckling load parameterslCT for a bi-axial
compression-tension loading condition have been presente
Table 4 for an orthotropic plate~Material 3!. Buckling load pa-
rameterslU andlB are also presented for comparison. Angleu in
Table 4 represents the angle made by the fiber direction of
orthotropic plate with respect to thex-axis. It can be observed
from the table that the buckling parameterlCT for thin plates is
comparatively higher for bi-axial compression-tension load
when the compressive load is applied along the fibers and
tensile load in the transverse direction. Such behavior can be
tributed to:~i! the restraining action provided by the applied te
sile stress in the transverse direction; and to~ii ! the Poisson’s
effect. On the other hand, buckling load increases only margin
when the tensile load is applied along the fiber and compres
NOVEMBER 2002, Vol. 69 Õ 795



Fig. 3 Variation of normalized „a… transverse normal stress „sz Õsz max…; „b… transverse shear stress „txz Õtxz max…; „c… transverse
shear stress „tyz Õtyz max…; „d… transverse displacement „w Õw top …; „e… in-plane stress „sx Õsx max… and „f… in-plane stress „sy Õsy max…

for a „0 deg Õ90 deg Õ0 deg … crossply laminated plate in Example 3 under bi-axial compressive loading with PxÄPyÄ1
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load in the transverse direction because the Poisson’s ratio in
transverse direction (vTL) is very small compared to the one in th
longitudinal direction (vLT). However, the value oflCT is com-
parable tolU for a thick plate regardless of the value ofu con-
sidered in the present analysis as the applied tensile stress
significant to create an appreciable restraining action in
transverse direction. Further, thick plates buckle in higher mod
especially when they are subjected to bi-axial compress
tension loads.

Example 5 Laminates Subjected to Thermal Loads. Ther-
mal buckling parameterslT for a laminate having ten orthotropi
layers~Material 4! have been presented in Table 5. These res
are also in excellent agreement with the three-dimensional ela
ity results~@20#! for thin as well as for thick plates. Critical tem
peratures for the laminate corresponds to the buckling modm
51. n52, because laminates subjected to change in tempera
are essentially subjected to the biaxial loading condition. It can
796 Õ Vol. 69, NOVEMBER 2002
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observed from Table 5 that the thin laminates buckle, as expec
at very low temperatures compared to thick laminates.

Example 6 Effect of Change in Moisture Concentration on
Uni-axial Buckling Load. Few analytical benchmark solution
on the effects of change in moisture concentrations on the
axial buckling load parameterlU of a crossply@(0/90)s# lami-
nated plate~Material 5! have been tabulated under Table 6. R
duction in material properties with the increase in moistu
concentration~@21#! has been considered to evaluate the buckl
loads. The parameter (E2)c50.0% has been used to evaluate th
buckling load parameterlU from Eq. ~17!. lU obtained by the
HYF13 model for differentLy /H ratios have been plotted in Fig
4. It can be seen from Fig. 4 that the buckling parameter redu
rapidly in thin plates compared to thick plates. However, the
duction is almost linear for thin as well as thick plates. Furth
Transactions of the ASME



.9875

.9880

.9877

.9882

.0056

.0066

7649
7650
7709
7710
Table 4 Buckling load parameters for an orthotropic square plate in Example 4

u Theory

Lx /H5100 Lx /H510 Lx /H52

lU lB lCT lU lB lCT lU lB lCT

0
deg

HYF13 35.5487 10.7932 173.2168 20.2128 6.5163 43.2361 1.9515 0.7395 1
HYF12 35.5516 10.7968 173.2310 20.3521 6.6562 43.4668 1.9710 0.7486 1
HYF11 35.5516 10.7941 173.2703 20.2632 6.5308 43.2983 1.9520 0.7397 1
HYF10 35.5549 10.7977 173.2845 20.4032 6.6713 43.5298 1.9716 0.7489 1
HYF23 35.5487 10.7932 173.2168 20.2163 6.5177 43.5593 2.0043 0.7610 2
HYF20 35.5545 10.7976 173.2845 20.4068 6.6728 43.8604 2.0282 0.7748 2
~m,n! ~1,1! ~1,2! ~2,1! ~1,1! ~1,2! ~3,1! ~3,1! ~1,5! ~19,1!

HYF13 13.0327 10.7932 14.6617 7.6985 6.5163 8.6608 0.7582 0.7395 0.
HYF12 13.0337 10.7941 14.6629 7.7133 6.5308 8.6774 0.7583 0.7486 0.
HYF11 13.0422 10.7968 14.6725 7.9603 6.6562 8.9553 0.7649 0.7397 0.

90 HYF10 13.0433 10.7977 14.6737 7.9762 6.6713 8.9732 0.7651 0.7489 0.
deg HYF23 13.0327 10.7932 14.6617 7.7017 6.5177 8.6644 0.7904* 0.7610 0.7996

HYF20 13.0433 10.7976 14.6737 7.9797 6.6728 8.9772 0.79991 0.7748 0.8016
~m,n! ~3,1! ~2,1! ~3,1! ~3,1! ~2,1! ~3,1! ~9,1! ~5,1! ~14,1!

* indicates~m57, n51! and1indicates~m56, n51!.

Table 5 Thermal buckling parameter „lTÄa0Tcr … of a square orthotropic plate in Example 5 when NÄ10, and mÄ1, nÄ2

Lx /H 3-D Elast.a

HYF1

HYF13 HYF12 HYF11 HYF10 HYF23

100.0000 0.746331023 0.746331023 0.746631023 0.746431023 0.746631023 0.746331023

20.0000 0.173931021 0.173931021 0.175231021 0.174231021 0.175531021 0.173931021

10.0000 0.578231021 0.578231021 0.592631021 0.580531021 0.595131021 0.578231021

6.6667 0.1029 0.1029 0.1073 0.1034 0.1078 0.1030
5.0000 0.1436 0.1436 0.1515 0.1442 0.1522 0.1438
4.0000 0.1777 0.1777 0.1886 0.1783 0.1894 0.1782
3.3333 0.2057 0.2057 0.2187 0.2063 0.2194 0.2066

aNoor and Burton@20#

Table 6 Effect of moisture change on critical buckling load parameter lU of a square, †„0Õ90…s‡ crossply laminated plate in
Example 6

Lx /H C ~%!

HYF1

HYF13 HYF12 HYF11 HYF10 HYF23

40 0.0 14.4529 14.4602 14.4600 14.4673 14.4627
0.5 10.0180 10.0254 10.0254 10.0324 10.0278
1.0 6.0708 6.0781 6.0778 6.0851 6.0805
1.5 1.9523 1.9596 1.9593 1.9666 1.9620

20 0.0 13.6835 13.7106 13.7070 13.7342 13.7180
0.5 12.5247 12.5517 12.5517 12.5752 12.5591
1.0 11.4879 11.5147 11.5112 11.5381 11.5221
1.5 10.4582 10.4851 10.4816 10.5085 10.4924

10 0.0 11.3466 11.4275 11.3956 11.4772 11.4362
0.5 11.0183 11.0990 11.0671 11.1485 11.1076
1.0 10.7205 10.8009 10.7691 10.8502 10.8093
1.5 10.4631 10.5435 10.5117 10.5928 10.5519
0.0 6.9932 7.1383 7.0279 7.1746 7.1092

5 0.5 6.8911 7.0365 6.9257 7.0726 7.0069
1.0 6.7963 6.9420 6.8309 6.9781 6.9121
1.5 6.7320 6.8776 6.7665 6.9138 6.8477
s
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Fig. 4 indicates a trend that thin plates may buckle without a
external forces, solely due to small change in moisture concen
tion.

Conclusions
A novel, analytical mixed formulation has been developed

using the minimum potential energy principle for stability analy
of laminated composite plates. Continuity of displacements
well as transverse stresses through the thickness of a plate
been explicitly satisfied in the formulation. The modal transve
stresses and displacements have been obtained as eigenvec
Journal of Applied Mechanics
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that the stresses need not be evaluated separately. Furth
simple approach has been presented for thermal buckling ana
of laminated plates. From the extensive parametric investigat
the local higher-order mixed model~HYF13! has been found to
yield results that are in excellent agreement with the thr
dimensional elasticity solutions as compared to the commo
used displacement-based equivalent single-layer, higher-o
theories. It is recommended that, at least, the nonlinear str
displacements terms related with in-planev displacements should
be incorporated along with those terms related without plane
placement to evaluate the potential energy functional, i.e., in
~3a! at leastd2 along withd3 shall be taken as unity.
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Appendix

Shape Function Matrices. The shape function matrice
@N1#, @N2#, @N3#, and@N4# of Eq. ~4a! are of size 3312. These
matrices can be written rowwise as follows:

@Nj #5@$Nj 1% $Nj 2% $Nj 3%# t, j 51,2,3,4. (A1)

Nonzero elements of shape function matrices are presented
trixwise as follows:

N1~1,1!5 f 1 ; N1~1,2!5
f 3

C55
r ; N1~1,7!5 f 2 ;

N1~1,8!5
f 4

C55
s ;

N1~2,5!5 f 1 ; N1~2,6!5
f 3

C66
r ; N1~2,11!5 f 2 ;

N1~2,12!5
f 4

C66
s ;

N1~3,3!5 f 1 ; N1~3,4!5
f 3

C33
r ; N1~3,9!5 f 2 ;

N1~3,10!5
f 4

C33
s .

N2~1,3!52 f 3 ; N2~1,9!52 f 4 ;

N2~3,1!52
C13

r

C33
r f 3 ; N2~3,7!52

C13
s

C33
s f 4 .

N3~2,3!52 f 3 ; N3~2,9!52 f 4 ;

N3~3,5!52
C23

r

C33
r f 3 ; N3~3,11!52

C23
s

C33
s f 4

N4~3,1!5
C13

r

C33
r f 3 ; N4~3,2!5

C13
r

C33
r f 3 ;

N4~3,3!5
C23

r

C33
r f 3 ; N4~3,4!5

C23
r

C33
r f 3 ;

Fig. 4 Effect of moisture change on uni-axial buckling load
parameter lU computed by using the HYF13 model for a square
†„0Õ90…s‡ crossply laminated plate in Example 6
798 Õ Vol. 69, NOVEMBER 2002
ma-

N4~3,5!5 f 3 N4~3,6!5 f 3 N4~3,7!5
C13

s

C33
s f 4 ;

N4~3,8!5
C13

s

C33
s f 4 ;

N4~3,9!5
C23

s

C33
s f 4 N4~3,10!5

C23
s

C33
s f 4

N4~3,11!5 f 4 ; N4~3,12!5 f 4 .

Superscriptsr and s indicate, respectively, the bottom and to
surfaces of thel th lamina for all HYF1 models. Therefore,r 5s
5 i . On the other handr 51, s5N for all HYF2 models.

Strain-Displacement Matrices. Nonzero elements of 6312
strain-displacement matrices@a#, @b#, @d#, @e#, @ f #, @g#, and@ t#
appearing in Eq.~6! are

a~3,3!5 f 1 ; a~3,4!5
f 3

C33
r ; a~3,9!5 f 2; a~3,10!5

f 4

C33
s ;

a~5,1!5 f 1; a~5,2!5
f 3

C55
r ; a~5,7!5 f 2; a~5,8!5

f 4

C55
s ;

a~6,5!5 f 1; a~6,6!5
f 3

C66
r ; a~6,11!5 f 2; a~6,12!5

f 4

C66
s .

b~1,1!5 f 1 ; b~1,2!5N1~1,2!; b~1,7!5 f 2 ;

b~1,8!5N1~1,8!;

b~3,1!52
C13

r

C33
r f 3; b~3,7!52

C13
s

C33
s f 4; e~4,1!5 f 1 ;

e~4,7!5 f 2 ;

b~4,5!5 f 1 ; b~4,6!5N1~2,6!; b~4,11!5 f 2 ;

b~4,12!5N1~2,12!;

b~5,3!5 f 12 f 3; b~5,4!5N1~3,4!; b~5,9!5 f 22 f 4;

b~5,10!5N1~3,10!;

d~1,3!52 f 3 ; d~1,9!52 f 4 ; d~5,1!5N2~3,1!;

d~5,7!5N2~3,7!.

e~2,5!5 f 1 ; e~2,6!5b~4,6!; e~2,11!5 f 2 ;

e~2,12!5b~4,12!;

e~3,5!52
C23

r

C33
r f 3; e~3,11!52

C23
s

C33
s f 4;

e~4,2!5b~1,2!; e~4,8!5b~1,8!;

e~6,3!5b~5,3!; e~6,4!5b~5,4!; e~6,9!5b~5,9!;

e~6,10!5b~5,10!;

f ~2,3!52 f 3 ; f ~2,9!52 f 4 ; f ~6,5!52
C23

r

C33
r f 3 ;

f ~6,11!52
C23

s

C33
s f 4 ;

g~4,3!522 f 3 ; g~4,9!522 f 4 ; g~5,5!5 f ~6,5!;

g~5,11!5 f ~6,11!;
Transactions of the ASME
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g~6,1!5d~5,1!; g~6,7!5d~5,7!

t~3,1!52b~3,1!; t~3,2!52b~3,1!;

t~3,3!52e~3,5!; t~3,4!52e~3,5!;

t~3,5!5 f 3; t~3,6!5 f 3; t~3,7!52b~3,7!;

t~3,8!52b~3,7!;

t~3,9!52e~3,11!; t~3,10!52e~3,11!;

t~3,11!5 f 4 t~3,12!5 f 4.

Here,f 1 , f 2 , f 3 , andf 4 are the interpolation functions,f 1, f 2, f 3,
and f 4 being their derivatives with respect to thez-direction. The
interpolation functions are

f 15
1

4
~223j1j3! f 25

1

4
~213j2j3!

(A2)

f 35
z

4
~12j2j21j3! f 45

z

4
~212j1j22j3!.

Here,j5z/z andz5h1 , for the HYF1 models andz5H1 for the
HYF2 models.

Property Matrices. Different property matrices in Eq.~12b!
for a lamina can be evaluated as

@Sab#5E
2h1

h1

@a# l@C#@b#dz (A3)

where@a#,@b#5@a#,@b#,@c#,@d#,@e#,@ f #,@g#,@ t#.

Geometric Property Matrices. Various geometric property
matrices in Eq.~12c! can be obtained from

@Gab j #5E
2h1

h1

$Ng j%
t$Nh j%dz, j 51,2,3; a,b5a,b,c.

(A4)

Here, a5a,b,c for g52,1,3, respectively, andb5a,b,c for h
52,1,3, respectively.
Journal of Applied Mechanics
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On the Singularity Induced by
Boundary Conditions in a
Third-Order Thick Plate Theory
This paper thoroughly examines the singularity of stress resultants of the form r2jF~u!
for 0,j<1 as r→0 (Williams-type singularity) at the vertex of an isotropic thick plat
the singularity is caused by homogeneous boundary conditions around the verte
eigenfunction expansion is applied to derive the first known asymptotic solution for
placement components, from the equilibrium equations of Reddy’s third-order shea
formation plate theory. The characteristic equations for determining the singularitie
stress resultants are presented for ten sets of boundary conditions. These charact
equations are independent of the thickness of the plate, Young’s modulus, and
modulus, but some do depend on Poisson’s ratio. The singularity orders of stress r
ants for various boundary conditions are expressed in graphic form as a function o
vertex angle. The characteristic equations obtained herein are compared with those
classic plate theory and first-order shear deformation plate theory. Comparison re
indicate that different plate theories yield different singular behavior for stress resulta
Only the vertex with simply supported radial edges (S(I)–S(I) boundary condition) exhib-
its the same singular behavior according to all these three plate theories.
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Introduction
Obtaining accurate numerical solutions to many elasticity pr

lems requires knowledge of the singular behavior of stress c
ponents in the neighborhood of singular points in the domain
the problem under consideration. For example, analyzing cr
~or V-notch! problems using finite element approaches usually
volves shape functions to describe correctly the singular beha
of stresses at the crack tip~@1,2#!. The admissible functions of the
Ritz method include the corner functions that precisely desc
the moment singularities at the notches or corners in vibra
problems of thin plates with V-notches or with re-entrant corne
to accelerate convergence and increase the accuracy of the
tion ~@3,4#!.

Many papers have addressed the stress singularities at s
corners based on plane elasticity theory~i.e., @5–8#! and three-
dimensional elasticity theory~@9,10#!. However, the stress singu
larities for different plate theories have received lesser attent
Williams @11# first investigated the stress singularities due
boundary conditions in the angular corner of isotropic thin pla
under bending. Williams and Owens@12# and Williams and Chap-
kis @13# extended this work to thin plates with varying flexur
rigidity and with polarly orthotropic material properties, respe
tively. Rao @14# considered the singularities at the interface c
ners for bi-material thin plates, and Ojikutu, Low, and Scott@15#
investigated stress singularities at the apex of a laminated c
posite thin plate with simply supported radial edges. Huang e
@16# discussed the singularities of moments and shear forces a
apex of a sector plate with simply supported radial edges in
exact solution for vibrations of such a plate. Sinclair@17# consid-
ered logarithmic stress singularities in thin plate theory.

Based on the first-order shear deformation plate theory, Bu

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1
2001; final revision, Feb. 28, 2002. Associate Editor: R. C. Benson. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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and Sinclair@18# investigated the stress singularities at corn
due to six sets of homogeneous boundary conditions by introd
ing a stress potential. Huang et al.@19# examined the singularities
of moments and shear forces at the vertex of a Mindlin sec
plate with simply supported radial edges, by establishing an e
solution in terms of Bessel functions for the vibrations of such
plate. Recently, Huang@20# comprehensively investigated th
stress singularities of moments and shear forces at corners ca
by ten sets of homogeneous boundary conditions by adopting
and Chaudhuri’s technique~@10#! to directly solve the equilibrium
equations in terms of displacement components. Comparing
results with the exact solution given by Huang et al.@19# reveals
that the singularity orders for moments and shear forces in H
ng’s results~@20#! are consistent with those in the exact soluti
for a simply supported corner, while the solution proposed
Burton and Sinclair@18# is consistent only for moment singular
ties but not for shear force singularities.

Comparing published work based on classical plate theory
on first-order shear deformation plate theory reveals that diffe
singularity orders for moments and shear forces are suggeste
different plate theories. Consequently, this study aims primarily
investigate for the first time, what results are suggested by
third-order shear deformation thick plate theory. This study
plies Reddy’s refined plate theory~@21#!. The theory is equivalent
to other third-order shear deformation plate theories proposed
Schmidt@22# and Krishna Murty@23#. This work considers only
the Williams-type stress singularities at a corner caused by var
boundary conditions but does not consider logarithmic stress
gularities as the former singularities are more often encounte
than the latter. The eigenfunction expansion methodology p
posed by Hartranft and Sih@9# for three-dimensional elasticity
problems is adopted to determine the asymptotic displacem
field around the corner by solving the equilibrium equations
terms of displacement components in Reddy’s refined p
theory. The characteristic equations for determining the singu
ity orders of stress resultants are established for ten sets of bo
ary conditions around a corner. Finally, the singular behavior
stress resultants obtained in this investigation is compared
those determined from the classic plate theory, first-order sh
deformation plate theory, and three-dimensional elasticity theo

1,
on

art-
nta
after
2002 by ASME Transactions of the ASME
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Basic Formulation
For a sector plate with cylindrical coordinates shown in Fig.

the displacement field for the third-order plate theory proposed
Reddy@21# is given as

u5zFc r2
4

3 S z

hD 2

~c r1w,r !G , (1)

v5zFcu2
4

3 S z

hD 2S cu1
1

r
w,uD G , (2)

w5w~r ,u!, (3)

where the subscript ‘‘,j ’’ refers to a partial differential with re-
spect to independent variablej; u, v, andw denote the displace
ments of a point~r, u, z! along ther, u, andz directions, whilec r
andcu are the rotations of the midplane normal in the radial a
circumferential directions, respectively. This displacement fi
leads to zero shear stresses,szr and szu , on the plate top and
bottom surfaces.

By using the variational method, one can develop the equi
rium equations and consistent boundary conditions. The equ
rium equations without external loading in terms of the str
resultants are

C1S Pr ,rr 1
2

r
Pr ,r1

1

r 2 Pu,uu2
1

r
Pu,r1

2

r
Pru,ru1

2

r 2 Pru,uD1
Q̄r

r

1Q̄r ,r1
1

r
Q̄u,u50, (4)

M̄ r ,r1
M̄ r

r
2

M̄ u

r
1

1

r
M̄ ru,u2Q̄r50, (5)

1

r
M̄ u,u1M̄ ru,r1

2M̄ ru

r
2Q̄u50, (6)

C154/3h2, C254/h2, M̄ ru5Mru2C1Pru , M̄b5Mb2C1Pb ,
Q̄b5Qb2C2Rb , h is the thickness of plate and subscriptb de-
notesr or u. Furthermore, the radial boundary conditions~at u
5a! should specify

cu or M̄ u , c r or M̄ ru ,

w or Q̄u1C1S 2

r
Pru12Pru,r1

1

r
Pu,uD , and

w,u

r
or Pu .

(7)

The circumferential boundary conditions~at r 5R! should
prescribe

Fig. 1 Coordinate system and positive displacement compo-
nents for a sector plate
Journal of Applied Mechanics
1,
by

nd
ld

ib-
lib-
ss

cu or M̄ ru , c r or M̄ r ,

w or Q̄r1C1S Pr

r
1Pr ,r1

2

r
Pru,u2

Pu

r D , and w,r or Pr .

(8)

The details of derivation for the equilibrium equations and bou
ary conditions in Cartesian coordinates can be found in Red
book @24#. The stress resultants in above equations are relate
stress components by

HQb

Rb
J 5E

2h/2

h/2

sbzH1
zJ dz, (9a)

H Mb

Pb
J 5E

2h/2

h/2

sbbH z
z3J dz, (9b)

H Mru

Pru
J 5E

2h/2

h/2

s ruH z
z3J dz. (9c)

For an isotropic and elastic plate, the relationships between
stress resultants and displacement components are establish
using strain-displacement and stress-strain relationships. The

Qr5
2Gh

3
~c r1w,r !, Qu5

2Gh

3 S cu1
1

r
w,uD ,

Rr5
Gh3

30
~c r1w,r !, Ru5

Gh3

30 S cu1
1

r
w,uD ,

Mru5Gh3F 1

12 S cu,r2
1

r
cu1

1

r
c r ,uD

2
1

60r S 2cu2
2

r
w,u1c r ,u12w,ru1rcu,r D G ,

Mr5
Eh3

12n2 H S 1

15
c r ,r2

1

60
w,rr D

1
n

r F 1

15
~c r1cu,u!2

1

60 S w,r1
1

r
w,uuD G J ,

M u5
Eh3

12n2 H 1

r F 1

15
~c r1cu,u!2

1

60 S w,r1
1

r
w,uuD G

1nS 1

15
c r ,r2

1

60
w,rr D J ,

Pru5
Gh5

1680F16cu,r2
16

r
cu1

16

r
c r ,u2

10

r S w,ru2
w,u

r D G ,
Pr5

Eh2

~12n2! H c r ,r

105
2

w,rr

336

1
n

r F 1

80
~c r1cu,u!2

1

336S cu,u1c r1w,r1
w,uu

r D G J ,

Pu5
Eh5

~12n2! H 1

r F 1

105
~c r1cu,u!2

1

336S w,r1
w,uu

r D G
1nS c r ,r

105
2

w,rr

336D J , (10)

whereE is Young’s modulus;G is the shear modulus, andn is
Poisson’s ratio.

Substituting Eq.~10! into Eqs. ~4!–~6! with careful arrange-
ment yields the equilibrium equations in terms of the displa
ment components:
NOVEMBER 2002, Vol. 69 Õ 801
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c r ,rrr 1
2

r
c r ,rr 1

1

r 2 c r ,ruu1
1

r 3 c r ,uu2
1

r 2 c r ,r1
1

r 3 c r1
1

r 3 cu,uuu

1
1

r
cu,rr u2

1

r 2 cu,ru1
1

r 3 cu,u2
5

16 S w,rrrr 1
2

r
w,rrr

1
2

r 2 w,rr uu2
1

r 2 w,rr 2
2

r 3 w,ruu1
1

r 3 w,r1
1

r 4 w,uuuu

1
4

r 4 w,uuD1
21~12n!

h2 S c r ,r1
1

r
c r1

1

r
cu,u1w,rr 1

1

r
w,r

1
1

r 2 w,uuD50, (11)

c r ,rr 1S 1

r
c r D

,r

1
12n

2

1

r 2 c r ,uu2
32n

2

1

r 2 cu,u1
11n

2

1

r
cu,ru

2
4

17 S w,rrr 1
1

r
w,rr 1

1

r 2 w,ruu2
1

r 2 w,r2
2

r 3 w,uuD
2

84~12n!

17h2 ~c r1w,r !50, (12)

11n

2

1

r
c r ,ru1

32n

2

1

r 2 c r ,u1
12n

2
cu,rr 1

12n

2 S 1

r
cuD

,r

1
1

r 2 cu,uu2
4

17 S 1

r
w,rr u1

1

r 2 w,ru1
1

r 3 w,uuuD
2

84~12n!

17h2 S cu1
1

r
w,uD50. (13)

Construction of Series Solution
The eigenfunction expansion approach proposed by Hartr

and Sih@9# for three-dimensional elasticity problems is adopt
herein to find the solution of Eqs.~11!–~13!. The displacement
components can be expressed in terms of the following serie

w~r ,u!5 (
m50

`

(
n50,2,

`

r lm1n11Wn
~m!~u,lm!, (14a)

c r~r ,u!5 (
m50

`

(
n50,2,

`

r lm1nCn
~m!~u,lm!, (14b)

cu~r ,u!5 (
m50

`

(
n50,2,

`

r lm1nFn
~m!~u,lm!, (14c)

where the characteristic valueslm are assumed to be constan
and can be complex numbers. Notably, oddn in Eqs.~14! will not
produce any additional solution such that they are not consid
in Eqs.~14!.

The real part oflm must exceed zero to satisfy the regular
conditions at the vertex of the sector plate. The regularity con
tions require thatcu , c r , w, andw,r are finite asr approaches
zero. As a result, the solution form given in Eqs.~14! with the real
part of lm less than one leads to singularities ofMr , M u , Mru ,
Pr , Pu , and Pru , which is observed from the relationships b
tween stress resultants and displacement components given i
~10!. However, no singularity for shear forces~Qr and Qu!, Rr
andRu will be produced from the solution.

Substituting Eqs.~14! into Eqs.~11!–~13! yields
802 Õ Vol. 69, NOVEMBER 2002
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(
m50

`

(
n50,2,

`

r lm1n23H ~lmn11!Cn,uu
~m! 1~lm1n21!2~lm1n11!

3Cn
~m!1Fn,uuu

~m! 1~lm1n21!2Fn,u
~m!2

5

16
@~lm1n21!2

1~lm1n11!2Wn
~m!12~~lm1n!211!Wn,uu

~m! 1Wn,uuuu
~m! #J

1
21~12n!

h2 r lm1n21$~lm1n11!Cn
~m!1Fn,u

~m!1Wn,uu
~m!

1~lm1n11!2Wn
~m!%50 (15)

(
m50

`

(
n50,2,

`

r lm1n22H 12n

2
Cn,uu

~m! 1@~lm1n!221!GCn
~m!

1F11n

2
~lm1n!2

32n

2 GFn,u
~m!2

4

17
@~lm1n11!2

3~lm1n21!Wn
~m!1~lm1n21!Wn,uu

~m! #

2
84~12n!

17h2 r lm1n$Cn
~m!1~lm1n11!Wn

~m!%50, (16)

(
m50

`

(
n50,2,

`

r lm1n22H F11n

2
~lm1n!1

32n

2 GCn,u
~m!1Fn,uu

~m!

1
12n

2
@~lm1n!221!GFn

~m!2
4

17
@~lm1n11!2Wn,u

~m!

1Wn,uuu
~m! #%2

84~12n!

17h2 r lm1n$Fn
~m!1Wn,u

~m!%50. (17)

Satisfying Eqs.~15!–~17! leads to the coefficients ofr with dif-
ferent orders equal to zero. Subsequently, a set of recurrent
tionships amongWn

(m) , Cn
(m) , Fn

(m) and their previous values ca
be attained and expressed as

~lm1n13!Cn12,uu
~m! 1~lm1n11!2~lm1n13!Cn12

~m! 1Fn12,uuu
~m!

1~lm1n11!2Fn12,u
~m! 2

5

16
@~lm1n11!2~lm1n13!2

3Wn12
~m! 12~~lm1n12!211!Wn12,uu

~m! 1Wn12,uuuu
~m! #

52
21~12n!

h2 $~lm1n11!Cn
~m!1Fn,u

~m!1Wn,uu
~m!

1~lm1n11!2Wn
~m!%, (18)

@~lm1n12!221#Cn12
~m! 1

12n

2
Cn12,uu

~m! 2
32n

2
Fn12,u

~m!

1
11n

2
~lm1n12!Fn12,u

~m! 2
4

17
@~lm1n13!2

3~lm1n11!Wn12
~m! 1~lm1n11!Wn12,uu

~m! #

5
84~12n!

17h2 @Cn
~m!1~lm1n11!Wn

~m!#, (19)

F11n

2
~lm1n12!1

32n

2 GCn12,u
~m! 1

12n

2
@~lm1n12!221#

3Fn12
~m! 1Fn12,uu

~m! 2
4

17
@~lm1n13!2Wn12,u

~m! 1Wn12,uuu
~m! #

5
84~12n!

17h2 ~Fn
~m!1Wn,u

~m!!. (20)
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Furthermore, one can establish the following equations from
coefficients of the lowest order ofr in Eqs.~15!–~17!:

~lm11!C0,uu
~m! 1~lm21!2~lm11!C0

~m!1F0,uuu
~m! 1~lm21!2F0,u

~m!

2
5

16
@~lm21!2~lm11!2W0

~m!12~lm
2 11!W0,uu

~m! 1W0,uuuu
~m! #

50, (21)

~lm
2 21!C0

~m!1
12n

2
C0,uu

~m! 2
32n

2
F0,u

~m!1
~11n!lm

2
F0,u

~m!

2
4

17
@~lm11!2~lm21!W0

~m!1~lm21!W0,uu
~m! #50,

(22)

S ~11n!lm

2
1

32n

2 DC0,u
~m!1

12n

2
~lm

2 21!F0
~m!1F0,uu

~m!

2
4

17
@~lm11!2W0,u

~m!1W0,uuu
~m! #50. (23)

It is easy to find that the general solution for the set of ordin
differential equations given by Eqs.~21!–~23! is

F0
~m!~u,lm!5B0 cos~lm11!u1B1 sin~lm11!u

1B2 cos~lm21!u1B3 sin~lm21!u, (24a)

C0
~m!~u,lm!52B1 cos~lm11!u1B0 sin~lm11!u

1A2 cos~lm21!u1A3 sin~lm21!u, (24b)

W0
~m!~u,lm!5A0 cos~lm11!u1A1 sin~lm11!u

1~k1A21k2B3!cos~lm21!u

1~k1A32k2B2!sin~lm21!u, (24c)

where

k15
17

16lm
S ~11n!lm

2
1

32n

2 D ,

k25
17

16lm
S ~11n!lm

2
2

32n

2 D ,

andAi andBi ( i 51,2,3,4) are coefficients to be determined fro
boundary conditions.

To establish the complete series solution for equilibrium eq
tions ~i.e., Eqs.~11!–~13!!, one has to determinelm and the rela-
tions amongAi andBi in Eqs.~24! from the boundary conditions
along radial edges. Then, one finds the solutions forFn

(m) , Cn
(m) ,

and Wn
(m) with n.1 from Eqs. ~18!–~20! and boundary

conditions.
Notably, one may construct the series solution by starting w

assuming the following solution form:

w~r ,u!5 (
m50

`

(
n50,2,

`

r lm1n1 l 1W̄n
~m!~u,lm!, (25a)

c r~r ,u!5 (
m50

`

(
n50,2,

`

r lm1n1 l 2C̄n
~m!~u,lm!, (25b)

cu~r ,u!5 (
m50

`

(
n50,2,

`

r lm1n1 l 3F̄n
~m!~u,lm!, (25c)

where l i ( i 51,2,3) can be arbitrary integers, but at least one
them is zero. Following the above procedure, one will find
solution form given by Eqs.~14! is the only one that may yield
Williams-type stress singularities. Furthermore, there are poss
Journal of Applied Mechanics
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solutions involving logarithmic function ofr leading to logarith-
mic singularities for stress resultants at the vertex of a sector p
which are out of the scope of this work and will not be inves
gated here. The readers who are interested in the logarithmic
gularities may refer to Dempsey and Sinclair@7# and Sinclair@17#.

Characteristic Equations and Corner Functions
To determine Williams-type stress singularities at the vertex

a sector plate caused by homogeneous boundary conditions
only needs the asymptotic solution with the lowest order ofr in
the series solution of Eqs.~14!. Consequently, only the solution
with n50 in Eqs.~14! needs to be considered. Let

cu0
~m!5r lmF0

~m!~u,lm!, c r0
~m!5r lmC0

~m!~u,lm!, and

w0
~m!5r lm11W0

~m!~u,lm!. (26)

Furthermore, as well known, the stress singularities are affe
by the boundary conditions along radial edges only.

In the following, we will consider four types of homogeneou
boundary conditions along a radial edge, sayu5a, namely,

clamped: w5c r5cu5
w,u

r
50, (27a)

free: M̄ u5M̄ ru5Q̄u1C1S 2

r
Pru12Pru,r1

1

r
Pu,uD5Pu50,

(27b)

type I simply supported:w5c r5M̄ u5Pu50, (27c)

type II simply supported:w5M̄ u5M̄ ru5Pu50. (27d)

For simplicity, C and F are used to present the clamped and
boundary conditions, respectively, while S~I! and S~II ! denote
type I and type II simply supported boundary conditions.

For the sake of demonstration, we will describe the proced
for obtaining the characteristic equation forlm , and the corre-
sponding asymptotic displacement field for describing the sing
behavior of stress resultants in the vicinity of a corner. Conside
sector plate with vertex angle equal toa and having clamped and
free boundary conditions along two radial edges, respectively.
the free radial edge atu5a, substituting Eq.~26! into Eq. ~27b!
and using the relations given in Eq.~10! leads to the following
equations for the lowest order ofr:

a11A01a12A11a13A21a14A31a15B01a16B11a17B21a18B3

50, (28a)

a21A01a22A11a23A21a24A31a25B01a26B11a27B21a28B3

50, (28b)

a31A01a32A11a33A21a34A31a35B01a36B11a37B21a38B3

50, (28c)

a41A01a42A11a43A21a44A31a45B01a46B11a47B21a48B3

50, (28d)

where lengthy expression forai j is given in the Appendix. Simi-
larly, one also obtains four equations forAi and Bi from the
clamped edge atu50:

B01B250, (29a)

2B11A250, (29b)

A01k1A21k2B350, (29c)

~lm11!A11~lm21!~k1A32k2B2!50. (29d)

Equations~28! and ~29! construct a set of linear homogeneo
algebraic equations forAi andBi . To have nontrivial solution for
Ai andBi yields the characteristic equations forlm ,
NOVEMBER 2002, Vol. 69 Õ 803
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sin2 lma5
42lm

2 ~11n!2 sin2 a

~32n!~11n!
, (30a)

sin2 lma5
42lm

2 ~12n!2 sin2 a

~31n!~12n!
. (30b)

Then, one can find the relations amongAi andBi from Eqs.~29!
and~28a!–~28c!. Consequently,cu0

(m) , c r0
(m) , andw0

(m) in Eq. ~26!
are expressed as

c r0
~m!~r ,u!5B3r lmH 11lm

lm21
cos~lm11!u2h2 sin~lm11!u

2
11lm

lm21
cos~lm21!u1h1 sin~lm21!uJ ,

(31a)

cu0
~m!~r ,u!5B3r lmH 2

11lm

lm21
sin~lm11!u2h2 cos~lm11!u

1sin~lm21!u1h2 cos~lm21!uJ , (31b)

w0
~m!~r ,u!5B3r lm11H S k1~11lm!

lm21
2k2D cos~lm11!u

1
~12lm!

lm11
~k1h12k2h2!sin~lm11!u

1S 2
~11lm!k1

lm21
1k2D cos~lm21!u

1~k1h12k2h2!sin~lm21!uJ , (31c)

whereh1 andh2 are given in Table 1. Sincecu0
(m) , c r0

(m) , andw0
(m)

are the smallest order ofr in the series solution given in Eqs.~14!
for differentlm , they characterize the asymptotic behavior of t
series solution in the vicinity of the vertex. Furthermore, they
the displacement field describing the singular behavior of st
resultants at the vertex when the positive real part oflm is less
than one. The asymptotic displacement field will be called as
ner functions below.

By following the procedure given above, one can develop
characteristic equations forlm and the corresponding corner fun
tions for different boundary conditions along radial edges. Tab
1 and 2, respectively, summarize the characteristic equations
lm and the corresponding corner functions for ten different co
binations of boundary conditions. To take advantage of the pr
lem’s symmetry, the corner functions for the identical bound
conditions along two radial edges were determined by conside
the range,2a/2<u<a/2, which is also indicated in Table 1.

Notably, using trigonometric identities, the characteristic eq
tions for S~I!–S~I! in Table 2 are found equivalent to

cos~lm21!a/250 or cos~lm11!a/250, (32a)

and

sin~lm21!a/250 or sin~lm11!a/250, (32b)

for symmetric and antisymmetric cases, respectively. Con
quently, the corner functions corresponding to the roots oflm for
different equations are separately listed in Table 1. Similar sit
tion also happens to the cases with S~II !–S~II ! and S~I!–S~II !
boundary conditions.

Singularity of Stress Resultants
The relations between displacements and stress resultants

in Eq. ~10! indicate that the smallest orders ofr for moments
(Mr ,M u ,Mru) and Pr , Pu , andPru are the same, and they ar
804 Õ Vol. 69, NOVEMBER 2002
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less than those for rotation components~c r andcu! andw by one
and two, respectively. Consequently, the rootlm of the character-
istic equations with a positive real part below one leads to sing
behavior of moments andPr , Pu , andPru , described byr lm21

as r approaches zero. Moreover, the singular behavior of st
components,s rr , suu , ands ru , can also be found according t
the relationship between stresses and displacement compone
elasticity. Notably, the characteristic equations listed in Table
reveal that the thickness of the plate is unrelated to these cha
teristic equations, and Poisson’s ratio is the single material pr
erty that can affect the singularity order of stress resultants.

As stated earlier, the real part oflm (Re(lm)) must exceed zero
to meet the regularity conditions for the displacement com
nents, asr approaches zero. Figure 2 displays the minimum po
tive values of Re(lm) versus the vertex angle~a! for various
boundary conditions. These minimum values of Re(lm) were de-
termined by solving the characteristic equations in Table 2 witn
equal to 0.3. Notably, some different boundary conditions arou
a corner produce the same minimum Re(lm) within certain ranges
of vertex angles. Boundary conditions S~I!–S~I!, S~I!–S~II !, and
S~II !–S~II ! give the same minimum Re(lm), while boundary con-
ditions S~I!–F and S~II !–F yield the same minimum Re(lm) ex-
cept for 180deg,a,270deg. Boundary conditions C–C and F–F
have the same minimum Re(lm) whena exceeds 180 deg. Bound
ary conditions C–F and C–S~II ! show the same minimum Re(lm)
for a below about 128 deg. Whena is between 180 deg and 27
deg, boundary condition S~I!–C yield a minimum Re(lm) equal to
that for S~I!–F and C–S~II !.

Figure 2 indicates that no singularities of moments andPr , Pu ,
andPru occur if a is less than 60 deg, regardless of the bound
conditions around the corner. However, such singularities are
ways present ifa exceeds 180 deg. A corner with S~I!–S~I!,
S~I!–S~II !, S~II !–S~II !, S~I!–F, S~II !–F, or S~I!–C boundary con-
ditions exhibit a singularity whena exceeds 90 deg. Boundar
conditions C–F and C–S~II ! cause the strongest singularity of th
stress resultants at the vertex fora between 60 deg and approx
mately 105 deg; S~I!–S~I!, S~I!–S~II !, and S~II !–S~II ! boundary
conditions result in the strongest singularity for other vert
angles. C–C and F–F boundary conditions cause a singularity
stress resultants fora exceeding 180 deg. This singularity i
weaker than that due to other boundary conditions.

Figure 2 also indicates that singularities generally become m
severe as the vertex angle increases, except in those cases
S~I!–S~I!, S~I!–S~II !, S~II !–S~II !, C–F, or C–S~II ! boundary con-
ditions. For the C–F and C–S~II ! cases, the minimum positive
Re(lm) increases witha for a between 122 deg and 130 deg
which region the roots of the characteristic equations change f
real to complex numbers. The minimum positive Re(lm) for
S~I!–S~I!, and S~II !–S~II ! was determined from different charac
teristic equations for different ranges ofa. That is, from Eqs.~32!,
when a<p, the minimum positive Re(lm) is determined from
cos(lm11)a/250, while for p,a<3p/2 and for 3p/2<a
,2p, the minimum positive Re(lm) is determined from cos(lm
21)a/250 and sin(lm11)a/250, respectively. Asa approaches
2p, the singularity order for moments andPr , Pu , andPru due to
S~I!–S~I!, S~I!–S~II !, and S~II !–S~II ! boundary conditions ap-
proachesr 21, while F–F and C–C boundary conditions lead to a
order ofr 21/2. Other boundary conditions yield an order ofr 23/4.

Most of the characteristic equations listed in Table 2 can also
found in either classic plate theory~CPT! or first-order shear de-
formation plate theory~FSDPT!. Williams @11# obtained those
characteristic equations marked with a superscript, ‘‘#,’’ in Tab
2, from the classic plate theory. Burton and Sinclair@18# and
Huang@20# found those characteristic equations marked with
perscript ‘‘* ’’ in Table 2, based on FSDPT using different solutio
approaches. The characteristic equations pertaining to the~II !
boundary condition given in Table 2 cannot find the correspond
ones in classic plate theory because no S~II ! boundary condition
Transactions of the ASME



Table 1 Corner functions

Case No. Boundary
Conditions Corner Functions

1
S~I!-S~I!

S2 a

2
<u<

a

2D

~1! for cos(lm21)a/250

c r0
(m)(r ,u)5A2r lm cos(lm21)u, cu0

(m)(r ,u)5B3r lm sin(lm21)u, w0
(m)(r,u)5(k1A21k2B3)r

lm11 cos(lm21)u

~2! for cos(lm11)a/250

c r0
(m)(r ,u)52B1r lm cos(lm11)u, cu0

(m)(r ,u)5B1r lm sin(lm11)u, w0
(m)(r,u)5A0r

lm11 cos(lm11)u

~3! for sin(lm21)a/250

c r0
(m)(r ,u)5A3r lm sin(lm21)u, cu0

(m)(r ,u)5B2r lm cos(lm21)u, w0
(m)(r,u)5(k1A31k2B2)r

lm11 sin(lm21)u

~4! for sin(lm11)a/250

c r0
(m)(r ,u)5B0r lm sin(lm11)u, cu0

(m)(r ,u)5B0r lm cos(lm11)u, w0
(m)(r,u)5A1r

lm11 sin(lm11)u

2 C-F
(0<u<a)

cr0
~m!~r,u!5B3r

lmH11lm

lm21
cos~lm11!u2h2 sin~lm11!u2

11lm

lm21
cos~lm21!u1h1 sin~lm21!uJ

cu0
~m!~r,u!5B3r

lmH2 11lm

lm21
sin~lm11!u2h2 cos~lm11!u1sin~lm21!u1h2 cos~lm21!u%

w0
~m!~r,u!5B3r

lm11HSk1~11lm!

lm21
2k2Dcos~lm11!u1

~12lm!

lm11
~k1h12k2h2!sin~lm11!u1S2 ~11lm!k1

lm21
1k2Dcos~lm21!u

1(k1h12k2h2)sin(lm21)u%

h15
~lm11!@~31n1nlm2lm!cos~lm21!a1~11lm!~12n!cos~lm11!a#

~lm21!@~31n1nlm2lm!sin~lm21!a2~12lm!~12n!sin~lm11!a#

h25
~31n1nlm2lm!cos~lm21!a1~11lm!~12n!cos~lm11!a

~31n1nlm2lm!sin~lm21!a2~12lm!~12n!sin~lm11!a

3 S~I!-F
(0<u<a)

cr0
~m!~r,u!5B2r

lmHh3sin~lm11!u1
lm11

lm21
sin~lm21!uJ, cu0

~m!~r,u!5B2r
lm$h3 cos~lm11!u1cos~lm21!u%

w0
~m!~r,u!5B2r

lm11Hh4 sin~lm11!u1F~lm11!k1

lm21
2k2Gsin~lm21!uJ

h352
~31n2lm1nlm!

~n21!~lm21!

sin~lm21!a

sin~lm11!a
, h45

17

4~lm11!
h3

4 S~I!-C
(0<u<a)

cr0
~m!~r,u!5B0r

lmHsin~lm11!u2
sin~lm11!a

sin~lm21!a
sin~lm21!uJ

cu0
~m!~r,u!5B0r

lmHcos~lm11!u2
cos~lm11!a

cos~lm21!a
cos~lm21!uJ

w0
~m!~r,u!5B0r

lm11Hh5 sin~lm11!u1F2 k1 sin~lm11!a

sin~lm21!a
1

k2 cos~lm11!a

cos~lm21!a Gsin~lm21!uJ
h55k12

k2~sin 2lma2sin 2a!

~sin 2lma1sin 2a!

5
F-F

S2 a

2
<u<

a

2D

~1! Symmetric case

cr0
~m!~r,u!5B3r

lmHh7 cos~lm11!u1
11lm

12lm
cos~lm21!uJ , cu0

~m!~r,u!5B3r
lm$2h7 sin~lm11!u1sin~lm21!u%

w0
~m!~r,u!5B3r

lm11Hh6 cos~lm11!u1S~11lm!k1

12lm
1k2Dcos~lm21!uJ

h65
17h7

4~11lm!
, h75

31n2lm1lmn

~211n!~lm21!

cos~lm21!a/2

cos~lm11!a/2
,

~2! Antisymmetric case

c r0
~m!~r ,u!5B2r lmH 2h9 sin~lm11!u1

lm11

lm21
sin~lm21!uJ , cu0

~m!~r,u!5B2r
lm$2h9 cos~lm11!u1cos~lm21!u%
Journal of Applied Mechanics NOVEMBER 2002, Vol. 69 Õ 805



Table 1 „continued …

Case No. Boundary
Conditions Corner Functions

w0
~m!~r,u!5B2r

lm11H2h8 sin~lm11!u1Fk1~lm11!

lm21
2k2Gsin~lm21!uJ

h85
17

4~lm11!
h9 , h95

~31n2lm1nlm!

~n21!~lm21!

sin~lm21!a/2

sin~lm11!a/2

6
C-C

S 2
a

2
<u<

a

2 D

~1! Symmetric case:

c r0
~m!~r ,u!5B1r lmH 2cos~lm11!u1

cos~lm11!a/2

cos~lm21!a/2
cos~lm21!uJ

cu0
~m!~r,u!5B1r

lmHsin~lm11!u2
sin~lm11!a/2

sin~lm21!a/2
sin~lm21!uJ

w0
~m!~r,u!5B1r

lm11HF2k11
k2~sinlma1sina!

sinlma2sina Gcos~lm11!u1Fk1 cos~lm11!a/2

cos~lm21!a/2
2

k2 sin~lm11!a/2

sin~lm21!a/2 Gcos~lm21!uJ
~2! Antisymmetric case:

cr0
~m!~r,u!5B0r

lmHsin~lm11!u2
sin~lm11!a/2

sin~lm21!a/2
sin~lm21!uJ

cu0
~m!~r,u!5B0r

lmHcos~lm11!u2
cos~lm11!a/2

cos~lm21!a/2
cos~lm21!uJ

w0
~m!~r,u!5B0r

lm11HFk12
k2~sinlma2sina!

sinlma1sina Gsin~lm11!u1F2 k1 sin~lm11!a/2

sin~lm21!a/2
1

k2 cos~lm11!a/2

cos~lm21!a/2 Gsin~lm21!uJ

7
S~II !-S~II !

S2 a

2
<u<

a

2D

~1! Symmetric case:

When cos(lm21)a/250,
c r0

(m)(r ,u)5A2r lm cos(lm21)u, cu0
(m)(r ,u)5B3r lm sin(lm21)u, w0

(m)(r,u)5(k1A21k2B3)r
lm11 cos(lm21)u.

When cos(lm11)a/250,

c r0
(m)(r ,u)52B1r lm cos(lm11)u, cu0

(m)(r ,u)5B1r lm sin(lm11)u, w0
(m)(r,u)5A0r

lm11 cos(lm11)u.
Whenlm sina1sinlma50, the corner functions are the same as those for F-F.

~2! Antisymmetric case:

When sin(lm21)a/250,

c r0
(m)(r ,u)5A3r lm sin(lm21)u, cu0

(m)(r,u)5B2r
lm cos(lm21)u, w0

(m)(r,u)5(k1A32k2B2)r
lm11 sin(lm21)u.

When sin(lm11)a/250,

c r0
(m)(r ,u)5B0r lm sin(lm11)u, cu0

(m)(r ,u)5B0r lm cos(lm11)u, w0
(m)(r ,u)5A1r lm11 sin(lm11)u.

Whenlm sina2sinlma50, the corner functions are the same as those for F-F.

8 C-S ~II !
(0<u<a) The corner functions are the same as those for C–F.

9 S~I!-S~II !
(0<u<a)

When sin 2alm5lm sin 2a, the corresponding corner functions are the same as those for S~I!–F.

For cos 2alm52cos 2a,
when sin(lm21)a50,

c r0
(m)(r ,u)5A3r lm sin(lm21)u, cu0

(m)(r,u)5B2r
lm cos(lm21)u,

w0
(m)(r ,u)5(k1A32k2B2)r lm11 sin(lm21)u;

when sin(lm11)a50,
c r0

(m)(r ,u)5B0r lm sin(lm11)u, cu0
(m)(r,u)5B0r

lm cos(lm11)u, w0
(m)(r,u)5A1r

lm11 sin(lm11)u.

10
S~II !-F

S2 a

2
<u<

a

2D

cr0
~m!~r,u!5B3r

lmHh7 cos~lm11!u1h11 sin~lm11!u2
lm11

lm21
cos~lm21!u2

~lm11!cos~lm21!a/2

~lm21!sin~lm21!a/2
sin~lm21!uJ

cu0
~m!~r,u!5B3r

lmHh11 cos(lm11)u2h7 sin(lm11)u2
cos(lm21)a/2

sin(lm21)a/2
cos(lm21)u1sin(lm21)uJ

w0
~m!~r,u!5B3r

lm11$h6 cos~lm11!u1h10 sin~lm11!u1S2 k1~lm11!

lm21
1k2Dcos~lm21!u

1
cos~lm21!a/2

sin~lm21!a/2 S 2
k1~lm11!

lm21
1k2D sin~lm21!uJ

h105
17

4~lm11!
h11 , h115

~31n1lmn2lm!cos~lm21!a/2

~l21!~n21!sin~lm11!a/2
. 4
exists in classic plate theory. This comparison concludes that
ferent plate theories can lead to different singularity orders
moments at the corner.

To show the stress resultant distributions corresponding to
806 Õ Vol. 69, NOVEMBER 2002
dif-
for

the

corner function with the smallest positive value of Re(lm), Fig. 3
exhibits the distributions ofMr and M u along u50deg for the
symmetric case of a wedge with free radial edges, while Fig
plots the distributions atu5150deg for a wedge with C–F bound-
Transactions of the ASME
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ary condition around the vertex. In both cases,a5300deg and
n50.3. The value oflm is real in the case of the F–F boundary
condition, andlm is complex for the C–F condition. The stress
resultants were computed by substituting the corresponding co
functions given in Table 1 into Eq.~10! and setting the undeter
mined coefficients~such asB3 in Table 1! in the corner functions
equal to unity. Notably, whenlm is a complex number, the corre
sponding stress resultants are also complex functions. Figu
only presents the distributions for the imaginary parts of the st
resultants. In Fig. 4, the superscripts ‘‘1’’ and ‘‘ 2’’ in the legend

Table 2 Characteristic equations for high-order shear defor-
mation plate theory

Case
No.

Boundary
Conditions Characteristic Equations

1 S~I!-S~I!
Symmetric: coslma52cosa* ,#

Antisymmetric: coslma51cosa* ,#

2 C–F

sin2 lma5
42lm

2 ~11n!2sin2 a*

~32n!~11n!

sin2 lma5
42lm

2 ~12n!2sin2 a#

~31n!~12n!

3 S~I!–F

sin 2lma5lm sin 2a*

sin 2lma5
lm~12n!

232n
sin 2a#

4 S~I!–C
sin 2lma5

lm~11n!

231n
sin 2a*

sin 2lma5lm sin 2a#

5 F–F

Symmetric:

sinlma52lm sina,*

sinlma52
lm~12n!

232n
sina#

Antisymmetric:
sinlma5lm sina,*

sinlma5
lm~12n!

232n
sina#

6 C–C

Symmetric:

sinlma52
lm~11n!

231n
sina,*

sinlma52lm sina#

Antisymmetric:

sinlma5
lm~11n!

231n
sina,*

sinlma5lm sina#

7 S~II !–S~II !

Symmetric:

sinlma52lm sina,* coslma52cosa
Antisymmetric:
sinlma5lm sina,* coslma5cosa

8 C–S~II !
sin2 lma5

42lm
2 ~11n!2 sin2 a*

~32n!~11n!

sin 2lma5lm sin 2a

9 S~I!–S~II !
sin 2lma5lm sin 2a*

cos 2lma5cos 2a

10 S~II !–F sinlma56lm sina*

sin 2lma5
lm~211n!

31n
sin 2a

Note:* means that the equation can be recovered in FSDPT.
# means that the equation can be recovered in CPT.
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-
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of the vertical axis are the signs for the stress resultants. Pos
stress resultants were plotted as LoguM 1/Du versus Logr and
negative stress resultants were plotted as LoguM 2/Du versus
Logr , whereD is the flexural rigidity.

Figure 3 shows that the magnitudes of the stress resultants
the present solution monotonically approach infinity asr ap-
proaches zero, becauselm is a positive real number and smalle
than unity. Figure 3 also displays the stress resultant distribut
obtained by CPT and by FSDPT. The stress resultant distribut
for FSDPT were computed using the corner functions given
@20#, and the distributions for CPT were obtained from the corn
functions given in@25# and@26#. The coefficients to be determine
in the corner functions for CPT and FSDPT were obtained
requiring that the values ofMr at r 51025 for CPT and FSDPT
should be identical to that from the present solution. The value
r was arbitrarily chosen. Consequently, the distribution ofMr for
FSDPT coincides with that for the theory used here because
theories have the samelm in this case. However, the distribution
of M u for these two theories are not coincident~Fig. 3!. In fact,
the distributions of stress resultants along various values ou,
determined by these two theories, are generally not coincid
which fact is not depicted here. Therefore, although the the
used here and FSDPT have the samelm for the case shown in Fig
3, the stress resultants approach infinity at different rates for e
theory asr approaches zero. This may be due to the fact thatMru
is required to equal zero along a free edge in FSDPT, whe
Mru for the theory used here still approaches infinity asr ap-
proaches zero, even along a free edge. The stress resultan
CPT approach infinity more slowly than those for FSDPT and
theory used here asr approaches zero, since the value oflm for
CPT exceeds those for the other two theories.

Figure 4 reveals that the stress resultants from the presen
lution oscillate toward infinitely asr goes to zero becauselm is
complex. Figure 4 also plots the distributions of stress resulta
for CPT and FSDPT. The corner function for FSDPT given in@20#
and the corner function for CPT given in@4# and@26# were used to
determine these distributions. The undetermined coefficients
these corner functions were obtained in the same way as for
3. Notably,lm for CPT equals that for the theory used here in t
case of Fig. 4. Figure 4 indicates that the distributions of str
resultants from the present solution coincide with those for C
Stress resultant functions ofMr , M u , andMru from the present
solution can be shown to be exactly the same as those for CP
this case. The value oflm for FSDPT is also a complex numbe
but differs from those for CPT and the theory used here. Acco
ingly, the distributions of stress resultants for FSDPT significan
differ from those for CPT and the theory used here.

The present solution involves no singularities for shear for
or Rb , which is attributable to the regularity conditions atr 50
and the relations between stress resultants and displacement
ponents. The regularity conditions requirecu , c r , w, andw,r to
remain finite asr approaches zero. The relations in Eq.~10! sug-
gest that the shear forces andRb either have the same order ofr as
cu or c r , or one order lower thanw. Consequently, shear force
and Rb cannot exhibit singular behavior asr approaches zero
regardless of the boundary conditions around the vertex. Nota
this finding markedly differs from that observed in CPT and F
DPT. Since shear deformation is not considered in CPT, sh
forces are determined from equilibrium equations such that
singularity of shear forces is always stronger than that for m
ments. Huang@20# found the characteristic equations for the si
gularity of shear forces in first-order shear deformation pl
theory, according to which the singularity order of shear forc
also depends on both the boundary conditions and the ve
angle.

Comparing the singular behavior in various plate theories w
that in elasticity theory yields interesting results. Hartranft and
@9# developed the characteristic equations for a completely
NOVEMBER 2002, Vol. 69 Õ 807
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Fig. 2 Variation of minimum Re „lm… with vertex angle
e

-
-

wedge based on a three-dimensional elasticity approach. Acc
ing to their results, the stress singularity order ofr at the vertex of
the wedge islm21, wherelm is determined by

sinlma5lm sina, (33a)

sinlma52lm sina, (33b)
MBER 2002
ord- or lm5~2m11!p/a, (33c)

wherem50,1,2,3 . . . . Thefirst two equations also appear in th
present work for F–F boundary conditions~Table 2!, while none
of these equations are found in CPT@11#. However, all three equa
tions are also found in FSDPT@20#. The third equation character
izes the singular behavior of shear forces in FSDPT.
Transactions of the ASME



l

a

d

s

av-

der
ons,
ers

ays

s of
tex

-

ond-
for
Concluding Remarks
This study has established the asymptotic displacement fie

describe the singular behavior of stress resultants at the verte
a sector thick plate based on Reddy’s third-order thick pl
theory. The solution was obtained using an eigenfunction exp
sion approach to solve the equilibrium equations in terms of
placement components. The characteristic equations for deter
ing Williams-type singularities of stress resultants were a
developed for ten sets of boundary conditions around the ver
These characteristic equations do not involve the thicknes
plate. Poisson’s ratio is the single material property that co
possibly influence the singular behavior of stress resultants. N
bly, unlike the singularity of shear forces found in classic pla
theory and first-order shear deformation plate theory, no such
gularity is involved in Reddy’s plate theory.

Fig. 3 Distribution of Mr and Mu along the symmetric axis for
a wedge with free radial edges
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The characteristic equations for determining the singular beh
ior of Mr , M u , Mru , Pr , Pu , andPru in this work include the
characteristic equations for classic plate theory and first-or
shear deformation plate theory. For the same boundary conditi
different plate theories usually lead to different singularity ord
for stress resultants, except for the case with S~I!–S~I! boundary
conditions. For a plate withn50.3, no singularity occurs when
the vertex angle is less than 60 deg, while a singularity is alw
present when the vertex angle exceeds 180 deg. C–F boundary
conditions result in the strongest singularity among the ten set
boundary conditions considered in this study when the ver
angle is less than approximately 105 deg, while S~I!–S~I!,
S~II !–S~II !, and S~I!–S~II ! boundary conditions lead to the stron
gest singularity for other angles. F–F and C–C boundary condi-
tions cause the weakest singularity.

The singularity orders for stress resultants and the corresp
ing corner functions given in this investigation are important

Fig. 4 Distributions of Mr and MuÄaÕ2 for a wedge with C –F
boundary conditions
NOVEMBER 2002, Vol. 69 Õ 809
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developing singularity elements in finite element approach
complex thick plate problems involving corner stress singularit
Furthermore, the corner functions for various corner bound
conditions provided herein are also very valuable for applying
Ritz method to solve thick plate problems with reentrant corn
like the work by McGee et al.@4# and Leissa et al.@3# for thin
plate problems.
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Appendix
The coefficients for Eqs.~28! are

a1155lm~11lm!cos~11lm!a,

a1255lm~11lm!sin~11lm!a,

a135
r1

n21
cos~12lm!a, a1452

r1

n21
sin~12lm!a,

a155216lm sin~11lm!a,

a16516lm cos~11lm!a, a175
r2

n21
sin~12lm!a,

a185
r2

n21
cos~12lm!a

a215~n21!lm~11lm!cos~11lm!a,

a225~n21!lm~11lm!sin~11lm!a

a235d1 cos~12lm!a, a2452d1 sin~12lm!a,

a25524~n21!lm sin~11lm!a,

a2654~n21!lm cos~11lm!a, a275d2 sin~12lm!a,

a285d2 cos~12lm!a,

a3158lm~11lm!sin~11lm!a,

a32528lm~11lm!cos~11lm!a,

a3352~lm21!~21718k1lm!sin~12lm!a,

a3452~lm21!~21718k1lm!cos~12lm!a,

a35534lm cos~11lm!a, a36534lm sin~11lm!a,

a375~lm21!~1718k2lm!cos~12lm!a,

a3852~lm21!~1718k2lm!sin~12lm!a

a4152g1 sin~11lm!a, a425g1 cos~11lm!a,

a4352g2 sin~12lm!a,

a4452g2 cos~12lm!a, a4552g3 cos~11lm!a,

a4652g3 sin~11lm!a,

a4752g4 cos~12lm!a, a485g4 sin~12lm!a

r15216~11nlm!15k1lm~31n2lm1nlm!,

r25161~21615~31n!k2!lm15~n21!k2lm
2 ,

d1524~11nlm!1~31n2lm1nlm!k1lm ,
810 Õ Vol. 69, NOVEMBER 2002
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d2541~241~31n!k2!lm1~n21!k2lm
2 ,

g155~n21!Elm~11lm!~12lm!,

g25E~lm21!lm@2~211n!~2815k1lm!116~11nlm!

25k1lm~31n2lm1nlm!#,

g3516~n21!Elm~12lm!,

g45E~lm21!@161~216115k215nk2216~n21!!lm

25~n21!k2lm
2 #.
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Transient Ultrasonic Waves in
Multilayered Superconducting
Plates
Transient response of multilayered superconducting tapes has been studied in this
These tapes are usually composed of layers of a superconducting material
YBa2Cu3O72d , or YBCO, for simplicity) alternating between layers of a metallic mater
(like nickel or silver). The tapes are thin, in the range of 100–200 mm. The supercon-
ducting layer is orthotropic with a thickness of 5–10 mm. In applications, tapes are long
and have a finite width. In this paper, attention has been focused on the transient res
of homogeneous and three-layered tapes assuming that the width is infinite and th
thickness of the superconducting layer is much smaller than the metal layer. The pro
considered here is of general interest for understanding the effect of anisotropy o
coating or interface layers in composite plate structures on ultrasonic guided wa
Three plate geometries are considered as prototype examples: a homogeneous nick
layer, a three-layered YBCO/Ni/YBCO, and a three-layered Ni/YBCO/Ni. Transien
sponse due to a line force applied normal to the surface of the tape has been stud
means of Fourier transforms and direct numerical integration. Numerical results
presented using an exact model and a first-order approximation to the thin YBCO l
The first-order approximation simplifies the problem to that of a homogeneous isot
plate subject to effective boundary conditions representing the thin anisotropic la
Both are seen to agree well (except when the center frequency of the force is high
capture the coupling of the longitudinal, S, (or flexural, A) motion and the sh
horizontal (SH) motion. Detailed analysis of the influence of the thin layers, espec
their anisotropy, on this coupling and the transient response shows significant differe
among the three cases. The model results provide insight into the coupling phenom
and indicate the feasibility of careful experiments to exploit the significant changes i
transient response caused by coupling for the determination of the in-plane elastic
stants of thin coating or interface layers.@DOI: 10.1115/1.1505627#
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1 Introduction
In this paper, our attention is focused on the transient respo

of a plate withthin anisotropic layers. As a particular technolog
cally important problem, we consider the anisotropic layers to
superconducting. Two specific examples are considered. In
the thin layers are on the outer surfaces of a homogeneous is
pic core layer and in the other, a thin layer is sandwiched betw
two identical homogeneous isotropic layers. The motivation
this study is to develop a fundamental understanding of ultras
guided waves in tapes that are fabricated for commercial h
current applications. The tapes are composites consisting
brittle superconducting phase and a ductile metal phase. Var
mechanical processes are used to get the crystallographic te
most favorable to high current capacity of the tapes. Such p
cesses coupled with thermal cycling cause microcracking of
brittle oxide layer~s!, which limits the current carrying capacity
The degree of current carrying capacity reduction is a strong fu
tion of the crystallographic texture of the oxide layer and t
nature of microcracking, which is also a function of the textu
These effects influence the mechanical responses such as
sonic guided waves along the tapes. Exploitation of the conn
tion between the electrical and mechanical responses may p
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
2001; final revision, Mar. 21, 2002. Associate Editor: A. K. Mal. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering, University of California–Santa B
bara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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to be an efficient means of nondestructive material property c
acterization during and after the processing of the tapes.

There is now a large body of literature on ultrasonics in sup
conducting bulk materials. It is known that for superconducto
the elastic constants can be linked to the superconducting tra
tion temperatureTC through the Debye temperatureQD and the
electron-phonon coupling parameterl ~@1,2#!. A review of various
ultrasonic measurements of elastic properties can be found in@3#.
Investigation ofin situ mechanical behavior and properties of th
superconducting layers has been limited. Since the properties
highly dependent upon external and internal stress fields, inter
properties and porosity, to name a few, the motivation for t
work is to understand the basic problem of guided wave propa
tion in an anisotropic three-layered tape.

Dispersion of guided waves along a direction of material sy
metry of the orthotropic oxide layer~s! in a three-layered~Ni/
YBCO/Ni and YBCO/Ni/YBCO! was studied by Pan and Datt
@4#. Transient response of such a plate to a line force orthogon
the symmetry axis and applied to the surface of the tape was
reported in@4#. In this example, the motion~P-SV! in the plane of
symmetry containing the symmetry axis is uncoupled from
motion ~SH! perpendicular to the plane. Thus, the former proble
is one of plane strain. Niklasson, Datta, and Dunn@5,6# considered
dispersion of guided waves along an arbitrary direction in a thr
layered plate. In this case, P-SV motion is coupled with she
horizontal~SH! motion so that the displacement has all the thr
components. It was shown that because of this coupling symm
ric SH mode is coupled with the extensional~S! mode and the
antisymmetric SH mode is coupled with the flexural~A! mode. As
a consequence, for propagation in directions not aligned with
symmetry axes, there are bands of frequency when a pred
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nantly symmetric SH mode (qSH(2n) , n50,1,2, . . . ) changes to
a predominantly extensional~qS! mode and vice versa. Similarly
there are different frequency bands when an antisymmetric
mode (qSH(2n11) , n50,1,2, . . . ) changes to a predominantl
flexural~qA! mode. These mode interchanges occur within narr
frequency bands, the widths of which depend on thethicknessand
in-plane anisotropy of the anisotropic layer. This suggests the p
sibility that with appropriate choice of narrow-band pulsed ex
tation the mode interchange can be captured in the time dom
response of the plate.

The objective of this paper is to analyze the transient respo
of the three-layered plate in order to understand this mode in
change and to suggest experiments that would lead to the d
mination of the in-plane anisotropic properties efficiently. The
tention has been focused primarily on the coupling of the SH0 and
S0 modes which is observed first at a relatively low frequen
However, the analysis could be easily extended to coupling
other modes at high frequencies.

The layout of the paper is as follows. In the next section,
calculation of the exact Green’s function due to a line force a
plied to the surface of a layered anisotropic plate is outlined. Si
the approach taken here may be found in previous works,
procedure is only briefly outlined and references are made to
lier works. In Section 3, approximations of the Green’s functi
are derived. Two examples of three-layered plates are consid
as illustration:~1! a line force located on the surface of a pla
made of a thick isotropic core coated symmetrically on both s
faces by identical thin anisotropic layers, and~2! a line force
located on the surface of a plate made of a thin anisotropic la
sandwiched between two identical thick isotropic layers. The
proximations are obtained by means of effective boundary
interface conditions, respectively, as described in@5,6#. In Section
4, the exact and approximate Green’s functions are compared
particular cases. Features due to mode coupling are descr
which may be useful for ultrasonic material characterization.

2 Exact Green’s function
In this section, we derive the exact Green’s function due t

line force applied to the surface of an anisotropic multilayer
plate. The solution is presented for a layered plate consisting o
arbitrary number of layers of general anisotropy. The details c
cerning the approach taken here, the so-called global ma
method, may be found elsewhere~see, for example,@7# and @8#!.
Only a brief outline is presented in this section.

Consider an infinite plate consisting ofN anisotropic layers,
each of thicknessb( j ), j 51, . . . ,N ~see Fig. 1!. All quantities
with superscript~ j! are associated with layerj and this superscript
is dropped when no ambiguity is possible. The equations gove
ing the exact time-harmonic Green’s functionGjm(x1 ,x3 ;j1) due
to a line force atx15j, x350 in thexm direction and parallel to
the x2-direction are

Fig. 1 An anisotropic layered plate
812 Õ Vol. 69, NOVEMBER 2002
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]aSa jm
~r ! 1r~r !v2Gjm

~r !50, d~r 21!,x3,d~r !, r 51, . . . ,N,
(1)

with the boundary and interface conditions~perfect bonds!

S3 jm
~1! 52d~x12j1!d jm , x350, (2a)

S3 jm
~N! 50, x35d~N!, (2b)

Gjm
~r !5Gjm

~r 11! , S3 jm
~r ! 5S3 jm

~r 11! , x35d~r !, r 51, . . . ,N21,
(2c)

where d(r ) is the thickness of the firstr layers, i.e., d(r )

5( j 51
r b( j ). Note that the fields are independent of th

x2-coordinate. The summation convention is used throughout
paper, unless otherwise indicated, with lowercase Roman ind
taking on the values 1, 2, and 3 and lowercase Greek ind
taking on the values 1 and 3.d jm is the Kronecker delta,d(x) is
the Dirac delta function and the notation] j means]/]xj . In Eqs.
~1! and~2!, S jmn is the stress tensor corresponding to the displa
ment Gjm , r the density, andv the circular frequency. Compo
nent (j ,m) of the Green’s function is thus componentj of the
displacement field in the plate at (x1 ,x3) due to a line force in the
xm-direction at (j1,0) ~the line force whenm53 is shown in Fig.
1!. In Voigt’s abbreviated notation, the Green’s stress tensor m
be written as~see Auld@9#!

S S11m

S22m

S33m

S32m

S31m

S21m

D 5S C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

D
3S ]1G1m

0
]3G3m

]3G2m

]3G1m1]1G3m

]1G2m

D . (3)

The problem is solved by applying a spatial Fourier transfo
in x1 ,

f̂ ~k!5E
2`

`

f ~x1!e2 ikx1dx1 , f ~x1!5
1

2p E
2`

`

f̂ ~k!eikx1dk,

(4)

to the equations of motion and the interface and boundary co
tions. The transformed system of equations is solved by mean
the so-called global matrix method described by Ju and Datta@7#
and Mal@8#. The procedure is briefly as follows in our case. Fi
we obtain a general solution in each of theN layers by reformu-
lating the transformed Eq.~1! as a first-order system of ordinar
differential equations in the displacement-traction vec
(Ĝ1mĜ2mĜ3mŜ31mŜ32mŜ33m)T. These systems are then solved
assuming that the solutions are in the formAveik3x3, whereA is a
constant,v is the 6-by-1 polarization vector andk3 is the wave
number in thex3-direction. The wave numbersk3 and the polar-
ization vectorsv are obtained by solving a generalized eigenva
problem in each layer. The constants are determined by inse
the general solutions into Eq.~2! and forming a sparse bande
global system of equations~which will have three-right hand
sides, one for each value ofm!. Once the constants have bee
determined, the inverse Fourier transform may be applied to
tain the exact Green’s function. Inversion of the Fourier tra
form, i.e., the computation of the integral numerically is discuss
in Section 4.
Transactions of the ASME
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Another alternative to the global matrix method is t
Thomson-Haskell or transfer matrix method~see, for example,
Nayfeh @10#!. By using this method, one only deals with 6-by
transfer matrices~one for each layer!, their sizes being indepen
dent of the number of layersN. One drawback of the Thomson
Haskell method is that it requires stabilization in order to be u
ful numerically. This makes it less straightforward to use than
global matrix method.

3 Approximations of the Green’s Function
In this section, we derive approximations of the line for

Green’s function for two specific configurations. The first syst
considered consists of a thick isotropic core and two ident
anisotropic~superconducting! coatings~see Fig. 2!, and the sec-
ond consists of a thin anisotropic~superconducting! layer sand-
wiched between two identical thick isotropic layers~see Fig. 3!.
The approximations are obtained by replacing the thin layers
effective boundary and interface conditions.

3.1 A Coated Plate. In this section, we derive an approx
mation to the line force Green’s function for a coated plate. T
plate consists of a thick isotropic core and two identical thin
isotropic coatings perfectly bonded to the core~see Fig. 2!. Note
that we have located the origin of the coordinate system in
middle of the plate since the configuration is then symmetric w
respect to thex1x2-plane. The approximation of the Green’s fun
tion is denoted bygjm(x1 ,x3 ;j1). Furthermore, we denote th
material properties of the anisotropic coatings byCJM ~the elastic
constants in abbreviated form! andrL ~the density! and the mate-
rial properties of the isotropic substrate byl, m ~the Lamécon-
stants! andr ~the density!.

If we assume that the thickness of the coatings,h, is small
compared to all wavelengths involved, we can replace the c
ings by the effective boundary conditions used by Niklasson e
@5#. The equations governinggjm inside the core (ux3u,a) are
then given by

]asa jm1rv2gjm50, 2a,x3,a, (5a)

s jmn5ld jm] rgrn1m~] jgmn1]mgjn!, 2a,x3,a, (5b)

tm2h~Augm1Astm!50, x35a, (5c)

tm1h~Augm1Astm!52d~x12j1!Im , x352a, (5d)

where gm5(g1m ,g2m ,g3m)T, tm5(s31m ,s32m ,s33m)T, and Im

5(d1m ,d2m ,d3m)T. The nonzero elements of the matricesAu and
As are ~see@5#!

~Au!115rLv21~C112C13
2 /C33!]1

2,

~Au!125~Au!215~C162C13C36/C33!]1
2,

(6)
~Au!225rLv21~C662C36

2 /C33!]1
2, ~Au!335rLv2,

~As!135C13]1 /C33, ~As!235C36]1 /C33, ~As!315]1 .

Fig. 2 A coated plate
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In order to obtain the field in the entire plate (ux3u,b), a con-
tinuation ofgjm obtained as the solution to Eq.~5! is made. This
continuation is obtained as a series expansion inx3 keeping up to
the linear term inux3u2a

gjm~x1 ,x3 ;j1!'gjm~x1 ,6a;j1!1~x37a!

3~]3gjm~x1 ,x3 ;j1!!x356a , 6a"x3"6b.

(7)

When solving the equations stated above, we start by findin
general solution. This is very straightforward since, due to
introduction of the effective boundary conditions, the waves
now propagating in a homogeneous isotropic plate. First, we
ply the spatial Fourier transform~4! to the equations and the
solve the resulting system of ordinary differential equatio
The general solution may be written as~see, for example,
Achenbach@11#!

ĝm5¹Fm1¹3Cm , ¹•Cm50, (8a)

Fm5Am0 sinpx31Bm0 cospx3 , p5Akp
22k2, kp5v/cp ,

(8b)

~Cm!n5Amn sinqx31Bmn cosqx3 , q5Aks
22k2, ks5v/cs ,

(8c)

wherem,n51,2,3, andcp5A(l12m)/r and cs5Am/r are the
pressure and shear wave speeds of the isotropic core, respect
The integration constants~six for eachm if we use the condition
¹•Cm50) are determined by applying the boundary conditio
to the general solution Eq.~8!. It should be noted here that th
problem described by Eq.~5! can be split into a symmetric and a
antisymmetric problem~with respect to thex3-coordinate!. This
will reduce the set of six equations for the six unknowns into t
sets of three equations for three unknowns. This has been don
the explicit equations are not given here for brevity.

3.2 A Sandwich Plate. The second approximation consid
ered, is derived for a system consisting of a thin anisotropic la
sandwiched between two identical isotropic layers~see Fig. 3!. As
in the previous section, the approximation of the Green’s funct
is denoted bygjm(x1 ,x3 ;j1). Note again that we have located th
origin of the coordinate system in the middle of the plate. W
denote the material properties of the anisotropic layer byCJM and
rL , and the material properties of the isotropic layers byl, m, and
r as before.

If we assume that the thickness of the sandwiched layer, 2h, is
small compared to the wavelengths involved, we can replace
thin anisotropic layer by the effective interface conditions used
Niklasson et al.@6# and Rokhlin and Huang@12#. The equations
governinggjm inside the isotropic layers (h,ux3u,b) are given
by

]asa jm
6 1rv2gjm

6 50, 6h"x3"6b, (9a)

s jmn
6 5ld jm] rgrn

6 1m~] jumn
6 1]mujn

6 !, 6h"x3"6b,
(9b)

Fig. 3 A sandwich plate
NOVEMBER 2002, Vol. 69 Õ 813
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~Tm
1!x35h1h~DTm

1!x35h5~Tm
2!x352h2h~DTm

2!x352h ,
(9c)

s3 jm
1 50, x35b, (9d)

s3 jm
2 52d~x12j1!d jm , x352b, (9e)

whereTm
65(g1m

6 ,g2m
6 ,g3m

6 ,s31m
6 ,s32m

6 ,s33m
6 )T, and the matrixD

is given by

D5S As
T Bs

Au As
D . (10)

The matricesAu andAs are as before, and the nonzero eleme
of Bs are

~Bs!1152C44/d, ~Bs!2252C55/d,
(11)

~Bs!125~Bs!215C45/d, ~Bs!33521/C33,

whered5C44C552C45
2 . The superscripts6 are used to indicate if

we refer to the field below or above the interface layer, i
f 1(x3)5 f (x3), x3.h, and f 2(x3)5 f (x3), x3,2h.

In order to obtain the field in the entire plate (ux3u,b), a con-
tinuation ofgjm obtained as the solution to Eq.~9! is made. This
continuation is obtained as a series expansion inx3 keeping up to
the linear term inh2ux3u

gjm
6 ~x1 ,x3 ;j1!'gjm

6 ~x1 ,6h;j1!1~x37h!

3~]3gjm
6 ~x1 ,x3 ;j1!!x356h , 0"x3"6h.

(12)

When solving the equations stated above, we start by findin
general solution in each of the two isotropic layers. These s
tions are in the same form as in the previous section

ĝm
65¹Fm

61¹3Cm
6 , ¹•Cm

650, (13a)

Fm
65Am0

6 sinpx31Bm0
6 cospx3 , (13b)

~Cm
6!n5Amn

6 sinqx31Bmn
6 cosqx3 . (13c)

The constants are determined by applying the boundary co
tions atx356b and the interface conditions atx356h. It should
be noted here as well that the problem described by Eq.~9! can be
split into a symmetric and an antisymmetric problem~with respect
to thex3-coordinate!. This will, for eachm, reduce the original se
of twelve equations for the 12 unknown integration constants~if
the equations¹•Cm

650 already have been used! into two sets of
six equations for six unknowns. These sets of equations are o
ted in this paper for brevity. In order to recover the Green’s fu
tion, the solutions to the symmetric and antisymmetric subpr
lems are added.

4 Numerical Examples
Here, we present some numerical examples using the exac

approximate solutions, derived above in this paper, for the
force Green’s function. In all the examplesG33(x0,0;0) or
g33(x0 ,2b;0) are shown withx055.0 mm~see Figs. 2 and 3 for
the definition ofb!. Note once again that different coordinate sy
tems are used forG33 andg33, x350 is the top surface forG33
and x352b is the top surface forg33. Only G33 and g33 are
considered since they are of most interest from an experime
point of view. The main objective is to investigate the influence
the anisotropy of the thin layers on the Green’s function at l
frequencies. A second objective is to investigate the usefulnes
the approximate solutions.

We consider two different superconducting tapes in the
amples: one coated three-layered plate and one three-lay
sandwiched plate. The isotropic material in both tapes is nic
~Ni! and the thin layers are made of the orthotropic superc
ductor YBa2Cu3O72d ~YBCO!. The material properties of YBCO
814 Õ Vol. 69, NOVEMBER 2002
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are given in Table 1~from @1#! and the properties used for nicke
arel5129.5 GPa,m584.71 GPa, andr58910 kg/m3. Note that
only the nonzero elastic constants are included in the table.
prime on the elastic constants means that they are given in
materials crystal axes system, denoted by (x18 ,x28 ,x38). The orien-
tation of the crystal axes system relative to the (x1 ,x2 ,x3) system
is given by the anglef as shown in Fig. 4. The transformatio
from the crystal axes system to this latter system is given by A
@9#. The dimensions of both tapes are given bya550mm andh
55 mm ~see Figs. 2 and 3!. The two configurations considere
here have recently been studied by Pan and Datta@4#. In @4#,
however, only the plane-strain Green’s function is presented
the propagation is thus restricted to a plane of elastic symmetr
addition to the layered tapes, examples are given for a pure
tape of thickness 110mm (a5b555mm, h50 mm).

In order to calculate the expressions for the Green’s functi
the inverse Fourier transform must be computed. Since all in
grands~the exact and approximate! have got a large number o
poles along the realk-axis, great care need be taken. In order
remove the singularities~poles! from the integrands, the integra
tion paths are deformed in the complexk-plane. The integrations
are performed along

k~s!5s~12 iae2busu!, 0<s,`, (14)

instead of along the realk-axis. Symmetries ofĜjm and ĝ jm with
respect tok have been used as well to reduce the integrat
interval from~2`,`! to @0,̀ !. Suitable values for the paramete
a and b have been determined from numerical tests anda50.1
andb51/2uksu have been used in the examples below. When
integration contours have been deformed as described above
singularities are no longer present in the integrands. The i
grands do, however, still experience highly irregular behav
which makes the numerical evaluation very difficult. We, the
fore, use adaptive integration schemes to evaluate these integ
We use the adaptive scheme by Xu and Mal@13# for the finite part
0<s<sc and the scheme by Xu and Mal@14# for the remaining
semi-infinite partsc,s,`. For the finite part, we use polynomia
approximations of fourth and eighth order and for the sem
infinite part, we approximate the integrand by polynomials
fourth order. The value ofsc is determined numerically from the
desired accuracy of the approximation of the semi-infinite par
the integral. When the approximate Green’s functions are co
puted, the finite part is calculated by means of the approximati
derived in Section 3 and the tail is computed by means of
exact Green’s function derived in Section 2. This is done since

Fig. 4 The orientation of the crystal axes system

Table 1 Material properties of YBCO „CJM8 in GPa and r in
kg Õm3

…

C118 C228 C338 C448 C558 C668 C128 C138 C238 r

268 231 186 37 49 95 132 95 71 6333
Transactions of the ASME
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Fig. 5 The time response and frequency spectrum of the line force when f cÄ29.4 MHz
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approximations break down for largekh. Still, since the tail is
computed using very few points, the approximations are m
faster to compute than the exact Green’s function.

When the time-harmonic Green’s function is obtained, it is m
tiplied by a frequency spectrumW(v) and to this product, the
inverse temporal Fourier transform is applied. The result is
Green’s function in the time domain from a line force with
frequency spectrum given byW(v). In all the examples,W(v) is
taken as the temporal transform of the function

w~ t !5A2

p
e2cs

2
~ t2t0!2/8a2

sin~vct !, (15)

with t050.16ms, a550mm, andcs is the shear speed of Ni. Th
remaining parametervc52p f c ~the center frequency! is varied in
Mechanics
ch

l-

the
a

the examples below. For the specific valuef c529.4 MHz, the
time responsew(t), Eq. ~15!, and the frequency spectrumW(v)
5W(2p f ) are shown in Fig. 5. As is seen in the Fig. 5, the li
force is essentially zero outside an interval of width 30 MH
centered aroundf c . The chosen value off c is close to the point
where the mode interchange between S0 and SH0 occurs for the
sandwich plate. In all the examples below, we will keep the cen
frequency close to the point of mode interchange for the sandw
and coated plates. The main reasons for this choice is that, s
the mode interchange is due to the anisotropy, its effect is
pected to be amplified in this region. The function Eq.~15! has
been used by, for example, Pan and Datta@4#. Finally, we employ
the exponential windowing technique when inverting the tempo
Fourier transform~see, for example,@4#!.
Fig. 6 G33 for a 110- mm thick Ni plate
NOVEMBER 2002, Vol. 69 Õ 815
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Fig. 7 Group velocity and vertical displacement for a 30 deg Ni ÕYBCOÕNi plate. Solid lines
are the symmetric modes and dashed the antisymmetric modes.
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4.1 The Ni Tape. First, we consider a pure Ni plate o
thickness 110mm (a5b555mm, h50 mm). This plate is in-
cluded mainly as a comparison to the layered plates. The thick
of the Ni plate is the same as the total thicknesses of the lay
plates thus eliminating the thickness effect.

In Fig. 6~a!, G33 is shown for f c527.0 MHz. The distinct re-
sponses in the figures correspond to the A1 mode mixed with the
S1 mode att'1.6ms and the A0 mode att'1.85ms. The S0
mode, however, is not clearly seen in the figure.

The center frequency is increased tof c529.4 MHz in Fig. 6~b!.
The main difference from Fig. 6~a! is that the S0 mode is now
visible ~mixed with the S2 mode!. S0 is seen to arrive att
'2.15ms which corresponds well to the arrival time comput
from the group velocity.

The final example for the Ni plate is shown in Fig. 6~c!. Here,
the center frequency is increased even further tof c531.9 MHz.
Now, it is hard to identify the A1 and S1 modes but the S0 mode
mixed with the S2 mode is even more pronounced. The A0 mode
is still easy to identify.

4.2 The Sandwich Tape. The second example considered
a tape made of a thin YBCO layer sandwiched between two th
identical isotropic layers made of nickel~Ni!. The total thickness
of the plate is 110mm (a550mm, h55 mm) as in all examples.

In Fig. 7, the group velocities and thex3-component of the
mode displacements on the upper surface are shown for a ro
middle layer ~f530 deg!. Here, the specific choices of cent
frequencyf c become evident. The point of our interest is when t
mode interchange between the qS0 and qSH0 modes occur. From
the figure, it is seen that this location isf c'28 MHz. In the ex-
amples below,f c is varied but kept close to this point.

The first example is for propagation in a symmetry plane~f50

Fig. 8 G33 for a 0 deg Ni ÕYBCOÕNi plate when f cÄ29.4 MHz
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deg!. The resulting signal whenf c529.4 MHz is shown in Fig. 8.
Since the propagation is in a symmetry plane, no mode in
change occurs~the SH modes are not present at all in this case!. If
the figures are compared to the corresponding ones for the pur
plate ~Fig. 6~b!!, the main difference lies in the part of the sign
arriving after the A0 mode.

In Fig. 9, the propagation is no longer in a symmetry pla
~f530 deg! and the mode interchange shown in Fig. 7 tak
place. Here, the center frequency isf c527.0 MHz which is
slightly below the point of mode interchange. If this figure
compared to Fig. 6~a! it is seen that the signals are quite differen
The most notable feature is that it is now much easier to iden
the arrival of the lowest modes.

In Fig. 10, the exact and approximate Green’s functions for
off-angle casef530 deg are compared whenf c529.4 MHz. As
is seen from the figures, the approximation works very well a
captures all the features of the signal. The signals show that
arrival of the modes is even more pronounced in this case
especially the signal arriving att'2.0ms is of interest to us. The
corresponding group velocity, taking the time delay into accou
is vg'2700 m/s. From Fig. 7, it is seen that this corresponds
the location of the mode interchange between the qS0 and qSH0
modes. We note that this signal is not seen in the case whenf50
deg nor for the pure Ni plate. This is expected, since no m
interchange takes place in those cases. The signal is also
when f c527.0 MHz ~Fig. 9!, but not as clearly as in Fig. 10.

Finally, in Fig. 11 the case whenf560 deg and f c
529.4 MHz is shown. If the signal is compared to Fig. 10, we fi
that they are very different. The difference lies in the anisotropy
the interface layer and especially the signal due to the mode
terchange is now much weaker. If the group velocity and mo
shape graphs~not shown here! are studied, it is seen that the mod

Fig. 9 G33 for a 30 deg Ni ÕYBCOÕNi plate when f cÄ27.0 MHz
Transactions of the ASME
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Fig. 10 G33 and g 33 for a 30 deg Ni ÕYBCOÕNi plate when f cÄ29.4 MHz
O

t
r

ions

d to

hat
does

t the

ered
dth

one
ym-
hin
ical
in-
all

De-
for
ec-
nite
was
uite
re,
as

nge
rent
interchange takes place during a much narrower frequency in
val. Therefore, the mixing of the modes is hardly seen. Also,
signal arriving att'2.15ms in Fig. 10 is no longer as distinct in
Fig. 11.

4.3 The Coated Tape. In this section, we consider the tap
made of a thick Ni layer coated with two identical thin YBC
layers. Once again, the total thickness of the plate is 110mm (a
550mm, h55 mm).

In Fig. 12, the group velocities and thex3-component of the
mode displacements on the upper surface are shown for ro
coating layers~f560 deg!. Here, the frequency of mode inte
change between the qS0 and qSH0 modes is higher than for the
sandwich plate. From the figure, it is seen that this location isf c
'32 MHz.

Fig. 11 G33 for a 60 deg Ni ÕYBCOÕNi plate when f cÄ29.4 MHz
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Figure 13 shows the exact and approximate Green’s funct
for the 60-deg coated tape whenf c531.9 MHz. In the figures, the
qA0 and qS0 modes are clearly seen. If the figures are compare
Fig. 6~c! ~the pure Ni tape!, the big difference lies in the part from
the qS0 mode. This is mainly a result of the mode interchange t
occurs in the coated tape. We also see that the approximation
not work very well in this case~compared to the sandwich tape!.
One reason is that the center frequency is higher now and tha
approximation loses accuracy for high frequencies.

5 Concluding Remarks
This paper was devoted to the transient response of a lay

anisotropic plate due to an ultrasonic line force of finite bandwi
applied to the surface of the plate. In two earlier papers@5,6#,
dispersion of guided elastic waves in three-layered plates,
composed of a core elastic isotropic material surrounded by s
metric thin anisotropic coating layers and the other made of t
anisotropic interface layer sandwiched between two ident
thick isotropic material, was studied. Simplified boundary and
terface conditions were derived taking into account the sm
thickness of the coating and interface layers, respectively.
tailed analysis of the effect of anisotropy on the mode coupling
propagation along directions deviating from the symmetry dir
tions revealed the existence of mode interchanges in certain fi
ranges of the frequency of the guided waves. Furthermore, it
shown that the dispersion behavior of the coated plate was q
different than the sandwich plate with a thin interface layer. He
a model study of time-dependent line force Green’s function w
presented with an objective to bring out the mode intercha
behavior as depicted by the shapes and arrival times of diffe
Fig. 12 Group velocity and vertical displacement for a 60 deg YBCO ÕNiÕYBCO plate. Solid
lines are the symmetric modes and dashed the antisymmetric modes.
NOVEMBER 2002, Vol. 69 Õ 817



818 Õ Vol. 69, NO
Fig. 13 G33 and g 33 for a 60 deg YBCO ÕNiÕYBCO plate when f cÄ31.9 MHz
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pulses. Particular attention was focused on the coupling of the
symmetric extensional (S0) and antiplane shear (SH0) modes
since it occurs at a relatively low frequency. The study show
that when the center frequency of the narrow band source
close to the frequency of strong coupling pulse shapes chan
markedly. A new wave form, which was the mode converted S
was seen to emerge. The arrival time of this wave was predi
well by the group velocity of the mode. Since this mode int
change strongly depended upon the in-plane anisotropy and th
ness of the thin layer, it would be possible to measure these p
erties ultrasonically with judicious choice of the frequency ba
of the excitation source.

This investigation also validated the thin layer approximat
for studying time-dependent line force Green’s function for coa
and sandwich plates. It should be emphasized that although
study was for the case of a plate with superconducting layers
model, the conclusions would be generally valid for other types
anisotropic layers.
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Wave Propagation in a
Piezoelectric Coupled Solid
Medium
Shear horizontal (SH) wave propagation in a semi-infinite solid medium surface bo
by a layer of piezoelectric material abutting the vacuum is investigated in this paper.
dispersive characteristics and the mode shapes of the deflection, the electric pot
and the electric displacements in the thickness direction of the piezoelectric laye
obtained theoretically. Numerical simulations show that the asymptotic phase velo
for different modes are the Bleustein surface wave velocity or the shear horizontal
velocity of the pure piezoelectric medium. Besides, the mode shapes of the defl
electric potential, and electric displacement show different distributions for diffe
modes and different wave number. These results can be served as a benchmark for
analyses and are significant in the modeling of wave propagation in the piezoele
coupled structures.@DOI: 10.1115/1.1488662#
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1 Introduction
Wave propagation and vibration in a pure piezoelectric med

have received considerable attention~@1–4#!. In order to achieve
the time delay effect in acoustic applications, the surface w
propagation in the piezoelectric plate is of importance and
arisen interests by Viktorov@5,6#, Curtis and Redwood@7#, and
Cheng and Sun@8,9#. Sun and Cheng@9# presented acoustic sur
face wave propagating around a piezoelectric cylinder with me
lic overlay. Their results show that a thin metallic film placed
the top of a piezoelectric substrate can change the propag
characteristics of the surface waves. So the electromechanica
fect by a layer of metal should be modeled.

Nowadays, the study of piezoelectric coupled structures o
the last two decades spans from the simple mechanics m
~@10#! to the more recent finite element model~@11#!. The use of
piezoelectric layers both surface bonded and embedded senso
actuator patches have been widely studied~@12–15#!. Such em-
bedded and surface-mounted sensor and actuator patches
been used in applications such as aerospace engineering, me
cal engineering, civil engineering, and even in bioengineering

A potential of piezoelectric materials as actuators and senso
the health monitoring of structures by use of the interdigital tra
ducer~IDT!. This application requires a piezoelectric layer surfa
bonded on the structures to be health monitored, and the ID
used to excite a wave propagating in the piezoelectric coup
structure to study the wave signal for the purpose of damage
tection of the host structure. Some methods and experime
works on the rapid monitoring of structures using IDT to exc
Lamb wave have been attempted~@16,17#! in some plate-like
structures. In this study, an accurate analytical model of w
propagation in the piezoelectric coupled structures with piezoe
tric coupling effects fully modeled is a key to the design of t
wavelength of the IDT and the excitation of the wave propagat
in the structure. Wang et al.@18# studied the shear horizontal~SH!
wave propagation in a semi-infinite solid medium surface bon
by a piezoelectric layer with electrodes shortly connected in th

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 2
2001; final revision, Dec. 17, 2001. Associate Editor: A. K. Mal. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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analyses. The wave excitation of such SH wave propagation
plate-like structure by use of IDT is proposed in@19#.

This paper is an attempt on the wave propagation in the pie
electric coupled structures based on the above background o
application of the piezoelectric material in health monitoring
structures. The dispersive characteristics of the wave propaga
in a semi-infinite solid medium surface mounted by a piezoel
tric layer abutting the vacuum are presented in the paper.
distributions of the deflection, the electric potential and the el
tric displacement in the thickness direction of the piezoelectric
thus studied thereafter. The result of this paper can be use
benchmark for the study of the wave propagation in the piezoe
tric coupled structures and is significant in the design of wa
propagation in the piezoelectric coupled structures as well.

2 Mechanics Model
We consider a metal half-spacex2.0 covered by a piezoelec

tric layer of thicknessh (2h,x2,0) as shown in Fig. 1. The
poling direction is in its transversex3-direction so that only the
SH wave will be studied in this layered structure.

The propagation of an SH wave in the host structure is g
erned by

c448 ¹2u385r8
]2u38

]t2 (1)

wherec448 52G5E/(11n8) is the shear module,r8 is the mass
density,n8 is the Poisson ration,E is the Young’s module of the
host plate,u38 is the deflection in the host medium, and th
Laplace operator is¹25]/]x11]/]x2 .

The shear stress in the host semi-infinite medium is then wri
as

s238 5c448
]u38

]x1
(2)

The coupling equation for piezoelectric layer is written as

c44¹
2u31e15¹

2f5r
]2u3

]t2 (3a)

e15¹
2u32J11¹

2f50 (3b)
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where c44 is the elastic module,e15 is piezoelectric coefficient,
J11 is the dielectric constant,r is mass density of the piezoelec
tric layer, u3 is the deflection in the piezoelectric layer, andf is
the electric potential.

The shear force, electric field, and electric displacement in
piezoelectric layer are then written as

s235c44

]u3

]x2
1e15

]f

]x2
(4a)

E252
]f

]x2
(4b)

D25e15

]u3

]x2
1J11E25e15

]u3

]x2
2J33

]f

]x2
. (4c)

Consider the case when no electrodes are covered on the
faces of the piezoelectric layer, and the piezoelectric layer a
the air. In this case, the electric potential at the interface of
piezoelectric layer and the core metal will be zero. However,
electric potential and the electric displacement of the piezoelec
layer at the upper surface will be referenced by the field variab
in the vacuum. The continuity conditions of the shear stress
the deflection at the interface and condition of free traction for
piezoelectric layer at the upper surface should also be modele
in the following.

In view of the above, the boundary conditions for this piez
electric coupled structure are then expressed by the follow
equations:

at x250:

u35u38 (5a)

s235s238 (5b)

f50 (5c)

at x252h:

s2350 (6a)

D25D8 (6b)

f5f8 (6c)

wheref8 andD8 are the corresponding variables in a vacuum
Because only wave propagation in thex1-direction is consid-

ered in this paper, we can write the solutions ofu38 by the follow-
ing equation:

u385 f 8~x2!eiv~ t2x1 /c! (7)

Fig. 1 A Semi-infinite metal medium surface covered by a
layer of piezoelectric material
820 Õ Vol. 69, NOVEMBER 2002
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wherec is the phase velocity of the wave propagation andv is the
frequency.

Substituting Eq.~7! into Eq. ~1! yields

d2f 8

dx2
2 2x82f 850 (8)

with the solution of the deflection shown as follows:

u385Ae2x8x2eiv~ t2x1 /c! (9)

where

x85
v

c
A12S c

v8D
2

, v825c448 /r8.

The above solution is the kind of surface wave solution un
the assumption thatc,v8. Whenc.v8, such a wave would rep-
resent the kind of plane wave solution and this type of wa
carries the energy away from the layer. Such a wave system w
quickly lose its energy and not be of significance at any distan
and thus is beyond the scope of this paper.

By assuming

c5f2
e15

J11
u3 , (10)

Eq. ~3! changes to the following equation:

¹2c50 (11)

whose solution is as follows:

c5~B1e2jx21B2ejx2!eiv~ t2x1 /c! (12)

wherej5v/c is the wave number of motion.
Substituting Eq.~3b! into ~3a! gives

c̄44¹
2u35r

]2u3

]t2 (13)

where

c̄445c441
e15

2

J11
.

The solution of Eq.~13! is obtained,

u35~A1e2x2x21A2ex2x2!eiv~ t2x1 /c! when c,v (14a)

u35~A1 cosx2x21A2 sinx2x2!eiv~ t2x1 /c! when v8.c.v
(14b)

where

x25
v

c
AU12S c

v D 2U, v25
c̄44

r
.

Substituting Eq.~12! and Eqs.~14a!–~14b!, we can have the ex-
pression for variablef andD2 ,

f5F ~B1e2jx21B2ejx2!1
e15

J11
~A1e2x2x21A2ex2x2!Geiv~ t2x1 /c!

(15a)

D252J11@j~2B1e2jx21B2ejx2!#eiv~ t2x1 /c!, (15b)

whenc,v, and

f5F ~B1e2jx21B2ejx2!1
e15

J11
~A1 cosx2x2

1A2 sinx2x2!Geiv~ t2x1 /c! (15c)

D252J11@j~B1e2jx22B2ejx2!#eiv~ t2x1 /c!, (15d)

whenv8.c.v.
Transactions of the ASME
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Substituting Eq.~9!, Eqs. ~14a!–~14b!, and Eqs.~15a!–~15d!
into Eqs.~2! and ~4!, we have

s238 5c448 ~2x8!Ae2x8x2 (16)

s235@~2x2!c̄44~A1e2x2x22A2ex2x2!1~2j!e15~B1e2jx2

2B2ejx2!#eiv~ t2x1 /c! (17a)

whenc,v, and

s235@~2x2!c̄44~A1 sinx2x22A2 cosx2x2!1~2j!e15~B1e2jx2

2B2ejx2!#eiv~ t2x1 /c! (17b)

whenv8.c.v.
The potentialf8 in the vacuum can be found by solving th

electronic Maxwell equation,

¹2f850, (18)

and seeking the solution which remains finite asx2→2`. Such a
solution forf8 andD8 can be obtained as

f85C1ejx2eiv~ t2x1 /c! (19a)

D852J0jC1ejx2eiv~ t2x1 /c!. (19b)

3 Dispersion Characteristics
The dispersive characteristics may be obtained by the solu

of an eigenvalue problem when substituting the solutions fr
Eqs.~14a!–~19b! into the boundary conditions in Eq.~5a!–~6c!.

For the case whenc,v, Eqs.~5a!–~5c! give

A5A11A2 (20a)

~2x2!c̄44~A12A2!1~2j!e15~B12B2!5~2x8!c448 A
(20b)

B11B21
e15

J11
~A11A2!50. (20c)

From Eqs.~6a!–~6c!, we have

~2x2!c̄44~A1ex2h2A2e2x2h!1~2j!e15~B1ejh2B2e2jh!50
(21a)

~B1ejh1B2e2jh!1
e15

J11
~A1ex2h1A2e2x2h!5C1e2jh

(21b)

2J11~2jB1ejh1x1B2e2jh!52J0jC1e2jh. (21c)

VariablesB1 andB2 can be obtained from Eqs.~20a!–~20c! as

B15~N1A11N2A2!/2 (22a)

B25~N3A11N4A2!/2 (22b)

where

N152
x2c̄44

je15
1

x8c448

je15
2

e15

J11
,

N25
x2c̄44

je15
1

x8c448

je15
2

e15

J11
,

N35
x2c̄44

je15
2

x8c448

je15
1

e15

J11
,

N452
x2c̄44

je15
2

x8c448

je15
2

e15

J11
.

Investigation of Eqs.~21a!–~21c! gives

B15~N5A11N6A2!/2 (23a)

B25~N7A11N8A2!/2 (23b)
Journal of Applied Mechanics
e
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where

N55S 2
x2c̄44

je15
1

x2c̄44J11

je15J0
2

e15

J11
De~x22j!h,

N65S x2c̄44

je15
2

x2c̄44J11

je15J0
2

e15

J11
De2~j1x2!h,

N75S x2c̄44

je15
1

x2c̄44J11

je15J0
2

e15

J11
De~j1x2!h,

N85S 2
x2c̄44

je15
1

x2c̄44J11

je15J0
1

e15

J11
De~j2x2!h.

Comparisons of Eqs.~22a!–~23b! result in the following
expression:

FN12N5 N22N6

N32N7 N42N8
G HA1

A2
J 5 H0

0J . (24)

The dispersion characteristics for this piezoelectric coup
structure can then be obtained by considering the condition for
existence of the nontrivial solution forA1 andA2 , which finally
comes to the eigenvalue solution as follows:

UN12N5 N22N6

N32N7 N42N8
U50. (25)

For the case whenv8.c.v, Eqs.~5a!–~5c! change to

A5A1 (26a)

~2x2!c̄44~2A2!1~2j!e15~B12B2!5~2x8!c448 A (26b)

B11B21
e15

J11
~A1!50. (26c)

Equations~6a!–~6c! become,

~2x2!c̄44~2A1 sinx2h2A2 cosx2h!1~2j!e15~B1ejh

2B2e2jh!50 (27a)

~B1ejh1B2e2jh!1
e15

J11
~A1 cosx2h2A2 sinx2h!5C1e2jh

(27b)

2J11j~2B1ejh1B2e2jh!52J0jC1e2jh. (27c)

Similar to the above analyses, from Eqs.~26a!–~26c!, we have

B15~L1A11L2A2!/2 (28a)

B25~L3A11L4A2!/2 (28b)

where

L15
x8c448

je15
2

e15

J11
, L25

x2c̄44

je15
,

L352
x8c448

je15
2

e15

J11
, L452

x2c̄44

je15
.

Investigation of Eq.~27a!–~27c! gives

B15~L5A11L6A2!/2 (29a)

B25~L7A11L8A2!/2 (29b)

where

L55S x2c̄44

je15
sinx2h2

x2c̄44J11

je15J0
sinx2h2

e15

J11
cosx2hDe2jh

L65S x2c̄44

je15
cosx2h2

x2c̄44J11

je15J0
cosx2 h1

e15

J11
sinx2hDe2jh
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L75S 2
x2c̄44

je15
sinx2h2

x2c̄44J11

je15J0
sinx2 h2

e15

J11
cosx2hDejh

L85S 2
x2c̄44

je15
cosx2h2

x2c̄44J11

je15J0
cosx2h1

e15

J11
sinx2hDejh.

The dispersion characteristics of the structure is again obta
by

UL12L5 L22L6

L32L7 L42L8
U50. (30)

4 Mode Shape Analysis in Piezoelectric Layer
The mode shapes of the deflection, the electric potential,

the electric displacement in thickness direction of piezoelec
layer may be obtained from the characteristic equation of
piezoelectric coupled medium obtained in the above section.
final expressions are shown below.

For the case whenc,v, the mode shapes~denoted by an over-
bar! are expressed by

ū35A1~e2x2x21M1ex2x2! (31a)

f̄5A1H ~N11N2M1!e2jx21~N31N4M1!ejx21
2e15

J11
~e2x2x2

1M1ex2x2!J (31b)

D̄25A1$~N11N2M1!e2jx21~N31N4M1!ejx2% (31c)

where

M152
N22N6

N12N5
.

For the case whenv8.c.v, we have

ū35A1~cosx2x21M2 sinx2x2! (32a)

f̄5A1H ~L11L2M2!e2jx21~L31L4M2!ejx21
2e15

J11
~cosx2x2

1M2 sinx2x2!J (32b)

D̄25A1$~L11L2M2!e2jx21~L31L4M2!ejx2% (32c)

where

M252
L22L6

L12L5
.

Next, numerical simulations will be conducted to give the d
persion curves of the SH wave propagation in the structure m
tioned above, and to present the variations of the mode shap
the piezoelectric layer for different wave modes and wa
numbers.

5 Numerical Simulations
Table 1 lists the material properties that will be used in

following numerical simulations. The bulk shear wave velocit
for the host material used by steel and the piezoelectric layer u
by PZT 4 are obtained asv8usteel53281 m/s,vuPZT452351 m/s.
The Bleustein-Gulyayev surface wave velocities in the PZT4
the case when no electrodes are surface bonded on it can b
termined by the expression~@4,6,9#!

vB5vA12
k15

4

2~11k15
2 !2~11J11/J0!2,
822 Õ Vol. 69, NOVEMBER 2002
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where

k15
2 5

e15
2

c44J11

andJ11 andJ0 are dielectric constants for the piezoelectric lay
and the air. ForJ11@J0 , we usually havevB'vuPZT4 ~@20#!.

The nondimensional phase velocity is taken asc̄5c/vuPZT4 and
the nondimensional wave number is used byj̄5jh/2p. The dis-
persive characteristics for the first seven modes are shown in
2. The curves show that the phase velocities for all these mo
start from the shear velocity of the host steel semi-infinite medi
at a smaller wave number. This result is reasonable as the L
wave velocity in a semi-infinite medium is always less than
velocity of the buck shear horizontal wave in the substrate, wh
can also been seen from Eq.~9!. Another investigation of the
figure shows that the curves approach the Bleustein-Guly
~B-G! wave velocity or the shear horizontal~SH! wave velocity of
the piezoelectric layer at higher wave number. This result is h
compared with that obtained for the same structure but with
electrodes shortly connected on the piezoelectric layer~@18#!.
When the electrodes are shortly connected, the asymptotic ve
ity of the first mode tends towards the B-G wave velocity, where
the velocities of other modes tend towards the SH wave veloc
This is due to the fact that for the first mode the surface wave
the piezoelectric layer will become dominant when the wa
length is short compared with the thickness of the layer~@18#!.
However, the B-G wave velocity and the SH velocity are alm
the same in the current study when the piezoelectric layer~without
electrodes bonded on it! abutting the vacuum, was also claimed b
Parton@20#. Thus, it is with no doubt that the asymptotic veloc
ties of all the modes for the case when the piezoelectric la
abuts the vacuum tend to one value as shown in Fig. 2. It a
shows that the higher modes can only exist beyond certain va
of the wave numbers, for example, the second mode be
aroundj̄50.5.

The mode shapes of the deflection, the electric potential,
the electric displacement in the piezoelectric layer are plotted
Figs. 3–6. Figures 3–4 show the first mode shapes with the w
number assigned at the values of 0.1 and 1.0, respectively.
mode shape of the electric potential and electric displacement
play their smooth curves at a small wave number as seen in Fi
and change to curves with higher curvatures with a zero node
higher wave number as shown in Fig. 4. This phenomenon is
surprising. As the wave number increases, the difference in
properties of the two media~air and steel! on the two surfaces of
the piezoelectric layer becomes important. However, it can
seen from the figures that the mode shape of the deflection
mains almost a straight line for the two wave numbers. Differ
from the result in this paper, the electric potential in the piezoel
tric layer shows an approximate quadratic variation for the c

Table 1 Material properties

Host Structure
~Steel!

Piezoelectric Layer
~PZT4!

Young’s modulus
~N/m2!

E52103109 c1151323109

c4458.53109

Mass density
~kg/m3!

7.83103 7.53103

e15 (C/m2) ¯ 10.5
e31 (C/m2) ¯ 24.1
J0 (F/m) ¯ 8.854310212

J11 /J0 ¯ 800
J33 /J0 ¯ 660
Transactions of the ASME
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Fig. 2 Dispersion curves for a PZT 4 coupled structure
d

c
1

ent
ode
f the
ne
hird
when the piezoelectric layer is shortly connected with electro
on it ~@18#!.

Figures 5–6 show the second mode shapes and the third m
shapes of the deflection, the electric potential, and the ele
displacement in the piezoelectric layer at a wave number of

Fig. 3 First mode shapes in a piezoelectric layer at wave
number 0.1

Fig. 4 First mode shapes in a piezoelectric layer at nondimen-
sional wave number 1.0
Mechanics
es

ode
tric
.0.

Both curves for the electric potential and the electric displacem
have more zero nodes compared to the results in the first m
shape seen from Figs. 3–4. Surprisingly, the mode shapes o
deflection displays a curve, instead of a straight line, with o
zero node for the second mode and two zero nodes for the t

Fig. 5 Second mode shapes in a piezoelectric layer at nondi-
mensional wave number 1.0

Fig. 6 Third mode shapes in a piezoelectric layer at nondi-
mensional wave number 1.0
NOVEMBER 2002, Vol. 69 Õ 823
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mode. This investigation indicates that for higher modes the m
shapes of deflection, electric potential, and electric displacem
contain more zero nodes.

6 Concluding Remarks
This paper presents the study of wave propagation in the pi

electric coupled solid medium. The dispersive characteristics
the piezoelectric couple structure are first obtained. The res
show that the phase velocity starts from the shear wave velocit
the host material and approaches the B-G velocity or SH w
velocity at higher wave numbers. The piezoelectric effects t
dominate the dispersive characteristics of this piezoelec
coupled structure at higher wave numbers. The mode shape
the deflection, the electric potential, and the electric displacem
display normal uniform distribution with no zero nodes at low
modes, but take a skew shape with zero nodes at higher mo

This paper provides the analytical model for the wave propa
tion in the piezoelectric couple structures. The results in this pa
may be used as the benchmark for the wave propagation in
piezoelectric coupled structure with no electrodes on the pie
electric layer and may be helpful in the design of the piezoelec
coupled structures. The possible potential of this research lie
the surface wave application in health monitoring of structure
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Transient Plane-Strain Response
of Multilayered Elastic Cylinders
to Axisymmetric Impulse
This paper presents an exact solution and an approximate solution, using the expans
transient wave functions in a series of eigenfunctions, for the transient response
infinitely long and multilayered circular cylinder subjected to uniformly distributed
namic pressures at the boundaries. Numerical results are given to illustrate the effe
the layer properties on the interfacial stresses and the spatial and temporal variatio
the displacement and stresses. In particular, the exact solution is used to examin
applicability of the thin shell theories to the transient response of multilayered cylind
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1 Introduction
Multilayered, specially two-layered, elastic circular cylinde

and cylindrical shells are common elements in structural and
chinery applications. The dynamic behaviors of multilayered c
inders and shells have received a continuously increased atte
in applied mechanics community due to their growing usefuln
in structural and mechanical engineering@1#. Over the past three
decades, considerable publications available in the relevant li
ture, as shown in the reviewing articles and research rep
@1–6#, deal with the steady-state behaviors such as the prop
tion of steady-state waves and free vibrations. The dispersion
nomenon of wave propagation in cylinders and shells has be
particular subject investigated in details by many researchers
ing shell theories and the three-dimensional theory of elastici

As an impulse acts, the propagation of the mechanical dis
bance with wave speeds makes a multilayered cylinder resp
immediately to the impulse at the place of wave incident, a
respond later at other places. After the forcing impulse has s
sided, and over a long time in comparison with the time of
wave propagating through the whole wall, the multilayered cyl
der turns out to vibrate freely and then rests finally due to
external resistance and interior friction in the material. T
dynamic stresses, however, play a more substantial rule in s
tural failure. They can reach their maximum values at the ea
time when the transient effects of the impulse are significant
this case, the importance of the transient-state behavior is
recognized.

In order to get some simple, but practical results of the trans
responses, some thin shell theories, developed using the simp
assumptions of the Kirchhoff-Love hypotheses and their refi
ments considering shear deformation and rotary and/or longit
nal inertia effects, have been applied to finite and infinitely lo
isotropic and anisotropic circular cylindrical shells with a sing
layer @7–16#. The numerical results showed that the transient
fects are influenced by impact loadings~Christoforou and Swan-
son @7#!, sizes of cylindrical shells~Chonan@8#, and Humphreys
and Winter@9#!, elasticity of materials~Chonan@8#!, and material
damping~Sivadas and Ganesan@10#!.

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2001; final revision, Mar. 6, 2002. Associate Editor: A. K. Mal. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McKeeking, Departme
Mechanical and Environmental Engineering University of California—Santa B
bara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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The dynamic effects can also play important roles in some
bility problems. When a cylindrical shell is subjected to a trav
ing load, there are some critical load speeds to cause the defle
unbounded@11#. Jones and Bhuta@12# found that a bending reso
nance can occur at a very low speed in an infinitely long a
isotropic cylindrical shell. Mangrum and Burns@13# found that
there are five critical load speeds in an infinitely long and orth
tropic cylindrical shell. As an impulsive pressure is suddenly d
veloped, unstable plane-strain responses may take place in an
tropic circular cylindrical shell, and result in shell buckling@14#.
Goodier and McIvor@15# and Lovell and McIvor@16# discussed,
respectively, such unstable responses by linear and nonli
strain-displacement relationships. Their results showed that
cyclic energy may exchange between the in-and-out ‘‘breathi
mode and the one or two high flexural modes.

As discussed by Loy and Lam@17#, the refined thin shell theo-
ries may be still inadequate to model moderately thick and th
circular cylindrical shells with a single layer. In contrast to th
steady-state response, the transient response depends upon t
namic loading applied to the boundary surfaces, which cau
more complexity to both the solutions and the computations.

An exact three-dimensional elastodynamic analysis of circu
cylindrical shells with a single layer is a very important subje
but, has much greater difficulties in mathematical formulation
seems that there are only a limited number of papers availab
the relevant literature dealing with some plane-stain problems
three-dimensional problems by approximate analyses@18–30#.
Svärdh @18# analyzed an end load problem for an axially symm
ric semi-infinite hollow cylinder by using the asymptotic sol
tions. Chong, Lee, and Cakmak@19# examined the problem in
Svärdh @18# previously by considering only three modes: the fi
radial, longitudinal, and shear modes. Experiments on the
problems had also been conducted to measure pulse disper
@20–21# and dispersion curves@22# through the measurements o
transient waves. In addition, by using two and three-dimensio
finite element methods, Rabern and Lewis@23# simulated the dy-
namic stresses and strains excited by moving pressure fron
gun tubes. Using the finite Hankel transform techniques, Cin
@24# presented a solution of axisymmetric transient stresses
infinitely long and isotropic thick hollow cylinders. As pointed ou
by Gong and Wang@25#, the solution presented in Cinell@24# does
not coincide with the nonzero stress boundary conditions. In
equation of the radial stress with frequency equation, it can
observed that the radial stresses always vanish at the inner
outer boundary surfaces where nonzero pressures are impose
Wang and Gong@26# refined Cinell’s solution. Wang@27# and Cho
and Kardomateas and Valle@28# further applied the refined solu
tion to thermal shock problems. Gong and Wang@25# also pre-
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sented another type of the exact solution by the expansion
transient wave function in a series of eigenfunctions. This eig
function approach has been further applied to the problem
internal multiple impacts by Yin@29# and Yin and Wang@30#.

For multilayered circular cylinders subjected to axially unifor
distributed pressures, Wang and Gong@31# and Wang@32# exam-
ined the transient responses using the finite Hankel transfo
The presence of the interfacial pressures in a multilayered circ
cylinder causes an additional difficulty in the mathematical f
mulation of the analytical solutions. For solving the proble
Wang and Gong@31# and Wang@32# tried to divide the radial
displacement into two parts: the equistate and dynamic parts.
thermore, they used two additional assumptions. The first assu
tion is that the radial displacement of the equistate part wit
each circular layer can be expressed in the form similar to Lam
static solution associated with two unknown constants and ti
dependent applied pressures. The second is that the radial str
the dynamic part vanishes at the inner and outer boundary
faces of each circular layer. The second assumption can off
facility for the direct application of the method that has been u
for solving a circular hollow cylinder with a single layer. Neve
theless, the combination of the two assumptions may lead a do
ful result of the interfacial pressures, which can be explained
ing a multilayered circular cylinder that is only subject to
interior pressure. At the interfaces, because the radial stress
the dynamic part are zero, the radial stresses are just those o
equistate part, which varies in the time history of the inter
pressure. It becomes clear that the above approach in Wang
Gong @31# and Wang@32# is not suitable for general cases.

In this paper, the expansion of the transient wave functions
series of eigenfunctions is used to obtain an exact solution for
transient response of an infinitely long and multilayered circu
cylinder subjected to uniformly distributed dynamic pressur
Numerical results are then given for several typical examples
multilayered circular cylinders under dynamic loading. In partic
lar, the present solution is compared numerically with an appro
mate solution based on the method suggested by Eringen
Suhubi@33#. The present solution is further applied to the veri
cations of the use of the thin shell theories in the axisymme
plain-strain transient responses of multilayered circular cylindr
shells. It is considered that the present method can be extende
the examination of the transient wave propagation along com
ite cylinders.

2 Formulation of Solutions

2.1 The Initial and Boundary Value Problem. We con-
sider the transient response of an infinitely long, multilayered
cular and elastic cylinder under dynamic loading at the inner
outer boundaries. As shown in Fig. 1, the multilayered cylind

Fig. 1 Geometry and coordinate system of the multilayered
cylinder
826 Õ Vol. 69, NOVEMBER 2002
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consists of arbitrary number of coaxial layers with different m
terial properties. Each coaxial layer is made of homogenous,
tropic, and elastic solid. The total number of the coaxial layers
an integerN. From the center of the coaxial layers, the layers
consequently numbered as 1,2, . . . , andN. The inner radius isa1
and outer radiusbN . The ith layer has the inner radiusai , the
outer radiusbi , the wall thicknesshi(5bi2ai) and the radial
wave speedci . The radial wave speedci , the speed of the lon-
gitudinal wave traveling along the radial direction, can be e
pressed asci5@(l i12m i)/r i #

1/2, wherel i andm i are the Lame’s
material constants of theith layer andr i the mass density.

As body force vanishes, Navier’s equation for axisymmet
plane-strain motion is

]2ui~r ,t !

]r 2
1

1

r

]ui~r ,t !

]r
2

ui~r ,t !

r 2
5

1

ci
2

]2ui~r ,t !

]t2
(1)

where ai<r<bi ; i 51,2, . . . , andN; ui(r ,t) is the radial dis-
placement of theith layer; and the subscripti stand for theith
layer.

If the interior and external boundary surfaces of the multila
ered cylinder are subjected to uniformly distributed dynamic pr
suresp1(t) and p2(t), the stress boundary conditions, the d
placement, and stress continuity across the interfaces and
initial conditions can be expressed as follows:

s r1~a1 ,t !52p1~ t ! (2a)

s rN~bN ,t !52p2~ t ! (2b)

s ri ~bi ,t !5s r ( i 11)~ai 11 ,t ! (2c)

ui~bi ,t !5ui 11~ai 11 ,t ! (2d)

ui~r ,0!5u0i~r ! (2e)

v i~r ,0!5v0i~r ! (2f)

wheres ri (r ,t), u0i(r ), andv0i(r ) are the radial stress, the initia
distributions of radial displacement and the velocity of theith
layer, respectively.

2.2 Exact Solution. To find an exact solution for the initia
and boundary value problem described above, we firstly divide
dynamic radial displacementui(r ,t) of the ith layer into the quasi-
static partusi(r ,t) and the dynamic partudi(r ,t). The quasi-static
partusi(r ,t) satisfies the static-state equilibrium equation, the i
posed boundary tractions and the interface continuity conditio
The dynamic partudi(r ,t) satisfies the motion equation, the fre
boundary surface conditions and the interface continuity con
tions. As a result, theui(r ,t) can be expressed in a series
eigenfunctions~i.e., wave modes! @33# as follows:

ui~r ,t !5usi~r ,t !1 (
m51

`

Um
i ~r !qm~ t ! (3)

where ai<r<bi , i 51,2, . . . , andN; Um
i (r ) is the mth wave

mode of theith layer; andqm(t) is the unknown time-dependen
coefficient associated withUm

i (r ).
In order to obtain the exact solution of the radial displaceme

it is necessary to have the governing equations of the wave m
and the unknown time-dependent coefficients, and the orthog
conditions of the wave modes.

The wave modesUm
i (r ) are governed by the following eigen

value problem:

d2Ui~r !

dr2
1

1

r

dUi~r !

dr
2

Ui~r !

r 2
1

v2

ci
2

Ui~r !50 (4a)

s r
i ~a1!50 (4b)

s r
i ~bN!50 (4c)
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s r
i ~bi !5s r

i 11~ai 11! (4d)

Ui~bi !5Ui 11~ai 11! (4e)

whereai<r<bi ; ki5v/ci is the wave number of theith layer. It
can be shown that the eigenvaluev2 is real and non-negative@34#.

It can be shown that the general solution of wave modes~the
eigenvalue problem! for the ith layer is expressed in terms o
Bessel functions as follows:

Ui~r !5A«1
i ~kir ! (5a)
n
n

a

Journal of Applied Mechanics
f

« j
i ~kir !5a1

i Jj~kir !1a2
i Yj~kir ! (5b)

whereA, a1
i , anda2

i are unknown coefficients; andJj andYj are,
respectively, the Bessel functions of the first and second kind
the jth order, wherej 50,1, and 2.

Substituting the general solution~5! into the boundary and in-
terface continuity conditions~4b!–~4e!, a set of linear algebraic
equations can be obtained as the following matrix form:
3
C1,1 C1,2 0 0 0 0 ¯ ¯ 0 0 0 0

C2,1 C2,2 C2,3 C2,4 0 0 ¯ ¯ 0 0 0 0

C3,1 C3,2 C3,3 C3,4 0 0 ¯ ¯ 0 0 0 0

0 0 C4,3 C4,4 C4,5 C4,6 ¯ ¯ 0 0 0 0

0 0 C5,3 C5,4 C5,5 C5,6 ¯ ¯ 0 0 0 0

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 0 0 0 0 0 ¯ ¯ C2N22,2N23 C2N22,2N22 C2N22,2N21 C2N22,2N

0 0 0 0 0 0 ¯ ¯ C2N21,2N23 C2N21,2N22 C2N21,2N21 C2N21,2N

0 0 0 0 0 0 ¯ ¯ 0 0 C2N,2N21 C2N,2N

4 3
a1

1

a2
1

a1
2

a2
2

¯

¯

a1
N21

a2
N21

a1
N

a2
N

4 53
0
0
0
0
¯

¯

0
0
0
0

4
(6a)
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In the coefficient matrix@C#, the four nonzero components i
the first and last rows are related to the traction boundary co
tions at the inner and outer boundary surfaces.

C1,15M1~l1 ,m1 ,k1,a1! (6b)

C1,25M2~l1 ,m1 ,k1,a1! (6c)

C2N,2N215M1~lN ,mN ,kN,bN! (6d)

C2N,2N5M2~lN ,mN ,kN,bN! (6e)

The eight nonzero components in each of the next two rows
results from the fully continuous conditions of the radial stre
and displacement at the interface between two connected co
layers. For the interface between theith layer and the (i 11)th
layer, we have

C2i ,2i 215M1~l i ,m i ,ki ,bi ! (6f)

C2i ,2i5M2~l i ,m i ,ki ,bi ! (6g)

C2i ,2i 1152M1~l i 11 ,m i 11 ,ki 11,ai 11! (6h)

C2i ,2i 1252M2~l i 11 ,m i 11 ,ki 11,ai 11! (6i)

C2i 11,2i 215J1~kibi ! (6j)

C2i 11,2i5Y1~kibi ! (6k)

C2i 11,2i 1152J1~ki 11ai 11! (6l)

C2i 11,2i 1252Y1~ki 11ai 11! (6m)

wherei 51,2, . . . ,N21 and

M1~l,m,k,r !5~l12m!k
dJ1~kr !

d~kr !
1l

J1~kr !

r
(6n)

M2~l,m,k,r !5~l12m!k
dY1~kr !

d~kr !
1l

Y1~kr !

r
(6o)
di-

are
ss
xial

To facilitate the subsequent analyses, the Eq.~6a! is rewritten in
a compact form below:

@C#@a#5@0# (7)

where@C# is the 2N32N square matrix;@a# is the column matrix
of the eigenvectors with2N elements, i.e., coefficientsa1

i and
a2

i ( i 51,2, . . . ,N); and @0# is the zero column matrix.
The existence of nontrivial solutions leads to that the deter

nant of the coefficient matrix@C# is zero, which forms a transcen
dental equation. This transcendental equation is also called a
frequency equation governing the axisymmetrical plane-strain
dial vibration:

Det@C#50 (8)

Equation~8! is called a characteristic equation~or the frequency
equation! of axisymmetrical plane-strain radial vibration of a
elastic cylinder withN number of coaxial layers. It has bee
shown generally that an elastic body has an infinite growth of
positive characteristic values~Gurtin @35#, p. 270!. So, Eq.~8! has
infinite number of positive roots. The positive root solutions
Eq. ~8! then provide the values ofvm (m51,2, . . . ) which rep-
resent the circular frequencies or eigenvalues. The circular
quencies can be determined accurately from the frequency Eq~8!
by numerical techniques, such as Newton method.

The particular wave mode of theith layerUm
i (r ) associated the

mth circular frequencyvm can be expressed as follows using t
general solution~5!:

Um
i ~r !5Am«1

i ~km
i r ! (9a)

« j
i ~km

i r !5a1m
i Jj~km

i r !1a2m
i Yj~km

i r ! (9b)

The wave modeUm
i (r ) can form an orthogonal set. The set

derived directly from the Eq.~4! and follows the orthogonal con
dition below ~see Appendix A!:
NOVEMBER 2002, Vol. 69 Õ 827
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i 51

N E
ai

bi

r iUm
i ~r !•Un

i ~r !2prdr 5dmn (10)

wheredmn is the Kronecker delta.
The coaxial layers can have different values for the mass d

sity r i . The termr i in Eq. ~10! cannot be put outside the sum
mation. For a circular cylinder with a single layer, this term c
always be eliminated by the techniques of normalization, wh
results in the well known orthogonal condition without the term
mass density.

The coefficientAm in Eq. ~9a! applicable to all the coaxia
layers are given below according to the orthogonal condition~10!
~see Appendix B!.

Am
225(

i 51

N

r i$pbi
2@«1

i 2~km
i bi !2«0

i ~km
i bi !«2

i ~km
i bi !#

2pai
2@«1

i 2~km
i ai !2«0

i ~km
i ai !«2

i ~km
i ai !#% (11)

The corresponding nonzero eigenvector@a#, i.e., coefficients
a1m

i and a2m
i , can be determined by the arbitrary 2N21 linear

algebraic equations of the matrix Eq.~7! pulse the orthogona
condition ~10!.

Furthermore, by substituting Eq.~3! into Eq.~1! in conjunction
with the equations governingudi(r ,t) andusi(r ,t), we have

(
m51

` Fd2qm~ t !

dt2
1vm

2 qm~ t !GUm
i ~r !5

d2usi~r ,t !

dt2
(12)

By using the orthogonal condition~10!, we can obtain the or-
dinary differential equations governingqm(t) below:

d2qm~ t !

dt2
1vm

2 qm~ t !5
d2Qm~ t !

dt2
(13a)

Qm~ t !52(
i 51

N E
ai

bi

r iusi~r ,t !Um
i ~r !2prdr (13b)

Using Laplace transforms and the initial conditions~2e! and~2f!,
we can obtain a formal solution of the unknown time-depend
coefficients from Eq.~13a! as follows:

qm~ t !5qm~0!cosvmt1
1

vm

dqm~0!

dt
sinvmt

1
1

vm
E

0

td2Qm~t!

dt2
sinvm~ t2t!dt (14a)

whereqm(0) anddqm(0)/dt are defined as follows:

qm~0!5(
i 51

N E
ai

bi

r iu0i~r !Um
i ~r !2prdr 1Qm~0! (14b)

dqm~0!

dt
5(

i 51

N E
ai

bi

r iv0i~r !Um
i ~r !2prdr 1

dQm~0!

dt
(14c)

Finally, the quasi-static radial displacement for theith layer in
the form of Lame’s solution is

usi~r ,t !5
ai

2p1
i ~ t !2bi

2p2
i ~ t !

2~l i1m i !~bi
22ai

2!
•r 1

bi
2ai

2

2m i~bi
22ai

2!

1

r

3@p1
i ~ t !2p2

i ~ t !# (15)
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wherep1
i (t) is the quasi-static inner pressure andp2

i (t) the quasi-
static outer pressure of theith layer. Two external applied pres
sures are known, i.e., the pressurep1

1(t) of the first layer is the
imposed pressurep1(t) and the pressurep2

N(t)of the Nth layer is
the applied pressurep2(t). The otherp1

i (t) and p2
i (t) are the

unknown quasi-static interfacial pressures and can be determ
by the full continuity condition of the radial displacement
Eq. ~2d!.

It is noted that although the different coaxial layers may ha
different wave modes, they should vibrate at the same circ
frequenciesvm and depend upon the same unknown tim
dependent coefficients functionsqm(t). Furthermore, the solution
given above satisfies the Navier’s motion Eq.~1! and the initial
and boundary conditions and the radial stress and displacem
continuity conditions at the interfaces~2a! to ~2f!. Therefore, the
above solution is an exact solution for the transient response o
infinite long and multilayered circular elastic cylinders subject
uniformly distributed pressures in the inner and outer boundar
The computational procedure to obtain the radial displacem
and stresses using the above exact solution can be summariz
follows.

At first, we will calculate the circular frequencies using Eq.~8!.
We then determine the coefficients of wave modes using Eq.~6!,
~10! and the results of the corresponding circular frequency. N
we determine the quasi-static radial displacement using Eqs.~2c!,
~2d!, and~15!. Moreover, we calculate the time-dependent coe
cient functionsqm(t) using Eq. ~14!. Finally, we calculate the
transient radial displacement according Eq.~3! and then the stress
components using the strain and displacement relationship an
linear stress and strain relationship in elasticity.

2.3 Approximate Solution. An approximate solution can
be obtained by following the approach given in Eringen and S
hubi @33#. At first, we perform the integration in Eq.~14a! succes-
sively by parts and obtain a new expression for the tim
dependent coefficient functionqm(t). As a result, Eq.~3! for the
transient radial displacement can be re-expressed in the follow
form:

ui~r ,t !5usi~r ,t !2 (
m51

`

Qm~ t !Um
i ~r !

1 (
m51

` Fam cosvmt1
1

vm

bm sinvmt

2vmE
0

t

Qm~t! sinvm~ t2t!dtGUm
i ~r ! (16)

where am5( i 51
N *ai

bir iu0i(r )Um
i (r )2prdr and bm

5( i 51
N *ai

bir iv0i(r )Um
i (r )2prdr .

Following the suggestion by Eringe and Suhubi@33#, the quasi-
static displacement,usi(r ,t) can be expressed in the followin
series of the eigenfunctionsQm(t)Um

i (r ).

usi~r ,t !5 (
m51

`

Qm~ t !Um
i ~r ! (17)

Consequently, the transient radial displacement in Eq.~16! can
be approximately expressed as follows:

ui~r ,t !5 (
m51

` Fam cosvmt1
1

vm
bm sinvmt2vm

3E
0

t

Qm~t! sinvm~ t2t!dtGUm
i ~r ! (18)

It is noted that the above solution does not satisfy the nonz
stress boundary conditions. This is because the wave modeUm

i (r )
is determined using the zero-traction boundary conditions. Th
Transactions of the ASME
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fore, the solution in~18! is an approximate solution. Gong an
Wang@25# gave a similar conclusion for transient radial displac
ment in a single-layer hollow cylinder subject to dynamic boun
ary traction. Furthermore, by using the approximate method
scribed above, Eringen and Suhubi@33# examined the initial and
boundary value problems for finite strip fixed at one end and
single spherical and cylindrical domains. Liu and Qu@36# exam-
ined the transient wave propagation in a circular annulus.

3 Numerical Results

3.1 General. In the numerical calculations, the followin
partial sums with finite number of wave modes are adopted
represent the exact solution and the approximate solution give
Eqs.~3! and ~18!, respectively,

~a! For the exact solution, we have

ui~r ,t !5usi~r ,t !1 (
m51

n

Um
i ~r !qm~ t ! (19)

~b! For the approximate solution, we have

ui~r ,t !5 (
m51

n Fam cosvmt1
1

vm

bm sinvmt2vm

3E
0

t

Qm~t! sinvm~ t2t!dtGUm
i ~r ! (20)

In Eqs.~19! and~20!, then is the total number of the wave mode
used in the calculations. Furthermore, the following nondim
sional parameters are used to show numerical results:

• the non-dimensional displacement and stresses compon
u(l11m1)/a1 /p0 , s r /p0 , andsu /p0 .

• the nondimensional structural and material parameters
multilayered circular cylinder: the ratio of acoustic impe
ance of theith layer to that of the first layerr ici /r1c1 ; the
ratio of the wall thickness of theith layer to that of the first
layer,hi /h1 ; the ratio of the time of wave traveling through
out the wall of theith layer to that throughout the first laye
(hi /ci)/(h1 /c1); and the ratio of the wall thickness to inne
radius of the first layerh1 /a1 .

• the nondimensional independent variables:r̄ 5(r 2a1)/(bN

2aN) and t̄ 5t/( i 51
N (bi2ai)/ci .

3.2 Comparison Between the Exact and Approximate So-
lutions. In this section, we give a numerical comparison b
tween the exact solution and the approximate solution prese
above. Using the two solutions, we estimate the transient resp
of a circular cylinder with two coaxial layers subjected to a s
pressure suddenly imposed at the inner boundary surface.
imposed pressures at the inner and outer boundary surface
then be expressed as follows:

p1~ t !5p0H~ t ! (21a)

p2~ t !50 (21b)

wherep0 is the amplitude of the imposed step pressure, andH(t)
is the Heaviside step function.

For this comparison, we consider that the inner and outer
axial cylindrical layers are made of steel and aluminum, resp
tively. The structural and material parameters are chosen to
h1 /a151, h2 /h151, (h2 /c2)/(h1 /c1)51.1, r2c2 /r1c151/3 and
the Poisson ratiosv15v250.25.

Figure 2 shows the variations of the radial displacement,
radial stress, and the circumferential stress with the radial dista
in the cylinder at the nondimensional timet̄ 51. Threen values
~i.e., n51, 3, and 2000! are used in the partial sums for the exa
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solution ~19! and the approximate solution~20!. Parametric stud-
ies indicate that the results obtained usingn52000 can be
considered as the converged values of the infinite sums in e
tions ~3! and ~18!. From Fig. 2, one can have the following fou
observations:

1. The converged results of the two stresses indicate that
exact solution can be used to simulate the propagation
the transient waves in the cylinder. At the timet̄ 51, the
compressive cylindrical wave, initiated at the inner boun
ary surface, travels in the radial direction and its front
rives exactly at the external boundary surface. Before t
time, as the compressive wave traveled across the interf
a reflected tensile wave and a transmitted compression w
were generated. The transmitted wave front has reache
the external boundary surface. The reflected wave bac
from the interface, reflected again at the inner boundary s
face, traveled towards the outside and its front has just
rived at r̄ 50.0555. The wave fronts can be identified eas
from the jumps in the stress curves.

2. The converged results of the two stresses from the e
solution and the approximate solution have the only diff
ences at the boundary surfaces with nonzero stresses
other words, the approximate solution cannot satisfy
nonzero stress conditions at the boundary surfaces.
maximum shear stress at the inner boundary surface of
two-layered circular cylinder at the timet̄ 51 is estimated to
be 0.9876p0 using the exact solution and 1.3580p0 using the
approximate solution. The difference is large.

3. The converged results of the radial displacements from
exact solution and the approximate solution are the sam

4. The exact solution and the approximate solution result
substantially different results if only one or three wa
modes are used in the partial sums~i.e., n51 or 3!. The
substantial difference between the first several modes of
two solutions indicates that the nonzero traction bound
condition has a strong influence on the wave propaga
and more wave modes shall be used in the analysis of for
vibration. The largest difference in the radial stress occ
near the nonzero inner boundary surface. The largest dif
ences in the circumferential stress and radial displacem
occur near the two boundary surfaces. It is noted that
boundary stresses play an essential role in the failure ev
ation of cylinders under external dynamic forces.

3.3 Discussions on the Solution Convergence.The con-
vergence of the exact and approximate solutions is suppo
theoretically by the completeness of eigenfunctions for gen
elastic body~Gurtin @36#, p. 271!. In particular, the eigenvalue
problem ~4! is a typical Sturm-Liouville problem~Titchmarsh
@37#, p. 17!. Because the quasi-static radial displacement~15! is
continuous and bounded with the interval (a1 ,bN) and can be
integrated over the radial distance (a1 ,bN), its eigenfunction ex-
pansion~17! converges tous(r ,t) at any fixed time~Titchmarsh
@37#, p. 12!. Hence the converged results of the radial displa
ment associated with the two solutions are the same in the inte
(a1 ,bN). Similar conclusions can be obtained for the eigenfun
tion expansions of the quasi-static stresses.

In the theory of eigenfunction expansion, at the boundaries~in
the paper, atr 5a1 and r 5bN), the expansion results can con
verge; however, it may not converge to the real values of
expanded functions. According to the boundary conditions~4b–
4c!, it is clear that the expansion of the quasi-static radial str
converges to zero at the two boundary surfaces. It is therefore
the approximate solution would result in the radial stress zero
the two boundary surfaces.

The differences in the stresses between the exact and app
mate solutions concentrate at the two boundary surfaces sinc
NOVEMBER 2002, Vol. 69 Õ 829
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Fig. 2 Spatial variations of the radial displacement and the radial and circumferential stress obtained using
the exact solution „19… „solid line … and the approximate solution „20… „dashed line … at the time t̄Ä1 for a
two-layered circular cylinder „the thick line for nÄ2000; the moderately line for nÄ3; and the thin line
nÄ1…
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use a large number of eigenfunctions in the numerical calc
tions. The differences would be large and occur at other locat
if we use a small number of eigenfunctions.

The quasi-static radial displacement can be expressed a
integral function of the quasi-static stresses. So, the limited dif
ences in the stresses at the two boundary surfaces would not c
any meaningful effect on the displacement. The full continuity
the quasi-static radial displacement at the closed interval@a1 ,bN#
holds that its eigenfunction expansion converges to its real va
at the two boundary surfaces. Then the observation~3! above is
valid over the closed interval@a1 ,bN#.

In addition, in Fig. 2, then value was selected to be 2000 fo
showing the propagation of waves more clearly. Usually,n550
can generate accurate results in the numerical calculation.
noted that we used less than 20 minutes to complete the cal
tion of the 2000 frequencies on a 300 MHz Pentium II PC and l
than five minutes were needed to calculate the three curves sh
in Fig. 2.

3.4 Interfacial Stresses for a Seven-Layered Circular Cyl-
inder. A circular cylinder with seven coaxial layers subject to
step pressure at its inner boundary surface is used to examin
behavior of the interfacial stresses. The circular cylinder has
following structural dimensions and material constants in the n
dimensional forms: h1 /a151; v i50.25 for i 51,2, . . . ,7;
(hi /ci)/(h1 /c1)51 and r ici /r1c151 for i 51, 3, 5, and 7;
(hi /ci)/(h1 /c1)54 andr ici /r1c150.15 for i 52, 4, and 6. The
odd layers are harder layers and the even layers as softer la
l. 69, NOVEMBER 2002
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Figure 3 illustrates the variations of the stresses at the se
interfaces with time obtained using the partial sum~19! for the
exact solution in equation, wheren52000. From Fig. 3, the fol-
lowing can be observed.

As a cylindrical wave is generated at the inner boundary surf
by the step impulse pressure, the interfaces begin to respon
sequence. The circumferential stresssu /p0 at each interface is
negative initially and then positive and so on. The stresses h
their peak values when the cylindrical waves including the tra
mitted and reflected waves reach the corresponding interfa
The trails of the transmitted and reflected wave fronts can
traced from the peaks. From Fig. 3, it seems impossible to re
sent the time histories of the interfacial pressures in a simple fo

4 Applications

4.1 Verification of Assumptions in Classical Thin Shell
Theories. As pointed out by Loy and Lam@17#, the classical
thin shell theories and their refinements~so-called higher-order
shell theories! may be inadequate for the analysis of the stea
state response of moderately thick and thick shells. It could
argued that the thin shell theories may also be inadequate fo
transient responses of multilayered shells and cylinders. The e
solution presented above for the transient response of a mult
ered circular cylinder under impose loading can be used a
benchmark to verify the classical thin shell theories for the a
symmetric plane-stain transient response of multilayered circ
cylindrical shells.
Transactions of the ASME
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Fig. 3 Time histories of the radial stress „a… and the circumferential stress „b… at the interfaces of a seven-
layered circular cylinder „nÄ2000…
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Such verification usually needs substantial numerical data
accountable cases, as shown by Noor and Burton@1# for the linear
static and free vibration problems of multilayered compos
shells. On the other hand, the classical thin shell theories a
two main assumptions:~a! the radial stress is small compared wi
other stress components and may be negligible and,~b! the radial
displacement varies constantly or linearly in the radial directi
Therefore, the present investigation focuses on the distribution
the transient displacement and stress components in the r
direction for three types of seven-layered circular cylinders s
jected to the step impulse pressure. The three types of the se
layered circular cylinders are defined byh1 /a150.1, h1 /a151,
andh1 /a1510, respectively. The other nondimensional structu
and material parameters are as same as those given in Sectio
Because each of the seven coaxial hollow cylinder layers h
wall thickness equal to either 0.1a1 , 1a1 , or 10a1 , we can call
the corresponding composite circular cylinder with thin, mod
ately thick or thick layers, respectively.

The numerical results are shown in Figs. 4, 5, and 6, where
f Applied Mechanics
and

ite
opt
h

n.
s of
dial
b-

ven-

ral
3.4.

s a

r-

the

horizontal coordinate uses the layer thickness as its unit. A
result, the seven layers can be identified easily from the horizo
coordinate. All the numerical results in Figs. 4, 5, and 6 are c
culated by using the number of wave modesn52000.

Figure 4 shows the radial displacements at different time in
seven layered cylinder associated withh1 /a151 or h1 /a1510.
From Fig. 4, one can have the following observations:

• The radial displacement decreases nonlinearly and sig
cantly with increasing in the radial distance in the first lay
~0 to 1 and a hard layer! for the two types of composite
cylinders.

• The radial displacement oscillates significantly with the
creasing in the radial distance in the second layer~1 to 2 and
a soft layer! for the h1 /a1510 type of composite cylinders.

• The radial displacement increases or decreases significa
at different with the increasing in the radial distance in t
second layer~1 to 2! for the h1 /a151 type of composite
cylinders.
Fig. 4 Spatial distributions of the radial displacements at different time for seven-layered circular cylin-
ders where „a… for h 1 Õa1Ä10 and „b… for h 1 Õa1Ä1 „nÄ2000…
NOVEMBER 2002, Vol. 69 Õ 831
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Fig. 5 Spatial distributions of the stresses at different time for seven-layered circular cylinders where „a…
for h 1 Õa1Ä10, and „b… for h 1 Õa1Ä1; the solid lines for the circumferential stress and the dashed lines for
the radial stress
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• The radial displacement also varies with the radial dista
in the fourth layer~3 to 4! for both the two types of compos
ite cylinders.

• The radial displacement is almost constant or has linear va
tions with the radial distance in the other layers for both
two types of composite cylinders.

The above results indicate that the second assumption in
thin shell theories, i.e., the radial displacement varies consta
or linearly in the radial direction, may be not adequate for
thick and moderately thick composite cylinders.

Figure 5 shows the radial and circumferential stresses at di
ent time in the seven-layered composite cylinder associated
h1 /a151 or h1 /a1510. From Fig. 5, one can have the followin
observations:
l. 69, NOVEMBER 2002
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• The stresses have much more complicated patterns of d
butions along the radial direction and at different time.

• The radial stress in the soft coaxial layers has the magnit
similar to the corresponding circumferential stress.

• The oscillated distributions of the stresses along the ra
direction mainly occur in the softer coaxial layers and do n
exhibit significant decreasing with the time.

The above results show that it may not be adequate to neg
the radial stress component in the failure analysis, especiall
the soft layers, for the multilayered shells with thick or mode
ately thick layers.

Figure 6 shows the radial displacement and the radial and
cumferential stresses at different time in the seven-layered c
Fig. 6 Spatial distributions of the radial displacement and the stresses for a seven-layered circular cylinder
with h 1 Õa1Ä0.1 where the solid lines for the circumferential stress and the dashed lines for the radial stress;
nÄ2000; a: t̄Ä1¿1Õ32,b: t̄Ä2¿1Õ32,c: t̄Ä5¿1Õ32,d: t̄Ä10¿1Õ32,e: t̄Ä20¿1Õ32,f: t̄Ä100¿1Õ32,g:
t̄Ä200¿1Õ32
Transactions of the ASME
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posite cylinder associated withh1 /a150.1 ~the thin layer thick-
ness case!. From Fig. 6, one can have the following observation

• The radial displacement and the two stresses are piecew
linear functions of the radial distance.

• The radial stress has a magnitude significant smaller than
similar to that of the corresponding circumferential stress
the hard layers and the soft layers, respectively.

• The radial stress has small jumps at some internal point
the seven-layered composite cylinder.

• The circumferential stress has jumps at both internal po
and the interfaces of the seven-layered composite cylinde

The total wall thickness of the composite cylinder is (b7
2a1)/a150.7, which may not be treated as a thin shell. T
linear distributions of the radial displacement with each la
show that the assumption of linear radial displacement distribu
in the thin shell theories is adequate such composite cylinder

In Fig. 6, the nondimensional time is specified to be an inte
plus 1/32. As a result, some reflected and transmitted wave fr
may locate not at the boundaries of layers and the wave fronts
be identified as the slight jumps in the distribution curves of str
components along the radial distance.

The relatively jumping amplitudes of stress components
these wave fronts reflect both the influences of transient w
propagations and the capability of the application of the thin s
theories. From Fig. 6~b!, the relatively jumped amplitudes in th
stresses are very small. Furthermore, the radial stress has m
tudes much less than those of the circumferential stress in the
layers. Therefore, the other assumption in the thin shell theo
that the radial stress is small compared with other stress com
nents and may be negligible may be adequate for the trans
response of the composite cylinders with thin layers although
thin shell theories cannot model the relative stress jumps at
internal points.

4.2 Effects of Layer Acoustic Impedance. Because of the
common use of multilayered composite shells with substanti
different acoustic impedance layers, it is valuable to examine
changes of the linear characteristics in Fig. 6 with the distribut
of the layer acoustic impedances. We consider two extreme c
for the seven-layered cylinders with different changeable acou
impedances in Fig. 6.

The first case is that the two neighbor layers have the s
acoustical impedances. The second case is that the acousti
pedances of the soft layers are very small. In the first case,
multilayered cylinder behaves as a single moderately thick cy
der with the total thickness of the seven layers. In the second c
few quantities of the wave disturbance can transmit from the
~hard! layer to the second~soft! layer. The multilayered cylinder
behaves as a thin cylinder consisting of only the first hard lay

Figure 7 shows the quantitative comparisons in attempt to
scribe the change of the linear characteristics with the distribu
of acoustic impedances. In Fig. 7, the horizontal coordinate r
resents the ratio of the acoustic impedance of the soft layers
that of the hard layers. The vertical coordinate represents the
tive wavefront height: i.e., the relative maximum jump height
wavefronts with respect to the divergence of the circumferen
stresses at the two boundaries within the first~hard! layer. The
corresponding values of (h2 /c2)/(h1 /c1) are also list in the fig-
ure. The smaller the relative wavefront height is, the stron
linear characteristics are. Figure 7 shows the relative wavef
height descends quickly with the decreasing of the acoustic
pedance ratio. This result means that the applicability of the
classic shell theories to the multilayered circular cylindrical she
strongly depends upon the material properties.

5 Conclusions
The paper has presented an exact solution and an approxi

solution for the transient response of an infinite long and mu
Journal of Applied Mechanics
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layered circular cylinder subject to uniform distributed dynam
pressure at the inner and outer boundaries. Numerical results s
that the present solutions are suitable for the analysis of the t
sient responses. From the numerical results presented in the p
one can observe that the interfacial pressures are complicated
cannot be represented in a simple form. The approximate solu
is inadequate for the calculations of the nonzero stresses a
boundaries. Furthermore, it is found that the two solutions m
not be able to give converged results for the analysis of for
vibration if a small number of the eigenfunctions is used. T
applicability of the thin shell theories to the transient response
multilayered cylinders strongly depends upon both the geome
cal and material properties of the cylinders.
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Appendix A

Mathematical Derivation for Eq. „10…. We consider two
wave modesUn

i (r ) and Um
i (r ) corresponding to the eigenvalue

vn andvm , respectively. They satisfy the equations below:

d

dr S r
dUn

i

dr
D 1F ~kn

i !2r 2
1

r GUn
i 50 (A1)

d

dr S r
dUm

i

dr
D 1F ~km

i !2r 2
1

r GUm
i 50 (A2)

We multiply ~A1! by Um
i (r )ci

2r i and~A2! by Un
i (r )ci

2r i . We then
subtract the two results, integrate the remaining over the la
thickness, then make the summation of all the layers. We
obtain the following equation.

Fig. 7 Variation of the relative wave front height with the de-
creasing of the acoustic impedance ratio for a seven layered
cylinder „nÄ2000…
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t
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Rewrite the conditions~4b!–~4c! in the manuscript in the fol-
lowing forms:

F ~l112m1!
dU1

dr
1l1

U1

r
G

r 5a1

50 (A4)

F ~lN12mN!
dUN

dr
1lN

UN

r
G

r 5bN

50. (A5)

By using ~A4! and ~A5! and expressing the wave modes wi
their derivations, we can show the first two terms in the right-ha
side of Eq.~A3! to be vanished.

As a result, we obtain

~vm
2 2vn

2!(
i 51

N E
ai

bi

r iUn
i ~r !Um

i ~r !2prdr

52p(
i 51

N21 H r ici
2biFUm

i ~bi !
dUn

i ~bi !

dr
2Un

i ~bi !
dUm

i ~bi !

dr
G

2r i 11ci 11
2 ai 11FUm

i 11~ai 11!
dUn

i 11~ai 11!

dr

2Un
i 11~ai 11!

dUm
i 11~a11i !

dr
G J (A6)

We then use the condition~4e! Ui 11(ai 11)5Ui(bi), r ici
25(l i

52m i) and ai 115bi . So, we can reduce~A6! as the following
result:

~vm
2 2vn

2!(
i 51

N E
ai

bi

r iUn
i ~r !Um

i ~r !2prdr

52p(
i 51

N21 H biUm
i ~bi !F ~l i12m i !

dUn
i ~bi !

dr

2~l i 1112m i 11!
dUn

i 11~ai 11!

dr
G2biUn

i ~bi !
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h
nd

3F~li12mi!
dUm

i ~bi!

dr
2~li1112mi11!

dUm
i11~ai11!

dr
GJ (A7)

From the condition~4d! and the condition~4e!, we have

~l i12m i !
dUi~bi !

dr
2~l i 1!12m i 11!

dUi 11~ai 11!

dr

5~l i2l i 11!
Ui~bi !

bi

(A8)

By substituting~A8! into the expression~A7!, we have

~vm
2 2vn

2!(
i 51

N E
ai

bi

r iUn
i ~r !Um

i ~r !2prdr

52p(
i 51

N21

$~l i1l i 11!Um
i ~bi !Un

i ~bi !

2~l i1l i 11!Un
i ~bi !Um

i ~bi !%50 (A9)

If vn andvm are distinct, then we have

(
i 51

N E
ai

bi

r iUn
i ~r !Um

i ~r !2prdr 50 (A10)

For simplicity, we can normalize the set of eigenfunctions
requiring

(
i 51

N E
ai

bi

r i uUm
i ~r !u22prdr 51 (A11)

Finally, we can obtain the orthogonal condition in the form
summation as Eq.~10! below:

(
i 51

N E
ai

bi

r iUn
i ~r !Um

i ~r !2prdr 5dmn (A12)

Appendix B

Mathematical Derivation for Eq. „11…. As shown in Eq.
~9b!, « j

i (km
i r ) is a linear function of the Bessel functions of th
Transactions of the ASME
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first and second kinds of thejth order, i.e.,Jj andYj . So,« j
i (km

i r )
has the following properties as those of the Bessel functionJj
andYj :

« j 21~x!2« j 11~x!52
d

dx
~« j~x!! (B1)

d

dx
~xj« j~x!!5xj« j 21~x! (B2)

d

dx
«0~x!52«1~x! (B3)

wherex stands forkm
i r and« j (x) for « j

i (km
i r ).

If m5n, the orthogonal condition~10! becomes

(
i 51

N E
a

b

r iAm
2 «1

2~x!2pxdx/~km
i !251 (B4)

wherea is km
i ai andb is km

i bi .

So, the coefficientAm is

Am
225(

i 51

N
pr i

~km
i !2E

a

b

«1
2~x!d~x2! (B5)

Performing the integration by parts, we obtain

E
a

b

«1
2~x!d~x2!5@x2«1

2~x!#a
b2E

a

b

x22«1~x!
d

dx
~«1~x!!dx.

(B6)

Using~B1!, ~B2!, and~B3!, one can show the following is valid

E
a

b

x22«1~x!
d

dx
~«1~x!!dx

5E
a

b

x2«1~x!@«0~x!2«2~x!#dx

5E
a

b

$@x2«1~x!#«0~x!1@x2«2~x!#@2«1~x!#%dx

5E
a

bH d

dx
@x2«2~x!#«0~x!1@x2«2~x!#

d

dx
@«0~x!#J dx

5E
a

b

d@x2«2~x!«0~x!#5@x2«2~x!«0~x!#a
b . (B7)

Substituting~B7! into ~B6! and ~B5!, the coefficientAm is de-
fined by

Am
225(

i 51

N

r i$pbi
2@«1

i 2~km
i bi !2«0

i ~km
i bi !«2

i ~km
i bi !#

2pai
2@«1

i 2~km
i ai !2«0

i ~km
i ai !«2

i ~km
i ai !#% (B8)
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Axial Loading of Bonded Rubber
Blocks
Axially loaded rubber blocks of long, thin rectangular and circular cross section wh
ends are bonded to rigid plates are studied. Closed-form expressions, which satis
actly the governing equations and conditions based upon the classical theory of elas
are derived for the total axial deflection and stress distribution using a superpos
approach. The corresponding relations are presented for readily calculating the appa
Young’s modulus, Ea , the modified modulus, Ea8 , and the deformed lateral profiles of th
blocks. From these, improved approximate elementary expressions for evaluating Ea and
Ea8 are deduced. These estimates, and the precisely found values, agree for large va
the shape factor, S, with those previously suggested, but also fit the experimenta
more closely for small values of S. Confirmation is provided that the assumption
parabolic lateral profile is invalid for small values of S.@DOI: 10.1115/1.1507769#
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1 Introduction
Extensive use is made of rubber bearings in a wide rang

modern engineering environments. The important applications
clude the reduction of traffic-induced movement and the seis
isolation of vulnerable buildings, the flexure of bridges with e
pansion bearings and the protection of vibration-sensitive ins
ments. They often involve rubber blocks bonded to rigid meta
end plates and it is therefore necessary to be able to predic
stiffness and stress distribution created when loads are applie

The approximate expressions developed by Gent and Lin
@1# and Gent@2# for the apparent Young’s modulus,Ea , of bonded
incompressible rubber blocks subjected to compression are
widely quoted and used in the engineering industry for asses
their axial stiffnesses. They depend upon the so-called shape
tor, S, which is defined as the ratio of the loaded bonded are
the force-free lateral surface area. The Gent and Lindley@1# ap-
proximations,Ea

(GL) , take the forms

Ea
~GL!5

4E

3
~11S2!, (1)

for blocks of rectangular cross section whose length is large c
pared to its width, and

Ea
~GL!5E~112S2!, (2)

for blocks of circular cross section, whereE denotes the Young’s
modulus of the material of the block. As rubber is generally
garded as incompressible, the expressions~1! and ~2! are often
written ~@3#! with 3m replacingE, wherem is the shear modulus
which along withK, the bulk modulus, are fundamental mater
constants.

To account for the bulk compression of the block, Gent a
Lindley @1# reasoned that for blocks of high shape factor, t
modified modulus,Ea8 , should be introduced according to th
formula

1

Ea8
5

1

Ea
1

1

K
, (3)
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30, 2001; final revision, May 22, 2002. Associate Editor: E. Arruda. Discussion
the paper should be addressed to the Editor. Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted
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APPLIED MECHANICS.
836 Õ Vol. 69, NOVEMBER 2002 Copyright ©
of
in-
ic

x-
tru-
lic
the

d.
ley

still
ing
fac-
to

m-

e-

al

nd
he
e

whereEa is approximated appropriately by either~1! or ~2!. They
suggested thatEa8 should then be used to predict the small defle
tions of rubber blocks bonded to rigid end plates under the in
ence of an axial load.

In fact, Gent and Lindley@1# found that the predicted values o
the apparent Young’s modulus calculated using the relations~1!,
~2!, and ~3! agree well with their experimental measuremen
except for small values ofS when they fall below the experimen
tal values.

In deriving the approximations~1! and~2! it was assumed tha
the block material is incompressible, that cross sections of
block normal to the direction of the applied load remain plane a
normal and also that the free lateral surfaces have parabolic
deformed shapes. In the published subsequent discussions o
Gent and Lindley@1# study, Payne@4# observed that the discrep
ancy ‘‘relating to the technically important range of shape fact
less than unity’’ might be accounted for by ‘‘the fact that th
profile of the compressed block was not quite parabolic,’’ a
Hirst @5# hoped that the next step ‘‘would be an improved meth
of estimating the ‘bulgeability.’ ’’ However, it appears that no fu
ther progress has been made.

The present paper derives easily calculable expressions fo
apparent Young’s modulus of blocks of long, thin rectangular a
circular cross sections, and for the deformed profiles of their
eral surfaces, which satisfy exactly the governing equations ba
upon the classical theory of linear elasticity. The analytical te
niques used here are fundamentally similar to those which Hor
Gover, and Tupholme@6,7# presented in deriving expressions fo
the radial stiffness and tilting stiffness of a rubber bush mount
of finite length. Improved approximations forEa8 are also de-
duced. These give values that agree with those predicted by
relations~1!, ~2!, and~3! for large values ofS, but which appear to
fit more closely the experimental data for the smaller values oS.
The shapes of the deformed free surfaces are shown to be
bolic only for large values ofS, and it is confirmed therefore tha
for small values ofS the previously used assumption of a par
bolic profile is indeed invalid.

The analyses of Sections 2 to 5 incorporate the effects of b
compressibility using the principle of superposition for two loa
ing situations. The total axial deflection of the loaded block a
the stress distribution within it are evaluated, in addition to p
senting expressions for the apparent Young’s modulus, the m
fied modulus and the deformed profile, for blocks having lon
thin rectangular or circular cross sections. Finally, in Section
some numerical results are displayed and discussed. Intere
comparisons are made particularly with the recent experime

er
on
art-

nta
ntil
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measurements of Mott and Roland@8#, and a finite element analy
sis of the stress distribution of laminated elastomeric bearings
Imbimbo and De Luca@9#.

2 Formulation
Consider a right-prismatic rubber block of axial heighth and

uniform cross-sectional areaA. Relative to an originO, a rectan-
gular Cartesian coordinate system~x, y, z! is established withOz
along the axis of the block, and its plane ends atz50 and z
5h, as depicted in Fig. 1.

It is assumed throughout that the rubber is homogeneous
isotropic, and that during the subsequent deformations the
placement gradients are sufficiently small for the classical lin
theory of elasticity to be applicable~see, for example, Sokolnikof
@10#, Spencer@11#, or Hunter@12#!. The rubber is bonded to rigid
end plates atz50 andz5h which prevent all distortions of its
end surfaces.

Suppose the endz50 of the block is held in a fixed position
and the other end,z5h, is subjected to a load of constant ma
nitudeF along thez-axis, which causes it to extend or compres
distanced. The force-free lateral surfaces will be drawn inwards
the loading is tensile, as illustrated in Fig. 1, but will bulge ou
wards under compressive loading. The resulting displaceme
calculated here by the superposition of the displacements ar
in two separate specified loading situations, as represented
grammatically in Fig. 2.

First, in Case A the block is subject to an axial tensile load a
at the same time the lateral surfaces are prevented from disto
by the application of a tensile stress of magnitudesL . The slight
bulk distortion creates an extension of the block with the facz

Fig. 1 Cross section of the block through the yÄ0 plane: un-
deformed „dashed …, deformed „solid …
Journal of Applied Mechanics
by

and
dis-
ear

-
a
if
t-
t is

sing
dia-

nd
ting

5h being displaced a distancedA . Then, in Case B, the sam
block is loaded on its lateral surfaces alone with a compres
stress equal and opposite to that in Case A. Treating the rubb
incompressible, this applied loading axially extends the block b
distancedB . By superposition the total displaced distance,d, is
then given bydA1dB , with the effects of the lateral loading
canceling out.

3 Case A: Axial End Load With Undistorted Lateral
Surfaces

Suppose that the block of uniform cross-sectional areaA is
subjected to bulk dilation by an axial tensile loadF applied on the
plane end facez5h with the lateral faces restrained to rema
undistorted and parallel to thez-axis by tensile stresses of magn
tudesL applied normally to these faces.

The magnitude of the imposed axial stress isF/A and, with
sL5F/A, the block material is everywhere in a state of hydr
static tensile stress, whose magnitude,s, is given by

s5sL5
F

A
. (4)

The bulk dilation,dV, is given by

dV

V
5

F

AK
(5)

where K is the bulk modulus of the rubber. Since the cros
sectional area remains unchanged during the distortion and
end of the block atz50 is fixed, the resulting deflection,dA , of
the end atz5h is given by

dA5
Fh

AK
. (6)

The consequences of the Case B loadings are now analyze
detail; first when the block has a long, thin rectangular cross s
tion and then secondly when it has a circular cross section.

4 Block of Long, Thin Rectangular Cross Section

4.1 Case B: Loaded Lateral Surfaces. Now consider an
incompressible block of rectangular cross section of widthb and
length l with l @b, bounded by the planesx56b/2 and
y56 l /2. In the literature, this is often called an ‘‘infinitely lon
rectangular block.’’ Suppose that it is subjected only to late
loading on the faces x56b/2 by a normal stress
2sL (52F/A), which is equal and opposite to that in Case A

Relative to the rectangular Cartesian axes, the displacem
components at a pointP5(x,y,z) are denoted byu, v, andw, the
strain components by«xx , «yy , «zz, «xy , «xz , and«yz , and the
Fig. 2 Superposition of Cases A and B
NOVEMBER 2002, Vol. 69 Õ 837
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stress components bysxx , syy , szz, sxy , sxz , andsyz in the
usual notation. For small strains, the assumption of incompr
ibility implies that

«xx1«yy1«zz50 (7)

and that

n5
1

2
, m5

E

3
, (8)

with n, m, andE denoting the Poisson’s ratio, shear modulus a
Young’s modulus of the rubber, respectively. The constitut
equations relating the stress and strain components then bec

«xx5
1

E Fsxx2
1

2
~syy1szz!G , «yy5

1

E Fsyy2
1

2
~sxx1szz!G ,

«zz5
1

E Fszz2
1

2
~sxx1syy!G , (9)

«xy5
3

2E
sxy , «xz5

3

2E
sxz , «yz5

3

2E
syz , (10)

and the equilibrium equation which must be fulfilled in th
x-direction is

]sxx

]x
1

]sxy

]y
1

]sxz

]z
50. (11)

The block is of very large extent in they-direction and it is
supposed that each rectangular planez5constant within the block
remains plane and rectangular during the deformation.
Therefore

v50,
]u

]y
5

]w

]x
5

]w

]y
50 (12)

and it follows from the incompressibility condition~7! that

]u

]x
52

dw

dz
. (13)

By symmetry,u50 at x50 for all values ofz, and hence

u52x
dw

dz
. (14)

Representations for the nonzero stress components at any poP
within the rubber can now be derived in terms ofw and its de-
rivatives. Using Eqs.~9!, ~10!, and~14! yields

syy5sxx1
2E

3

dw

dz
, szz5sxx1

4E

3

dw

dz
, szx52

E

3
x

d2w

dz2

(15)

and the equilibrium Eq.~11! reduces to

]sxx

]x
5

E

3
x

d3w

dz3 . (16)

Integrating Eq.~16!, and applying the boundary condition th
sxx52F/A when x56b/2, and substituting into Eq.~15!2 re-
sults in

szz5
E

3 F4
dw

dz
2

1

2 S b2

4
2x2D d3w

dz3 G2
F

A
. (17)

In this loading case there is no imposed force in thez-direction
per unit length in they-direction and so

E
2b/2

b/2

szzdx50, (18)

which, upon evaluation using Eq.~17!, gives the differential equa
tion governingw as
838 Õ Vol. 69, NOVEMBER 2002
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t

d3w

dz3 2
48

b2

dw

dz
52

36F

EAb2 . (19)

Its general solution can be written as

w5c1 coshaz1c2 sinhaz1
3Fz

4EA
1c3 , (20)

with c1 , c2 , andc3 being arbitrary constants, and

a25
48

b2 . (21)

The constantsc1 , c2 , andc3 can be determined to fulfill the
boundary conditions imposed at the two ends of the block. Si
the block is assumed to be bonded to rigid end plates,u50 at z
50 andz5h for all x, and hence, from Eq.~14!,

dw

dz
50 at z50 and z5h. (22)

Also,

w50 at z50, (23)

since the end atz50 is regarded as fixed. When the gene
solution ~20! is subjected to the conditions~22! and ~23! it is
found that the required solution can be written as

w5
3F

4EA H z2
2

a

sinh
az

2
coshFa

2
~h2z!G

cosh
ah

2

J . (24)

The magnitude of the axial displacement,dB , of the end of the
block atz5h being sought is thus given by

dB5
3Fh

4EA S 12
2

ah
tanh

ah

2 D . (25)

4.2 Apparent Young’s Modulus and Deformed Profile.
The apparent Young’s modulus can now be determined. By su
position of the displacements~6! and~25! obtained above in Case
A and B, the axial end deflectiond5dA1dB of the block when it
is subjected only to the axial loadF is given by

d5
Fh

A F 3

4E S 12
2

ah
tanh

ah

2 D1
1

KG . (26)

Adopting the notation of Gent and Lindley@1#, this can be written
in terms of the ‘‘apparent Young’s modulus,’’Ea8 , as

d5
Fh

AEa8
. (27)

Recalling Eq.~21! yields the representation

1

Ea8
5

3

4E S 12
S

)
tanh
)

S D 1
1

K
, (28)

where, for a block of rectangular cross section in which the len
is much greater than the width, the shape factorS is approximately
given by

S5
b

2h
. (29)

When the material of the block is incompressible (K5`), it fol-
lows from Eq.~28!, or by comparison with Eq.~3!, that the ap-
parent Young’s modulus,Ea , for a block of incompressible rubbe
can be calculated exactly from the compact relationship
Transactions of the ASME
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Table 1 Percentage errors in using approximations for Ea

S 0.4 0.8 1.2 1.6 2.0 2.4 2.8

Error in Ea using
relation ~1!, %

10.78 9.78 7.19 5.16 3.77 2.83 2.1

Error in Ea using
relation ~32!, %

24.60 21.22 20.41 20.17 20.08 20.04 20.02
t

-

-

y

oss

y
o

ng
nor-

c-

rit-
Ea5
4E

3S 12
S

)
tanh
)

S D . (30)

Numerical values ofEa8 and Ea can be easily derived from Eqs
~28! and ~30! with modern software. However, it is interesting
cite even more readily accessible elementary estimates,Ea8

approx

andEa
approx, which can be deduced for them.

By expanding the hyperbolic tangent using the series repre
tation given by Abramowitz and Stegun@13#, Eq. ~4.5.64!, it can
be shown that the relations~28! and ~30! are approximated by

1

Ea8
approx5

3

4E~1.21S2!
1

1

K
, (31)

Ea
approx5

4E

3
~1.21S2!. (32)

These are of the same form as, but are more accurate than
relationships given by Eqs.~1! and ~3! which were proposed by
Gent and Lindley@1#. For example,Ea

approx approximates increas
ingly more closely to the exact representation~30! for values ofS
greater than about 0.23. Specifically, the percentage errors in
ing Eqs.~1! and~32!, rather than Eq.~30!, whenS50.4 are 10.8%
and24.6%, respectively, while whenS52 the corresponding er
rors are 3.8% and20.1%. Further values are presented in Table

Most of the analyses in previous papers have been founde
the assumption that the unloaded lateral surfaces will deform
have parabolic profiles. However, it follows from Eqs.~14! and
~24! that in fact

u52
3Fx

2EA

sinh
az

2
sinhFa

2
~h2z!G

cosh
ah

2

, (33)

which whenx56b/2 gives an expression for the exact deform
shapes of the free edges of the block.

4.3 Stresses. The stress components created within t
block by the application of the loadF alone can be calculated b
the superposition of those in Cases A and B. These are der
explicitly from Eqs.~4!, ~17!, ~24!, and~15! as

sxx5
3F

2A S 12
4x2

b2 D coshFaS z2
h

2D G
cosh

ah

2

,

syy5
F

A H 1

2
2S 6x2

b2 21D coshFaS z2
h

2D G
cosh

ah

2

J ,

szz5
F

A H 12S 6x2

b2 2
1

2D coshFaS z2
h

2D G
cosh

ah

2

J ,
ied Mechanics
.
o

sen-

, the

us-
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to
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szx5
Fax

4A

sinhFaS z2
h

2D G
cosh

ah

2

. (34)

Their maximum values occur on the bonded endsz50 and z
5h, where

sxx5syy5szz5
3F

2A S 12
4x2

b2 D , szx57
Fax

4A
tanh

ah

2
.

(35)

5 Circular Block

5.1 Case B: Loaded Lateral Surface. A similar analysis
can be applied to study an incompressible block of circular cr
section of radiusa, with the cylindrical polar coordinates (r ,u,z)
of a pointP related to its rectangular Cartesian coordinates bx
5r cosu, y5r sinu, z5z. Suppose that it is subjected only t
lateral loading on the surfacer 5a by a radial stress2sL .

The displacement components atP are denoted byur , uu , and
uz , and the strain and stress components by« i j ands i j , wherei,
j 5r , u or z, with the corresponding constitutive equations relati
them. The loading is axisymmetrical and plane cross sections
mal to thez-axis are assumed to remain plane. Therefore,

uu50,
]ur

]u
5

]uz

]u
5

]uz

]r
50. (36)

The incompressibility condition implies that

« rr 1«uu1«zz50, (37)

and the equilibrium equation which must hold in the radial dire
tion ~@11#, Eq. ~11.39!! is

s rr 2suu1r
]s rr

]r
1r

]s rz

]z
50. (38)

It follows from Eqs.~36! and ~37! that

]

]r
~rur !52r

duz

dz
, (39)

and hence, sinceur50 at r 50 for all values ofz,

ur52
r

2

duz

dz
. (40)

The nonzero stress components within the block can now be w
ten in terms ofuz and its derivatives. Equation~40! and the con-
stitutive equations yield

s rr 5suu , szz5s rr 1E
duz

dz
, szr52

E

6
r

d2uz

dz2 (41)

and the equilibrium Eq.~38! gives

]s rr

]r
5

E

6
r

d3uz

dz3 . (42)

Imposing the boundary condition thats rr 52F/A whenr 5a on
the integral of Eq.~42! and substituting into Eq.~41!2 yields
NOVEMBER 2002, Vol. 69 Õ 839
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Table 2 Percentage errors in using approximations for Ea

S 0.4 0.8 1.2 1.6 2.0 2.4 2.8

Error in Ea using
relation ~2!, %

10.92 7.61 4.77 3.11 2.15 1.56 1.1

Error in Ea using
relation ~56!, %

22.57 20.50 20.14 20.05 20.02 20.01 20.01
o

he
r
the

of

ec-

B,
the
szz5EFduz

dz
2

1

12
~a22r 2!

d3uz

dz3 G2
F

A
. (43)

However, as there is no externally applied axial force,

E
0

a

szzrdr 50, (44)

which leads to the governing differential equation foruz as

d3uz

dz3 2
24

a2

duz

dz
52

24F

EAa2 . (45)

Since the rubber is bonded to rigid end plates,ur50 at z50
andz5h for all r, and thus, from Eq.~40!

duz

dz
50 at z50 and z5h. (46)

Moreover the end atz50 is fixed, so

uz50 at z50. (47)

The solution of Eq.~45! which satisfies the conditions~46! and
~47! can be written as

uz5
F

EA H z2
2

b

sinh
bz

2
coshFb

2
~h2z!G

cosh
bh

2

J , (48)

where

b25
24

a2 . (49)

The distance,dB , through which the end of the block atz5h is
displaced is therefore given by

dB5
Fh

EA S 12
2

bh
tanh

bh

2 D . (50)

5.2 Apparent Young’s Modulus and Deformed Profile.
Representations for the apparent Young’s modulus can now
determined analogously to those for the rectangular block ab
By superposition of the distances~6! and ~50!, the axial end de-
flectiond of the circular block when subjected to the axial loadF
is

d5
Fh

A F 1

E S 12
2

bh
tanh

bh

2 D1
1

KG . (51)

Equations~27! and ~49! then yield the representation

1

Ea8
5

1

E S 12SA2

3
tanh

1

S
A3

2D 1
1

K
, (52)

where, for a block of circular cross section, the shape factorS is

S5
a

2h
. (53)

The apparent Young’s modulus,Ea , for a circular block of incom-
pressible rubber can consequently be written as
NOVEMBER 2002
be
ve.

Ea5
E

12SA2

3
tanh

1

S
A3

2

. (54)

Gent and Lindley@1# presented the expressions~2! and ~3! for
Ea andEa8 . However, the series expansions of Eqs.~54! and~52!
yield refined approximations,Ea

approx andEa8
approx, for them. It is

found that the results~52! and ~54! are closely approximated by

1

Ea8
approx5

1

E~1.212S2!
1

1

K
, (55)

Ea
approx5E~1.212S2!. (56)

The relation~56!, for example, provides a better estimate to t
exact representation~54! than that given by Gent and Lindley fo
values ofS greater than about 0.16. Comparative values for
percentage errors in using Eq.~56! as opposed to~2! for evaluat-
ing Ea , which is given exactly by the relation~54!, are displayed
in Table 2.

It follows from Eqs.~40! and ~48! that

ur52
Fr

EA

sinh
bz

2
sinhFb

2
~h2z!G

cosh
bh

2

. (57)

Obviously, the deformed profile of the curved outer surface
the block can then be deduced by puttingr 5a. This has previ-
ously been assumed to be parabolic. However, it is shown in S
tion 6 that this is only appropriate for large values ofS.

5.3 Stresses. By superposition of those in Cases A and
the stress components within the block that are created by
applied loadF alone can be determined from Eqs.~4!, ~40!, ~48!,
and ~41! in the forms

s rr 5suu5
2F

A S 12
r 2

a2D coshFbS z2
h

2D G
cosh

bh

2

,

szz5
F

A H 11S 12
2r 2

a2 D coshFbS z2
h

2D G
cosh

bh

2

J ,

s rz5
Fbr

6A

sinhFbS z2
h

2D G
cosh

bh

2

. (58)

Their maximum values occur on the bonded endsz50 and z
5h, where
Transactions of the ASME
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s rr 5suu5szz5
2F

A S 12
r 2

a2D , s rz57
Fbr

6A
tanh

bh

2
.

(59)

It is also interesting to note that at the central cross section, w
z5h/2, s rz50 and as the heighth of the block becomes large
s rr 5suu→0 andszz→F/A, indicating a uniform stress.

6 Numerical Results and Conclusions
There is clearly a close similarity between the techniques

analyses presented in Sections 4 and 5. However, in this se
the discussion is concentrated on the implications of the circ
block results for easy comparison with the available experime
and finite element approach investigations.

The deformed profiles of the curved lateral sides of circu
blocks are given precisely by Eq.~57! when r 5a. But it is con-
venient to introduce the non-dimensionalized fractional radial d
placement component of the free surface per unit axial str
ua /ae, as a suitable measure for the comparison of the profile
blocks having various shape factors. Here the fractional ra
displacement component of the free surface at a heightz is ua /a
with ua5ur evaluated atr 5a, and e5d/h is a measure of the
axial strain. Recalling Eqs.~57!, ~51!, ~49!, and~53! leads to the
representation, in terms of the shape factorS,

ua

ae
52

sinhF1

S
A3

2
S z

h
D GsinhF1

S
A3

2
S 12

z

h
D G

S 11
E

K
D coshS 1

S
A3

2
D 2SA2

3
sinhS 1

S
A3

2
D .

(60)

As expected, the values ofua /ae are clearly symmetrical abou
z/h50.5. The multiplicative negative sign indicates that for a te
sile load the profile will be waisted inwards. However, for a co
pressive load it will analogously bulge outwards.

Graphs of2ua /ae as a function ofz/h are presented in Figs
3~a! and 3~b! for a range of values ofSwith E/K having the value
1931024. Its maximum value is found to occur on the centr
cross-sectional planez5h/2 whenS'1.6. It is obvious that the
graphs whenS50.1 andS50.2 cannot be approximated at a
reasonably by parabolic curves. Careful analysis, in fact, sh
that the accuracy of fit between the graphs and the exact para
curves drawn through the pointsz50, z5h and the apices of the
graphs increases asS increases. Comparisons of these are d
played in Figs. 4~a! and 4~b! for illustration whenS50.1 andS
51.6.

Gent and Lindley@1#, and other authors, derived relations f
the apparent Young’s modulus based upon the assumption
parabolic profile. It was found experimentally, however, by M
and Roland@8# that slender rubber circular cylinders~with S be-
tween about 0.11 and 0.27! assume a much flatter profile. A com
parison of the Gent and Lindley prediction with the experimen
results is given by Mott and Roland in their Fig. 2, and th
conclude that ‘‘the assumption of a parabolic profile is erro
ous.’’ There is a striking resemblance between the flattish cur
in Fig. 3~a! here and the pattern of their experimental values. T
the analysis of Section 5 and the graphs presented therein de
strate theoretically for the first time that it is indeed not adequ
for small values ofS to assume parabolic profiles for circula
blocks. The assumption can be shown to be similarly invalid
rectangular blocks from the results of Section 4.

Gent and Lindley@1# ~Fig. 1! compared their predicted value
of the apparent Young’s modulus,Ea8

(GL) , as given by Eqs.~2!
and ~3!, for a circular block in compression with experiment
measurements. They observed that for the smaller values ofS ‘‘the
measured values ofEa8 are seen to fall somewhat below tho
predicted.’’ Bearing in mind the above discussion, it is reasona
to presume that this discrepancy is due to the assumption
Journal of Applied Mechanics
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parabolic profile. This is indeed confirmed by comparing the v
ues of Ea8 given exactly by the representation~52! with those,
Ea8

(GL) , calculated from Eq.~3! using the Gent and Lindley ap
proximationEa

(GL) of Eq. ~2!. The realistic data used here areE
519 kg/cm2 andK5104 kg/cm2, as adopted by Gent and Lindle
@1#. The values using Eq.~52! are found to be significantly greate
than those using the approximation~2! for values ofS less than 2.
They are presented in Fig. 5 when plotted on a logarithmic sc
for direct comparison with Fig. 1 of Gent and Lindley@1#. It is
assumed throughout that blocks of small shape factor do not
perience instability when in compression.

Fig. 3 Comparison of the deformed profiles „a… when SÄ0.1,
0.2, 0.4, 0.8 and 1.6 „b… when SÄ1.6, 3.2, 6.4, 12.8 and 25.6
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Imbimbo and De Luca@9# provided a comparison of the influ
ence of varying the shape factor upon the stress distribution wi
a circular block between a finite element model and one ba
upon the approximation~2! of Gent and Lindley@1#. They con-
cluded that the approximate solution only ‘‘gives a satisfact
estimation for defining all the stress distributions within the d
vice’’ for values ofS.20. Particular emphasis is given to stud
ing the normal stresses in the central rubber layer and at
rubber-steel interfaces in their Figs. 4 and 8. The correspon
graphs of the nondimensional normal stressesszz/(F/A) at z
5h/2 andz50 or z5h plotted againstr /a can readily be drawn
using the exact representations~58! and ~59! in Section 5 for a
range of values ofS.

Fig. 4 Comparison of the deformed profiles with parabolic
curves „a… when SÄ0.1 „b… when SÄ1.6
842 Õ Vol. 69, NOVEMBER 2002
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Fig. 5 Comparison of the exact values of Ea8 with the approxi-
mate values Ea8

„GL… as S varies

Fig. 6 Variation of A szz ÕF with r Õa at the mid-height section

Fig. 7 Variation of A s rr ÕF with zÕh at r ÕaÄ0.9
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At the bonded ends, the variation ofAszz/F (5As rr /F
5Asuu /F) with r /a is given by the parabolic curve (59)1 . This,
in fact, is clearly independent of the shape factorS, although
Imbimbo and De Luca@9# ~Figs. 5–8! apparently failed to realize
this in presenting their virtually identical graphs.

The variation ofAszz/F with r /a at the mid-height sectionz
5h/2 is illustrated in Fig. 6, using Eq. (58)2 for S50.1, 1.0, 6.25
and 30. For larger values ofS ~as presented by Imbimbo and D
Luca@9# ~Fig. 4!!, the curves become indistinguishable from tho
for S530. ForS50.1 the stress distribution has become const
across the section.

In Figs. 7 and 8, the variation ofAs rr /F andAszz/F with the
height,z/h, up the block are depicted for illustration at the rad
position r /a50.9, for S50.1, 1.0, 6.25, and 30. Again it is clea
that the curves virtually coalesce for the larger values ofS. The
prerequisite for a parabolic distortion of the lateral surfaces is
]s rr /]z50. This can be seen from Fig. 7 to be satisfied appro
mately for the larger values ofS, giving further confirmation of
the comments made above about the validity of the parabolic
face assumption. Additionally Figs. 7 and 8 demonstrate thatszz
's rr (5suu) for the larger values ofS. From Figs. 6, 7, and 8 it
can be inferred that for a block withS50.1 when 0.2,z/h,0.8
the radial and tangential stresses are approximately zero an
axial stress is approximately uniform across the section and e
to F/A.

The variation withr /a of the shear stress,s rz , at the bonded
end z5h, as calculated from the expression~59!2, is shown in
Fig. 9. The graphs are drawn forS56.25 andS530, with F/A
530 MPa for direct comparison with those provided by the mo

Fig. 8 Variation of A szz ÕF with zÕh at r ÕaÄ0.9
Journal of Applied Mechanics
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of Imbimbo and De Luca@9#, ~Figs. 11 and 12!. It should, of
course, be pointed out here that the theoretically predicted m
mum values of the shear stress occurring at the force-free o
lateral surface cannot physically exist, and must actually de
rapidly to zero very near to this surface. They arise as a con
quence of assuming that, during axial strain, plane sections of
block remain plane. This cannot be valid at the free outer surfa
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Stress Behavior at the Interface
Junction of an Elastic Inclusion
The stress distribution at the interface junction of an elastic inclusion embedded
brittle matrix is examined. Solutions are derived for the stress and displacement
near the junction formed by the intersection of the interfaces between the inclusion
the matrix. The stress field consists of symmetric (mode I) and skew-symmetric (mo
components. The magnitude of the intensity factor associated with each mode of
mation is determined using a combination of the finite element method and a co
integral. The numerical results of the stresses near the interface junction of two diff
inclusion geometries show that the asymptotic solutions of the stresses are in agre
with those from the finite element prediction when higher-order terms are considered
implications of the results for the failure of particle-reinforced and two-phase bri
materials are discussed.@DOI: 10.1115/1.1507765#
o
f

o

a

z

n

h

c

c

i

t

ies

s

dge
ti-

the
ious
tion
her
isi-
ress
an
ical
ial
rma-
w-
hen
ith
field
Pahn
the
tle
ya

gu-

uare
to

and
i-

on.
ro-
me

ter-
trix

of
r-
en-
for
nte-
thefi
Introduction
Particulate composites, consisting of particles of one or m

materials imbedded in a matrix of another material, are used f
wide range of engineering applications. In civil engineering,
example, aggregate-bitumen composite is used to accommo
the lateral movement of highway bridges while mortar-aggreg
composite is widely used in building and construction. The use
plastic encapsulated microcircuits in surface mount technol
and in avionics is becoming increasingly popular; the microcirc
is encapsulated with epoxy resin filled with fused silica.

In these applications, and many others, the integrity of the
terfaces between the inclusion and the matrix material is p
mount to the performance of the product. The debonding of
aggregates from the bitumen matrix, for example, reduces the
sile strength of the composite and can lead to the ingress of w
and a further acceleration of the failure because of the free
and thawing of the condensed moisture. Similarly, debonding
the microchip-encapsulant interface can cause immediate or i
mittent electrical failure and can have negative effect on the lo
term performance of the microchip by providing a site for t
collection of moisture and ionic contaminants.

The mismatch in the elastic and thermal properties of an in
sion and a matrix may lead to the development of stress singu
ity at the corners of nonspheroid inclusions embedded in an ela
matrix. The corners are the intersection of two or more interfa
between an inclusion and the matrix, hereafter referred to asin-
terface junctions. The debonding of the inclusions from the matr
is a combined effect of the stress singularity at the interface ju
tions and relatively low inclusion/matrix interfacial strength.
detailed characterization of the stress field near the junction
needed to understand the role of material properties and inclu
geometry on the initiation of debonding in particulate composit

The analysis of stress singularities at a wedge tip and a
interface corner~i.e., the intersection of an interface with
traction-free surface! of bimaterial joints has been examined b
various authors, see for example, Refs.@1–4#. In many cases, the
stress field at a traction-free edge is of the formK fr

l21, whereK f
is the free-edge stress intensity factor, (l21) is the order of the
stress singularity andr is the radial distance from the singula

1To whom correspondence should be addressed.
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MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 2
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Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
844 Õ Vol. 69, NOVEMBER 2002 Copyright ©
ore
r a

or
date
ate
of
gy

uit

in-
ra-

the
ten-
ater
ing
at

ter-
ng-
e

lu-
lar-
stic
es

x
nc-
A
s is
sion
es.
an

a
y

r

point. BothK f andl depend on the elastic and thermal propert
of the materials and on the joint geometry. In addition,K f depends
on the magnitude of the applied load. The solution ofl and the
calibration forK f for a wide range of bimaterial joint geometrie
exist in the literature~@1–5#!. The magnitude ofl is obtained from
the asymptotic analysis of the elastic problem while the free-e
intensity factorK f is determined either by matching the theore
cal solution to the finite element solution~@3#! or using a combi-
nation of finite element solution and a contour integral~@4,6#!.

In contrast to the detailed discussion in the literature on
characteristics of the stress singularity at the free-edge of var
bimaterial joint geometries, the analysis of the stress distribu
near the interface junctions of inclusions imbedded in anot
material is relatively nonexistence in the literature. Chen and N
tani @7# have used the body force method to determine the st
field near the interface junction of an inclusion embedded in
infinite plate, and subjected to a wide range of remote mechan
loading; including uniaxial tension, in-plane shear, and biax
tension. The stress field was expressed as a sum of two defo
tion modes, one of which is symmetric and the other ske
symmetric about a line bisecting the inclusion wedge angle. C
and Nisitani@7# considered only the stress field associated w
the smallest eigenvalue; higher-order terms and the stress
associated with temperature change were not considered.
and Earmme@8# have recently examined the stress field near
interface junction of a partially debonded inclusion within a brit
matrix. Following an approach originally proposed by Akisan
and Fleck@9#, Pahn and Earmme@8# determined the crack-tip
stress intensity factors as a function of the intensity of the sin
larity at the junction. More recently, Reedy and Guess@10# have
analyzed the stress field near the interface junction of a sq
rigid inclusion embedded within an epoxy resin and subjected
an axisymmetric loading. The solution presented by Reedy
Guess@10# is applicable, for example, to plastic encapsulated m
crocircuits where the matrix is more compliant than the inclusi
However, the assumption of a rigid inclusion may not be app
priate for cases where the stiffness of the inclusion is of the sa
order of magnitude as that of the matrix.

In this paper we investigate the stress distribution at the in
face junction of an elastic inclusion embedded in an elastic ma
and subjected to both mechanical and thermal loading~Fig. 1~a!!.
Closed-form solution of the stress field is obtained as a function
the inclusion wedge angleg and of the inclusion elastic and the
mal properties relative to those of the matrix material. The int
sity of the singularity at the interface junction is determined
both the dominant and higher-order terms using the contour i
gral approach. The solution is compared with the few cases in
literature, obtained by the body force method~@7#! and by the
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extrapolation method~@10#!. The consideration of thermal loadin
and higher-order terms for a wide range of inclusion/matrix pr
erties will fill the gap that presently exists in the analysis of t
stress field near interface junctions. Although the integral met
has been used in the past to evaluate the free-edge stress int
factors ~@6,9,11#!, a different methodology is needed for th
method to be applied to the analysis of stress singularity at in
face junctions because the stress distribution at an interface j
tion is different from that near a free-edge.

Asymptotic Solution
A schematic diagram of an inclusion embedded in another

terial is shown in Fig. 1~a!. For simplicity the inclusion is as-
sumed to have a quadrilateral cross section and the wedge an
the interface junction of interest is denoted byg. Both the inclu-
sion and the matrix material are assumed to be elastic, isotr
and homogeneous, and the two materials are perfectly bon
When the composite~i.e., inclusion and matrix material! is sub-
jected to a remote mechanical loading and/or a uniform chang
temperature, a stress singularity may develop at each of the i
face junctions of the inclusion depending on the relative prop
ties of the materials.

A magnified view of one of the interface junctions, labeled R
shown in Fig. 1~b!. Plane polar coordinate system~r, u! centred at
interface junction R is used to describe the local stresses
displacements. The region 0<u<g is occupied by the inclusion
~material 1! while the regiong,u,2p is occupied by the matrix
~material 2!. Plane-strain conditions are assumed in the analy
however, the equivalent plane stress solution can be obtained
the results presented in this paper by making appropriate su
tution for the modulus and the Poisson’s ratio.

It is shown in the Appendix that when the geometry of t
two-phase material is symmetric about the planeu5g/2, the
stresses and displacements near junction R can be decouple
symmetric~mode I! and skew-symmetric~mode II! components.
For a wide range of material combinations, these stresses
displacements are given by

Fig. 1 „a… A quadrilateral elastic inclusion embedded in a
brittle matrix; „b… a magnified view of interface junction R,
showing the local coordinates
Journal of Applied Mechanics
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skl5(
p51

N

K j
~p!r vp21f kl

~p!1(
q51

M

K j
~q!r dq21f kl

~q!1sklo

uk5(
p51

N

K j
~p!r vpgk

~p!1(
q51

M

K j
~q!r dqgk

~q!1uko (1)

where (k,l )[(r ,u), vp is the eigenvalue of the symmetric stre
field with a corresponding interface-junction stress intensity fac
K j

(p) , anddq is the eigenvalue of the skew-symmetric stress fi
with interface-junction stress intensity factorK j

(q) . Note that sub-
script j denotesjunction; this distinguishes the interface-junctio
stress intensity factor from the free-edge stress intensity factoK f
for characterizing the singularity where an interface intersec
traction-free surface.f kl

(p) , f kl
(q) , gk

(p) , and gk
(q) are nondimen-

sional functions of material properties, polar coordinateu and
wedge angleg, while parametersN and M are the number of
eigenvalues associated with the modes I and II fields, respectiv
The full expressions for these functions are given in the Appen

The eigenvaluesdq(q51,M ) is always real while vp(p
51,N) may be complex depending on the wedge angleg and the
material properties. However,vp is real when b(a2b).0,
wherea andb are the Dundurs@12# elastic mismatch parameter
defined in Eq.~14!. The stress field in Eq.~1! is only applicable to
material combinations with real eigenvalues, and this is the fo
of the present study. The stress field is singular when 0.5,vp
,1 for the symmetric field~or 0.5,dq,1 for the skew-
symmetric field! and nonsingular whenvp.1 ~or dq.1). In ad-
dition to the stress field associated with each eigenvalue,
possible to have a nonsingular constant stress near the inte
junction depending on the inclusion geometry and the misma
in the thermal properties of the materials. The nonsingular c
stant stress field and the corresponding displacement are den
respectively, bysklo and uko in Eq. ~1!. These terms are zero
when the two-phase material is subjected only to remote mech
cal loading and finite when subjected to a uniform change in te
perature.

For a wedge angleg50 and inclusion shear modulusm150
and Poisson’s ration150, the eigenvalues arev15d150.5. Con-
sequently, Eq.~1! reduces to the conventional mixed-mode crac
tip fields for a crack in a monolithic material.

The interface-junction stress intensity factorsK j
(p) andK j

(q) (p
51,N; q51,M ) are the only unknown parameters in Eq.~1!.
Each of these intensity factors is defined such that the tange
stress associated with a particular eigenvalue is given by

suu
~p!5K j

~p!r vp21 ~at u50 for the mode I field! (2a)

suu
~q!5K j

~q!r dq21 ~at u50 for the mode II field!. (2b)

Note that the interfaces which form the inclusion wedge of int
est are alongu50 and u5g, where g is the inclusion wedge
angle. The definition in Eq.~2! is different from that used by Chen
and Nisitani@7# and by Reedy and Guess@10#, where the intensity
factors are defined relative to the tangential stress along the p
that bisects the inclusion wedge angle. The magnitude of
interface-junction stress intensity factors depends on the inclu
wedge angleg, elastic and thermal properties of the inclusion a
matrix, and on the magnitude of the applied loading. The f
description of the stress field in the vicinity of an interface jun
tion requires knowledge of both the eigenvalues and the ass
ated intensity factors. In addition, the onset of failure at a junct
can be predicted based on a critical value of the intensity facto
the interface junction~@13,14#!.
NOVEMBER 2002, Vol. 69 Õ 845
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Evaluation of the Interface Junction Stress Intensity
Factors

The interface-junction stress intensity factor associated w
each of the eigenvalues is determined using a combination
path-independent contour integral and the finite element solut
This method has been applied in the past to bonded joint ge
etries with single eigenvalue~@4#!. The stresses in the vicinity o
the interface junction of the two-phase material under consid
ation are not just singular with higher-order terms; they are a
mixed-mode, consisting of symmetric and skew-symmetric fie
A summary of how the path-independent integral approach ca
used to evaluate the interface-junction stress intensity facto
such situation is given below.

In order to evaluate the interface-junction stress intensity fa
K j

(p) associated with an eigenvaluevp for the symmetric field,
consider an integral around a pathS enclosing the interface junc
tion, as shown in Fig. 2,

I ~vp!5 R
S
@skluk

~p!* 2skl
~p!* uk#nkds. (3)

Here, (k,l )[(r ,u) are the plane polar coordinates centred at
interface junction R of interest, (skl ,uk) are the total stresses an

displacements given in Eq.~1!, (skl
(p)* ,uk

(p)* ) are auxiliary stress
and displacement fields associated with the eigenvaluevp , nk is
the outward unit normal toS, andds is an infinitesimal line seg-
ment ofS.

It is known from the asymptotic analysis described in the A
pendix that ifvp is an eigenvalue for given material properti
and inclusion wedge angleg thereby satisfying the characterist
Eq. ~12!, vp* (52vp) also satisfies the same characteristic eq
tion for the same material properties and angleg. Hence, the
stress and displacement fields associated withvp* are used as the
auxiliary fields, and are given by

skl
~p!* 5K j

~p!* r vp* 21f kl
~p!*

uk
~p!* 5K j

~p!* r vp* gk
~p!* . (4)

The nondimensional functionsf kl
(p)* andgk

(p)* are obtained sim-
ply by replacingvp by vp* (52vp) in the expressions for func
tions f kl

(p) andgk
(p) given in the Appendix.

By substituting Eq.~1! and Eq.~4! into Eq. ~3!, we obtain

Fig. 2 A closed integration path S around interface junction R
846 Õ Vol. 69, NOVEMBER 2002
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I ~vp!5 R
S
@sklouk

~ i !* 2skl
~ i !* uko#nkds

1(
p51

N H K j
~ i !* K j

~p!r v i* 1vp R
S
@ f kl

~p!gk
~ i !* 2 f kl

~ i !* gk
~p!#duJ

1(
q51

M H K j
~ i !* K j

~q!r v i* 1dq R
S
@ f kl

~q!gk
~ i !* 2 f kl

~ i !* gk
~q!#duJ

(5)

wherev i* 52vp for the evaluation of the intensity factorK j
(p) of

the symmetric field with eigenvaluevp . The integrals in Eq.~5!
have the following characteristics:

R
S
@ f kl

~p!gk
~ i !* 2 f kl

~ i !* gk
~p!#du5H 0 v i* Þ2vp

Lp v i* 52vp

R
S
@ f kl

~q!gk
~ i !* 2 f kl

~ i !* gk
~q!#du50 (6a)

where

Lp5 R
S
b f kl

~p!gk
~p!* 2 f kl

~p!* gk
~p!cdu. (6b)

Hence, Eq.~5! can be rewritten as

I ~wp!5 R
S
b~skl2sklo!uk

~p!* 2skl
~p!* ~uk2uko!cnkds (7a)

5LpK j
~p!K j

~p!* (7b)

where the nonsingular constant stresssklo and the associated dis
placementuko are subtracted from the corresponding total valu
near the interface junction.

In order to determine the interface-junction stress intensity f
tor K j

(p) associated with any eigenvaluevp for the symmetric
field, the integralLp in Eq. ~6b! is first evaluated using the closed
form expressions given in the Appendix forf kl

(p) andgk
(p) , and the

corresponding auxiliary fields. The integral in Eq.~7a! is then
evaluated along a chosen integration path using:~i! the finite ele-
ment solution of (skl ,uk) for the particular inclusion geometry

~ii ! the auxiliary fields (skl
(p)* ,uk

(p)* ) given in Eq. ~4! with the

intensity factorK j
(p)* 51/Lp , and~iii ! the magnitude ofsklo and

uko determined from the closed-form expressions given in
Appendix. The definition in Eq.~7a! ensures that the resultin
value of the integral givesK j

(p) .
The process is repeated for each of theN eigenvaluesvp(p

51,N) of the symmetric field to obtain the corresponding stre
intensity factor, and for each of theM eigenvaluesdq (q51,M ) of
the skew-symmetric field to obtain the corresponding intens
factor. In the evaluation of the intensity factors for the ske
symmetric field, the parameters associated with the symme
field in Eq. ~3! to Eq. ~7! are replaced with the correspondin
skew-symmetric parameters. This method allows the interfa
junction stress intensity factors for the two modes of deformat
to be evaluated independently irrespective of the number of eig
values. Two examples are used in the next section to demons
the capability of the method.

Numerical Analysis
The inclusion/matrix geometries considered in this paper

shown in Figs. 3 and 4. Figure 3 shows an elastic square inclu
~wedge angleg590 deg) with a side length 2h, embedded in a
block of elastic material with a 4h by 4h square cross section; thi
is equivalent to 25% inclusion volume fraction. The inclusion
the second example, Fig. 4~a!, has a diamond-shaped cross secti
Transactions of the ASME
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and wedge anglesg560 deg andg5120 deg; only the stresse
near the junction withg560 deg are examined in this paper. Th
major diagonal of the inclusion is 2h long, and it is embedded in
a block of elastic material with 4h by 2h rectangular cross sec
tion, see Fig. 4~a!. The relative dimensions of the diamond-shap
inclusion and the matrix material are equivalent to 17% inclus
volume fraction.

Two loading conditions are considered: a remote uniaxial t
sion s and a uniform temperature changeDT as shown in Figs.
3~a! and 4~a!. The remote tensions is perpendicular to the majo
axis of the diamond-shaped inclusion, and at 45 deg to the dia
nals of the square-shaped inclusion. Because of the symmet
the geometry and loading, only a quarter of the square-sha
inclusion/matrix geometry and half of the diamond-shap
inclusion/matrix geometry were analyzed, as shown in Figs. 3~b!
and 4~b!, respectively. The dimensionh, which is considered as
the characteristic length scale, is taken ash51 unit in the finite
element analysis. The finite element mesh used for both ge
etries is shown in Fig. 5; it consists of eight-node isoparame
plane strain elements. The analysis was carried out u
ABAQUS @15# finite element package.

Results and Discussion
The eigenvalues associated with the symmetric and the sk

symmetric fields are shown in Fig. 6 for the two inclusion geo
etries. The results in Fig. 6 are shown for Dundurs@12# elastic
mismatch parameters21,a,1 andb5a/4; a and b are de-
fined in Eq.~14!. a51 when the inclusion is rigid relative to th
matrix, a521 when the inclusion is much more compliant th
the matrix, anda50 when the inclusion and the matrix hav

Fig. 3 „a… The full geometry of the square-shaped inclusion
and „b… the quarter geometry considered in the finite element
analysis. The two-phase material is subject to a remote tension
s and a uniform change in temperature DT.
Journal of Applied Mechanics
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identical elastic properties. The stress field associated with a
ticular eigenvalue is singular when the magnitude of the eig
value is less than 1. Whenb5a/4, there are at most two power
law singular stress fields, one symmetric and the other sk
symmetric. This is consistent with previous study by Chen a
Nisitani @16#. For a square rigid inclusion (g590 deg,a51,b
5a/4) there are two eigenvalues for the symmetric field:v1
50.769 and v251.169; and one eigenvalue for the skew
symmetric field,d150.604. The magnitude of the eigenvalue a
sociated with the singular symmetric stress field,v1 , is in agree-
ment with that given by Reedy and Guess@10#, see Fig. 6~b!.

Fig. 4 „a… The full geometry of the diamond-shaped inclusion
and „b… the half geometry considered in the finite element
analysis. The two-phase material is subject to a remote tension
s and a uniform change in temperature DT.

Fig. 5 The finite element mesh used for the two inclusion ge-
ometries
NOVEMBER 2002, Vol. 69 Õ 847
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Fig. 6 The eigenvalues for „a… the diamond-shaped inclusion,
gÄ60 deg and „b… the square-shaped inclusion, gÄ90 deg;
both for material elastic mismatch parameters a and bÄaÕ4.
The eigenvalues vp „pÄ1,2… are associated with the symmetric
stress field while d1 is associated with the skew-symmetric
stress field.
848 Õ Vol. 69, NOVEMBER 2002
Various authors have suggested that the stress field assoc
with the smallest eigenvalue dominates the stress near a w
tip. This suggestion may sometimes by misleading. We shall sh
later for a diamond-shaped inclusion subjected to remote ten
or uniform change in temperature, that the magnitude of the
tensity factor associated with the smallest eigenvalue,d1 , is very
small and its contribution to the overall stress field can theref
be neglected. As such, the dominant stress field is that assoc
with v1 .

The magnitude of the interface-junction stress intensity fac
K j , associated with each eigenvalue for the two inclusion geo
etries under consideration is a function of the elastic misma
parameters~a, b!, the inclusion wedge angleg, and the magnitude
of the applied load. Dimensional considerations dictate thatK j be
related to the inclusion geometry and material properties by

K j
~p!5s* h12vpQvp

~a,b,g!

K j
~q!5s* h12dqQdq

~a,b,g! (8)

wheres* is a representative measure of the applied loading,h is
the characteristic length scale andQ is a dimensionless constan
function of ~a, b! and g. Here, s* 5s for a remote uniaxial
tension of magnitudes and s* 5so for a uniform temperature
change, whereso is a measure of the applied thermal loadin
defined in Eq.~37!. The magnitude ofQ associated with each
eigenvalue is listed in Table 1 for remote tension and in Tabl
for a uniform change in temperature.

In order to assess the accuracy of the nondimensional con
Q obtained by the integral method, a comparison is made with
two studies in open literature on the subject, which contained
results for some of the material combinations and loading. C
and Nisitani@7# have used the body force method to determine
intensity factor associated with the dominant symmetric str
field for a diamond-shaped inclusion subjected to remote unia
tension; however, the effects of temperature and higher-o
terms were not considered. Following the definition ofK j used in
the current study, Eqs.~2! and ~8!, the comparison between th
magnitude ofQv1

obtained by Chen and Nisitani@7# for remote
Table 1 The nondimensional constants Q associated with eigenvalues v1 , v2 , and d1 for inclusion wedge angles gÄ60 deg and
gÄ90 deg when the encapsulated inclusion is subjected to remote uniaxial tension. The corresponding magnitude of each eigen-
value is shown in Fig. 6, and the material parameter bÄaÕ4.

a

Diamond-Shaped Inclusion,g560 deg Square-Shaped Inclusion,g590 deg

Qv1
Qv2

Qd1
Qv1

Qv2
Qd1

20.99 0.057 0.012 22.2E-7 0.009 0.012 0.012
20.8 0.490 20.020 22.5E-7 0.106 0.151 0.172
20.5 0.731 20.091 25.8E-7 0.180 0.219 0.318
20.2 0.844 20.123 29.8E-7 0.227 0.243 0.432

0.2 20.288 1.108 22.1E-6 0.253 0.268 0.558
0.5 20.148 0.936 21.9E-6 0.254 0.286 0.590
0.8 20.147 0.950 27.9E-7 0.251 0.297 0.479
0.99 20.145 0.955 21.9E-8 0.248 0.301 0.318

Table 2 The nondimensional constants Q associated with eigenvalues v1 , v2 , and d1 for inclusion wedge angles gÄ60 deg and
gÄ90 deg when the encapsulated inclusion is subjected to a uniform temperature change. The corresponding magnitude of each
eigenvalue is shown in Fig. 6, and the material parameter bÄaÕ4.

a

Diamond-Shaped Inclusion,g560 deg Square-Shaped Inclusion,g590 deg

Qv1
Qv2

Qd1
Qv1

Qv2
Qd1

20.99 20.056 0.045 4.7E-3 20.019 7.7E-3 4.1E-3
20.8 20.519 20.054 3.7E-3 20.263 20.345 2.7E-3
20.5 21.295 20.197 2.7E-3 20.709 20.849 1.9E-3
20.2 23.849 20.723 1.9E-3 22.235 22.383 1.3E-3

0.2 0.913 4.266 1.1E-3 2.425 2.878 4.8E-4
0.5 0.395 1.777 23.5E-4 1.008 1.1261 3.7E-4
0.8 0.255 1.141 22.6E-3 0.624 0.730 21.9E-4
0.99 0.206 0.935 21.2E-3 0.499 0.599 21.7E-4
Transactions of the ASME
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uniaxial tension and in the current analysis is shown in Fig.
there is good agreement between the two results.

Reedy and Guess@10# have analyzed a square rigid inclusio
subjected to a uniform change in temperature. The intensity fa
associated with the smallest eigenvalue for the symmetric fi
was determined by matching the finite element and asympt
solutions in the vicinity of the interface junction. Using the sam
definition for K j as in the current paper, Reedy and Guess@10#
result gives a value ofQv1

50.594 fora51 andb50.325. Using
the integral method, a value ofQv1

50.528 was obtained for the
same loading and material properties (a51,b50.325); this is
11% lower than that obtained by Reedy and Guess@10#.

The difference between the two values ofQv1
is attributed to

the different inclusion volume fraction in the two analyses. T
inclusion volume fraction considered by Reedy and Guess@10#
was 2.5% and it is 25% in the present analysis. The results of
intensity factor forunbondedsquare rigid inclusion~@10#! show
that the magnitude of the intensity factor decreased by 12% w
the inclusion volume fraction was increased from 2.5% to 25%
similar reduction in the intensity factor is anticipated for a fu
bonded inclusion.

The results shown in Tables 1 and 2, when used in conjunc
with Eq. ~8!, enable the interface-junction stress intensity fac
associated with all the eigenvalues to be determined for an in
sion with wedge anglesg560 deg andg590 deg, subjected to
remote uniaxial tension and temperature change. The results t
fore complement those of Chen and Nisitani@7# for only mechani-
cal loading, and of Reedy and Guess@10# for squarerigid inclu-
sion subjected to axisymmetric remote tension and tempera
change.

For an inclusion with wedge angleg560 deg subjected to re
mote tension, and with wedge angleg590 deg subjected to uni
form temperature change, the magnitude ofQ associated with the
skew-symmetric field is much smaller than the correspond
magnitude for the symmetric field. For these particular ca
where the loading is symmetric about the plane that bisects
wedge angle of interest, a reasonably accurate solution of
stresses near the interface junction can be obtained by negle
the contribution from the skew-symmetric field. For other cas
however, the stress field associated with all the eigenvalues m
be considered to obtain an accurate prediction of the stresse
comparison of the theoretical asymptotic stress field and the fi
element solution is made for an inclusion/matrix combination
demonstrate the need to consider all the stress terms.

Consider, for example, a diamond-shaped inclusion in a ma

Fig. 7 Comparison between the nondimensional constant Qv1
obtained in the present analysis using the integral method and
that obtained by the body force method „†7‡…, for a diamond-
shaped inclusion subjected to remote uniaxial tension. The ma-
terial parameter bÄaÕ4.
Journal of Applied Mechanics
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as shown in Fig. 4. The shear modulus of the inclusionm1
53m2 , wherem2 is the shear modulus of the elastic matrix. Th
inclusion and the matrix have a Poisson’s ration15n250.33.
These relative elastic properties give Dundurs@12# elastic mis-
match parameters ofa50.5 andb5a/4. The eigenvalues for the
inclusion geometry and material properties are:v150.829, v2
51.056, andd151.082. Although, only the symmetric stress fie
associated with the eigenvaluev1 is singular, the stress field as
sociated withv2 is needed to obtain reasonably accurate res
near the interface junction. The stress field associated withd1 can
be neglected due to the relatively small magnitude of the ass
ated stress intensity factor, as described above.

The asymptotic stresses near the interface junction are c
pared with the corresponding finite element solution for the inc
sion with a wedge angleg560 deg. The asymptotic stresses we
calculated using Eq.~1!, with the magnitude of the stress intensi
factors given by Eq.~8! and the values ofQ in Tables 1 and 2. The
angular variation of the stress componentsuu at radial distances
r 50.003h and r 50.06h from the interface junction is shown in
Fig. 8 when the two-phase material is subjected to a remote
sion s, and in Fig. 9 when it is subjected to a thermal loadso .
The magnitude ofsuu is normalized by the applied load:s or so .
Note that the major diagonal of the diamond-shaped inclusio
of length 2h, and the interfaces that form the inclusion wedge a
alongu50 deg andu5g560 deg.

The asymptotic solutions of the symmetric stress field ass
ated with the two eigenvaluesv1(50.829) andv2(51.056) are
shown separately in Figs. 8 and 9 assuu

(p51) andsuu
(p52) , respec-

tively, and the asymptotic solution of the nonsingular const

Fig. 8 The comparison between the asymptotic solution
„dashed-dashed line … and finite element prediction „solid line …

of suu near interface junction R for the diamond-shaped inclu-
sion subjected to a remote uniaxial tension s. „a… rÄ0.003h and
„b… rÄ0.06h ; where r is the radial distance from the interface
junction and h is half the major diagonal of the inclusion. The
elastic mismatch parameters are aÄ0.5 and bÄaÕ4.
NOVEMBER 2002, Vol. 69 Õ 849
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stress is denoted bysuuo . The nonsingular constant stress is ze
when the material is subjected to only remote mechanical load
Fig. 8, and it is finite for a uniform change in temperature, Fig.
As expected the stress fields in Figs. 8 and 9 are symmetri
material 1~i.e., the inclusion! aboutu5g/2530 deg and in ma-
terial 2 ~i.e., the matrix! aboutu5210 deg. The inclusion occu
pies the region 0,u,g while the matrix occupies the regiong
,u,2p.

The stress fieldsuu
(p51) is singular at the interface junction sinc

v1,1, andsuu
(p52) is nonsingular sincev2.1; suu

(p52)50 at r
50. For the material properties under consideration,a50.5, b
5a/4, the nondimensional constantsQv1

520.148 and Qv2

50.936. Therefore, when the inclusion/matrix geometry is s
jected to a remote tension, the interface-junction stress inten
factor associated withv1 , K j

(p51),0, while that associated with
v2 , K j

(p52).0. Consequently, the results presented in Fig. 8
remote tension show thatsuu

(p51) is negative with an absolute
value which decreases with increasing radial distancer from the
junction, whilesuu

(p52) is positive and increases in magnitude wi
increasing distancer. Therefore, the magnitude of the total stre
suu increases with increasing radial distancer from the interface
junction.

The asymptotic total stress is compared in Figs. 8 and 9 w
the finite element solution. The comparison shows that altho
the symmetric stress fieldsuu

(p52) is nonsingular, its contribution to
the near-junction stresses is significant, even at a radial dist

Fig. 9 The comparison between asymptotic solution „dashed-
dashed line … and the finite element prediction „solid line … of suu

near interface junction R for the diamond-shaped inclusion
subject to a thermal load so . „a… rÄ0.003h and „b… rÄ0.06h ;
where r is the radial distance from the interface corner and h is
half the major diagonal of the inclusion. The elastic mismatch
parameters are aÄ0.5 and bÄaÕ4.
850 Õ Vol. 69, NOVEMBER 2002
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r 50.003h from the junction. A good agreement is obtained b
tween the finite element solution and the asymptotic solution o
when both the singular and nonsingular symmetric fields, and
nonsingular constant stress associated with temperature ch
are considered.

The value of the interface junction stress intensity factor ch
acterises the magnitude of the stress state in the vicinity of
interface junction. The solution of the intensity factors and as
ciated eigenvalues for square-shaped and diamond-shaped i
sions embedded in an elastic matrix and subjected to either rem
tension or uniform temperature change, as presented in this p
allow the magnitude of the stresses near the junction to be de
mined. In addition, the magnitude of the interface-junction inte
sity factor can be used to predict the onset of failure, provided
zone of dominance of the singular fields is much greater than
nonlinear deformation or fracture process zone near the junct
Failure occurs when the magnitude of the interface-junction st
intensity factor,K j , attains a critical value. AK j -based approach
has been used successfully to predict the onset of failure
bonded joint geometries where there is only one singular st
term ~@2,14#!. However, there have been few studies~@10,13#! on
the extension of the approach to the prediction of failure in
capsulated inclusions. For this to be successful, the interactio
any, between the interface-junction intensity factors for the sy
metric and skew-symmetric fields at failure must be establish

Conclusions
The stress behavior at the interface junctions of an elastic

clusion embedded in elastic, brittle matrix has been described.
stresses at an interface junction can be separated into symm
~mode I! and skew-symmetric~mode II! fields. A contour integral
method was used to evaluate the stress intensity factors assoc
with both modes of deformation, for a two-phase material s
jected to a remote tension and a uniform change in tempera
The results of two examples: square-shaped and diamond-sh
inclusions, showed that the asymptotic solution of the stresse
an interface junction is in agreement with the finite element p
diction only when all the stress terms including the higher-or
terms are considered.

Appendix

The Asymptotic Fields Near the Interface Corner. The
asymptotic stress and displacement solution near the inter
junctionR of the inclusion shown in Fig. 1 can be obtained usi
the complex variable method or the Airy’s stress method. We
sume there is a symmetry alongu5g/2 and that the inclusion is
perfectly bonded to the matrix. When the two-phase materia
subjected to a combination of remote mechanical loading an
uniform change in temperature, the stress field can be split
two independent modes: a symmetric~mode I! and skew-
symmetric~mode II! fields. The boundary conditions for each o
these modes are

s ru
1 5s ru

2 ; suu
1 5suu

2 ; ur
15ur

21rDr* DT;

uu
15uu

2 ~at u50 and u5g! (9a)

s ru
1 5uu

150 ~at u5g/2!; and s ru
2 5uu

250

~at u5p1g/2! (9b)

for the symmetric field, and

s ru
1 5s ru

2 ; suu
1 5suu

2 ; ur
15ur

21rDr* DT;

uu
15uu

2 ~at u50 and u5g! (10a)

suu
1 5ur

150 ~at u5g/2!; and suu
2 5ur

250

~at u5p1g/2! (10b)
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for the skew-symmetric field. The superscripts in the equati
above refer to the material number~1 for the inclusion and 2 for
the matrix!; Dr* 5(11n2)r22(11n1)r1 characterizes the ther
mal expansion mismatch between the two materials under pl
strain conditions;r1 andr2 are the thermal expansion coefficien
of material 1 and material 2, respectively; andDT is the change in
temperature from a reference value ofTo to a current value ofT,
i.e., DT5T2To .

By substituting the stress and displacement equations from
complex variable analysis into the boundary conditions~9! and
~10! it can easily be shown that the stresses and displacem
near the interface junction are given by

skl5(
p51

N

K j
~p!r vp21f kl

~p!1(
q51

M

K j
~q!r dq21f kl

~q!1sklo

uk5(
p51

N

K j
~p!r vpgk

~p!1(
q51

M

K j
~q!r dqgk

~q!1uko (11)

where (k,l )[(r ,u), vp is the eigenvalue of the symmetric stre
field with a corresponding interface junction stress intensity fac
K j

(p) , anddq is the eigenvalue of the skew-symmetric stress fi
with a corresponding interface junction stress intensity fac
K j

(q) . The parametersN and M are the numbers of eigenvalue
associated with the mode I and II fields, respectively. The non
mensional functionsf kl

(p) , f kl
(q) , gk

(p) , and gk
(q) depends on the

material properties and the inclusion wedge angleg. The terms
sklo and uko in Eq. ~11! are the nonsingular constant stress a
the corresponding displacements which may exist depending
the mismatch in the thermal properties of the material.
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The eigenvaluesv5vp (p51,N) associated with the symmet
ric field must satisfy the characteristic equation

F1~a,b,g,v!512a22~12b2!cos 2vp1~a2b!2v2~1

2cos 2g!1~a22b2!cos@2v~g2p!#12v~a

2b!sing$sinvg1sin@v~2p2g!#%12v~a

2b!b sing$sin@v~2p2g!#2sinvg%50

(12)

and the eigenvalued5dq (q51,M ) for the skew-symmetric field
must satisfy the characteristic equation

F2~a,b,g,d!512a22~12b2!cos 2dp1~a2b!2d2~1

2cos 2g!1~a22b2!cos@2d~g2p!#22d~a

2b!sing$sindg1sin@d~2p2g!#%22d~a

2b!b sing$sin@d~2p2g!#2sindg%50 (13)

wherea and b are the elastic mismatch parameters between
inclusion and the matrix, given for plane strain condition by@12#

a5
m1~k211!2~k111!m2

m1~k211!1~k111!m2
; b5

m1~k221!2~k121!m2

m1~k211!1~k111!m2
.

(14)

The characteristic Eqs.~12! and ~13! are identical to those given
by Chen and Nisitani@16# when the appropriate substitution a
made for~a, b! and the wedge angle.

The functionsf rr , f uu , f ru , gr , and gu corresponding to an
eigenvaluel (5vp or dq ; p51,N andq51,M ) are given by
5
f rr

f uu

f ru

gr

gu

6
m

53
l~32l!cos~lu2u! 2l~32l!sin~lu2u! 2l cos~lu1u! l sin~lu1u!

l~l11!cos~lu2u! 2l~l11!sin~lu2u! l cos~lu1u! 2l sin~lu1u!

l~l21!sin~lu2u! l~l21!cos~lu2u! l sin~lu1u! l cos~lu1u!

~km2l!cos~lu2u!

2mm

~l2km!sin~lu2u!

2mm

2cos~lu1u!

2mm

sin~lu1u!

2mm

~km1l!sin~lu2u!

2mm

~l1km!cos~lu2u!

2mm

sin~lu1u!

2mm

cos~lu1u!

2mm

4 H Am

Bm

Cm

Dm

J (15)
wheremm (5Em/2(11nm)), Em , andnm denote shear modulus
Young’s modulus, and Poisson’s ratio for materialm(51,2), re-
spectively, andkm5324nm for plane strain. The nondimensiona
constantsAm , Bm , Cm , andDm , wherem(51,2) is the material
number, are given for the symmetric field by

A1~v!5j1~a2b!sin@v~g2p!#cos@~v21!g/2# (16)

B1~v!52j1~a2b!sin@v~g2p!#sin@~v21!g/2# (17)

C1~v!5j1$v~a2b!sin@g2v~g2p!#1~12b!sinvp%

3cos@~v11!g/2# (18)

D1~v!52j1$v~a2b!sin@g2v~g2p!#

1~12b!sinvp%sin@~v11!g/2# (19)

A2~v!52j2~a2b!sin@v~g2p!#cos@~v21!~p1g/2!#
(20)
,

l

B2~v!5j2~a2b!sin@v~g2p!#sin@~v21!~p1g/2!#
(21)

C2~v!52j2$v~a2b!sin@g2v~g2p!#

1~11b!sinvp%cos@~v11!~p1g/2!#. (22)

D2~v!5j2$v~a2b!sin@g2v~g2p!#1~11b!sinvp%

3sin@~v11!~p1g/2!# (23)

with

1

j1
5v~v11!~a2b!sin@v~g2p!#cos@~v21!g/2#

1v$v~a2b!sin@g2v~g2p!#1~12b!sinvp%

3cos@~v11!g/2# (24)
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j25j1H ~12b!sinvg1~12a!sin@v~p2g!#1v~a2b!sing

~11b!sin@v~2p2g!#1~11a!sin@v~g2p!#1v~a2b!singJ (25)
Similarly, the nondimensional constantsAm , Bm , Cm , and Dm
for the skew-symmetric field are given by

A1~d!5j3~a2b!sin@d~g2p!#sin@~d21!g/2# (26)

B1~d!5j3~a2b!sin@d~g2p!#cos@~d21!g/2# (27)

C1~d!5j3$d~a2b!sin@g2d~g2p!#2~12b!sindp%

3sin@~d11!g/2# (28)

D1~d!5j3$d~a2b!sin@g2d~g2p!#2~12b!sindp%

3cos@~d11!g/2# (29)

A2~d!5j4~a2b!sin@d~g2p!#sin@~d21!~p1g/2!# (30)

B2~d!5j4~a2b!sin@d~g2p!#cos@~d21!~p1g/2!# (31)
o

e
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C2~d!5j4$d~a2b!sin@g2d~g2p!#2~11b!sindp%

3sin@~d11!~p1g/2!# (32)

D2~d!5j4$d~a2b!sin@g2d~g2p!#2~11b!sindp%

3cos@~d11!~p1g/2!# (33)

with

1

j3
5d~d11!~a2b!sin@d~g2p!#sin@~d21!g/2#

1d$d~a2b!sin@g2d~g2p!#2~12b!sindp%

3sin@~d11!g/2# (34)
j45j3H d~a2b!sing2~12b!sindg2~12a!sin@d~p2g!#

~11b!sin@d~2p2g!#1~11a!sin@d~g2p!#2d~a2b!singJ . (35)
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When the inclusion-matrix composite material is subjected t
uniform change in temperature, an additional nonsingular cons
stress fieldsklo and associated displacementuko given in Eq.~11!
must be considered; (k,l )[(r ,u). The nonsingular constant stres
field and the associated displacement field are given by

s rro
1 5s rro

2 5suuo
1 5suuo

2 52
so

8b

s ruo
1 5s ruo

2 5uuo
1 5uuo

2 50

uro
1 5

r

2m1
~12k1!

so

8b
1rr1* DT

uro
2 5

r

2m2
~12k2!

so

8p
1rr2* DT (36)

where

so5E* Dr* DT (37)

is a measure of the applied thermal loading andE* is the effective
modulus given by

1

E*
5

1

2 F12n1
2

E1
1

12n2
2

E2
G . (38)

Both sklo and uko vanish if the material is subjected only to
remote mechanical loading.
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Penetration Limit Velocity for Ogive-
Nose Projectiles and Limestone Targets

M. J. Forrestal
Sandia National Laboratories, Albuquerque,
NM 87185-1174. Fellow ASME

S. J. Hanchak
4701 Theodore Street, Munhall, PA 15120-2934

We conducted depth-of-penetration experiments with ogive-n
steel projectiles and limestone targets to determine the pene
tion limit velocity. The penetration limit velocity is define
as the minimum striking velocity required to embed the projec
in the target. For striking velocities smaller than the penetrati
limit velocity, the projectile rebounds from the target.
@DOI: 10.1115/1.1480820#

Introduction

Most studies in the broad field of penetration mechanics fo
on penetration depth or residual velocity~@1,2#!. In our recent
work on penetration into aluminum~@3#! or limestone targets
~@4#!, we started with striking velocities large enough to embed
projectiles in the targets and increased the striking velocities u
the projectiles were defeated by turning within or exiting the sid
of the targets. In this study, we define the penetration limit vel
ity as the minimum striking velocity required to embed the p
jectiles in the targets. We use the same targets and projectile
those used by Frew, Forrestal, and Hanchak@4#; however, we
obtain data for smaller striking velocities and determine the p
etration limit velocity.

For some applications, such as anchors or munitions that c
explosives, the projectiles should be embedded in the targets.
chors must be embedded in order to transfer loads to the ta
and munitions are much more effective when coupled to the
get. Thus, another defeat mechanism for some projectiles is
bound from the target.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2001; final revision December 3, 2001. Associate Editor: K. T. Ramesh.
Copyright © 2Journal of Applied Mechanics
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Experiments and Results
We conducted depth-of-penetration experiments with ogi

nose steel rod projectiles and limestone targets. The 3.0 cal
radius-head~CRH! rod projectiles were machined from 4340Rc
45 ~VAR! steel and had diameters of 7.11 mm and total lengths
71.1 mm. The nominal properties for the limestone targets incl
density (r52.31 Mg/m3), water content (w50.15 percent), po-
rosity ~n515 percent), and unconfined compressive stren
(sc f560 MPa). Again, these are the same projectiles and tar
as used in our previous study~@4#!. Other experimental details ar
reported by Hanchak@5#.

We summarize the results from six experiments in Table
Three projectiles were embedded in the target and three projec
rebounded. These data show that the penetration limit velocit
between 289 m/s and 308 m/s or about 300 m/s. For the strik
velocity of 308 m/s, the projectile was embedded in the target
the penetration depth wasP536.8 mm; so for the projectile di-
ameter of 2a57.1 mm, P/2a55.

Figure 1 shows data from this study and the data from Fr
Forrestal, and Hanchak@4#. The data from this study shows th
penetration limit velocity at 300 m/s. The data from@4# show
results for both 4340Rc 45 ~@6#! and Aer Met 100Rc 53 ~@7#! steel
projectiles. For striking velocities greater than those shown in F
1, the projectiles severely bent and turned within or exited
sides of the targets.

Summary
We conducted a set of experiments with ogive-nose rod pro

tiles and limestone targets to determine the penetration limit
locity. For striking velocities greater than this limit velocity, th
projectiles were embedded in the target, and for striking veloci

6,

Table 1 Penetration data for the 7.1-mm-diameter, 71-mm-
long, 0.0205 kg, 3.0 CRH projectiles. For pitch and yaw: D
Ädown, UÄup, RÄright, LÄ left.

Shot Number

Striking
Velocity Vs

~m/s!
Pitch, Yaw
~degrees!

Penetration
Depth P~mm!

6-3418 242 0, 0.75R 30.9 Rebound
6-3420 271 0.5 U, 1.75R 35.0 Rebound
6-3423 289 0, 0.5R 36.2 Rebound
6-3422 308 0.5D, 1.0 R 36.8 Embed
6-3421 320 0.5D, 1.0 R 40.0 Embed
6-3419 331 0.5D, 0.5 R 44.4 Embed
002 by ASME NOVEMBER 2002, Vol. 69 Õ 853
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Fig. 1 Data and prediction for limestone targets
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2,
less than this limit velocity, the projectiles rebounded from t
targets. The penetration limit velocity for these experiments w
found to be about 300 m/s.
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Based on the fractal particle size distribution, a fragmentati
theory for quasi-brittle materials is herein developed. The resu
are three simple and powerful universal laws for the multisc
energy dissipation under impact and explosion fragmentation
one, two, and three-dimensional bodies, respectively. The th
dimensional law unifies the most important and well-known fra
mentation theories. As an example, it has been applied to
prediction of the devastated area due to asteroid impacts on e
as a function of the energy released in the collision.
@DOI: 10.1115/1.1488937#

1 Introduction
Since the two pioneering books of Mandelbrot@1# and Feder

@2#, the noneuclidean, fractal, and multiscale geometry of nat
has been observed everywhere. In particular, a fractal size d
bution is clearly presented by particles obtained from explosive
impact fragmentation processes, both natural and man-made.
fractal nature of the phenomenon simply means that the fragm
are geometrically self-similar at each scale. Engleman et al.@3#
show that this particle size distribution~power-law! is a necessary
consequence of the maximum entropy principle.

Based on the fractal particle size distribution, a fragmentat
theory is herein developed. The results are three simple and p
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
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erful universal laws for the multiscale energy dissipation un
impact and explosion fragmentation for one, two, and thr
dimensional bodies, respectively.

The three-dimensional law unifies the most important and w
known fragmentation theories: the surface theory@4#, when the
dissipation occurs on a surface, the volume theory@5#, when the
dissipation occurs in a volume and the third comminution the
@6#, when the dissipation occurs in a domain exactly intermed
between a surface and a volume~see@7#!.

2 Three-Dimensional Theory
After comminution or fragmentation, the cumulative distrib

tion of particles with radius (53A3/4p•volumeparticle) smaller
than r is ~see, for example,@8#!

P~,r !5
N~,r !

N0
512S r min

r D D

, (1)

whereN(,r ) is the number of fragments with radius smaller th
r, N0 is the total number of fragments,r min (!r max) is the mini-
mum fragment radius, andD(.0) is the fractal dimension.

The probability density functionp(r ) times the interval ampli-
tude dr represents the percentage of particles with radius c
prised betweenr and r 1dr . It is provided by derivation of the
cumulative distribution function~1!:

p~r !5
dP~,r !

dr
5D

r min
D

r D11 . (2)

During fragmentation, the energy dissipation due to fractu
dWF , is proportional to the surface area of fragments, dS ~Griffith
@9#!:

dWF}dS. (3)

During impact fragmentation~material in compression!, the
main dissipation dWC is due to collisions and friction betwee
particles~converted into heat! and the effect results to be propo
tional to the same quantity dS~Smekal@10#, see@7#!:

dWC}dS. (4)

On the other hand, during explosion fragmentation~material in
tension! the main dissipation dWT is proportional to the kinetic
energy of fragmented ejecta dT. The velocity of fragmented eject
varies inversely with fragment size asv}r 21/2 ~Nakamura and
Fujiwara@11#!, so that the kinetic energy, i.e., the main dissipati
in explosion, results again in being proportional to the fragm
surface dS ~of volume dV):

dWT}dT}v2dVadS. (5)

Summarizing, the global dissipation in impacts (WC1WF) or
explosions (WT1WF) surprisingly appears always proportional
the total surface areaS of fragments. It can be obtained by inte
gration:

S5E
r min

r max

4pr 2dN

5E
r min

r max

N0~4pr 2!p~r !dr

54pN0

D

D22
r min

D S 1

r min
D222

1

r max
D22D

>H 4pN0

D

D22
r min

2 , D.2

4pN0

D

22D
r min

D r max
22D , D,2.

(6)
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If 0 ,D,2 it is necessary to specifyr max but notr min in order
to obtain a finite total surface area of fragments. But ifD.2 it is
necessary to specifyr min in order to constrain the total surfac
area to a finite value. Thus for most observed distribution of fr
ments the surface area of the smallest fragments dominates.

On the other hand, the total volume of the particles, or to
fragmented volumeV, is

V5E
r min

r max4

3
pr 3dN

5E
r min

r max

N0S 4

3
pr 3D p~r !dr

5
4

3
pN0

D

32D
r min

D ~r max
32D2r min

32D!

>H 4

3
pN0

D

32D
r min

3 r max
32D , D,3

4

3
pN0

D

D23
r min

3 , D.3.

(7)

If 0 ,D,3 it is necessary to specifyr max but notr min in order
to obtain a finite volume of fragments. The volume is predom
nantly in the largest fragments. This is the case for most obse
distributions of fragments. IfD.3 it is necessary to specifyr min
but not r max. the volume of the small fragments dominates.

It is interesting to note that in Eqs.~6! and~7! D equal to 2 and
3 do not represent singular points but indeterminate forms. So
physical meaning is preserved also forD equal to 2 and 3.

Based on fracture mechanics we can assume a material ‘‘q
tum’’ of size r min5constant~Novozhilov @12# and Sammis@13#!
and make a statistical hypothesis of self-similarity, i.e.,r max

} A3 V ~the larger the fragmented volume, the larger the larg
fragment; Carpinteri@14#!, so that the energyW dissipated in a
three-dimensional fragmentation process, which is proportiona
the total surface areaS, can be obtained eliminatingN0 from Eqs.
~6! and ~7! as

W}S}VD̄/3, with H D̄52, D,2

D̄[D, 2<D<3

D̄53, D.3.

(8)

The universal law of Eq.~8! can be used to predict the mult
scale energy dissipation under fragmentation in impacts and
plosions of three-dimensional bodies. It represents an extensio
the third comminution theory, whereW}V2.5/3 ~@6#; see@7#!. The
extreme cases contemplated by Eq.~8! are represented byD̄52,
surface theory~@4#; see@7#!, when the dissipation really occurs o
a surface (W}V2/3), and byD̄53, volume theory~@5#; see@7#!,
when the dissipation occurs in a volume (W}V). These three
laws are substantially experimental, so that the universal law
Eq. ~8! is obviously experimentally verified.

3 Two-Dimensional Theory
For a two-dimensional body of areaA ~and thicknessh!, we

have

S5E
r min

r max

N~2prh !p~r !dr, A5E
r min

r max

N~pr 2!p~r !dr,

r max}A2 A, (9)

so that Eq.~8! becomes
NOVEMBER 2002, Vol. 69 Õ 855
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W}S}AD̄/2, with H D̄51, D,1

D̄[D, 1<D<2

D̄52, D.2.

(10)

The universal law of Eq.~10! can be used to predict the multisca
energy dissipation under fragmentation in impacts and explos
of two-dimensional bodies~e.g., panel or shell structures!.

4 One-Dimensional Theory

For a one-dimensional body of lengthL ~and cross sectionh2!,
we have

S5E
r min

r max

Nh2p~r !dr5Nh2, L5E
r min

r max

Nrp~r !dr5Nr̄,

r max}L, (11)

so that Eq.~8! becomes (D.0)

W}S}LD̄, with H D̄[D, D<1

D̄51, D.1.
(12)

The universal law of Eq.~12! can be used to predict the multisca
energy dissipation under fragmentation in impacts and explos
of one-dimensional bodies~e.g., beams or cables!.

5 An Example of Application: The Asteroid Collision
As an example, we can apply the three-dimensional law to

prediction of the devastated area due to asteroid impacts on
as a function of the energy released in the collision. The comp
son with the experimental Steel’s law~@15#!, based on nuclea
weapons tests, shows a good correspondence.

Assuming that the destroyed zones~or fragmented volumesV!
are self-similar at each scale, the areaVdevasteddevastated by an

impact is proportional toV2/3 and, beingW}VD̄/3, the theoretical
prediction for the devastated area will be

Vdevasted}W2/D̄. (13)

Steel @15# provided the following formula ~see http://
www1.tpgi.com.au/users/tps-seti/spacegd7.html!, based on
nuclear weapons tests, for estimating the area of destruction
to asteroid impacts:

Vdevasted5400W0.67, @Vdevasted#5@km2#, @W#5@megatons#.
(14)

Equation~14! appears in good agreement with the theoretical p
diction of Eq. ~13! and, if we assumeD̄'3, they practically co-
incide.

6 Conclusions
Summarizing, the universal laws for the energy dissipation

impact and explosion fragmentation of one, two, or thre
dimensional bodies can be rewritten as

W}LD̄ ~0<D̄<1! one-dimensional

W}AD̄/2 ~1<D̄<2! two-dimensional (15)

W}VD̄/3 ~2<D̄<3! three-dimensional.

The three-dimensional law unifies the experimentally verifi
and well-known fragmentation theories~surface theory, von Rit-
tinger@4#; volume theory, Kick@5#; and third comminution theory
Bond @6#; see@7#!.
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A Note on the Application of the
Flamant Solution of Classical Elasticity
to Circular Domains

A. J. Levy
Department of Mechanical, Aerospace and Manufacturi
Engineering, Syracuse University, Syracuse,
NY 13244-1240. Mem. ASME

It is a well known fact that the Flamant solution of classic
elasticity cannot be used at an interior point of an elastic bo
since the resulting displacement field would be multivalued.
this note we demonstrate that the solution to the problem o
concentrated force at a point on an interior circular boundary h
a multivalued displacement component but that the exclusio
the point of application of the load from the domain renders t
displacement field single-valued everywhere.
@DOI: 10.1115/1.1480821#

1 Introduction
This note contains an analysis of nonuniform convergence

the displacement field in the Flamant solution to the problem o
concentrated force at a point of an interior circular boundary of
unbounded elastic domain. This issue, which does not exist in
Flamant problem for the straight boundary, arose in previous w
by the author on cavity nucleation in planar inclusion proble
where the inclusion-matrix interface is modeled explicitly by
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nonlinear cohesive zone of vanishing thickness~Levy @1#!. In that
work the Flamant solution for the boundary displacement is u
as a Green’s function in an integral equation formulation of
problem. In two interesting papers, Dundurs and Hete´nyi @2#, and
Dundurs et al.@3# have considered the problem of a circular i
clusion in an unbounded plate subject to a concentrated force
point of the plate and oriented so that its line of action is alon
diametral line.1 The problem considered in this note is therefore
special case of these studies. The focus of@2,3#, however, is on
constructing the Airy stress functions and providing formulas
the stress components. Although the nature of the singularit
discussed, and the condition of single-valued displacements is
forced, no explicit consideration is given to the issue of the n
uniform convergence of the tangential displacement at the bou
ary, which is the subject of this note.

In order to explore this issue, first consider the Flamant solu
to the problem of a concentrated force acting at a point o
straight boundary. In that problem the force acts at a point w
radiusr 50 which is situated on a straight boundary which can
defined by the polar anglesu50, u52p. For the case where th
load is directed along the outward normal to the boundary, i
well known that the displacement normal to the boundary (ur)
becomes unbounded, while the displacement tangent to
boundary (uu) becomes multivalued, asr approaches zero. Not
that each point within the domainD5$(r ,u)ur P(0,̀ ),
uP@2p,0#% occupied by the half-plane is uniquely represen
by one set of coordinates. Only whenr is zero, do points coalesc
and then multivaluedness becomes an issue. Because it is im
itly assumed that a neighborhood of the pointr 50 is excluded
from the domain the displacement field is therefore bounded
single-valued everywhere inD. This contrasts with the Flaman
problem for circular domains~Fig. 1!. Here, the domain of interes
is given byD5$(r ,u)ur P@a,`),uP@0,2p#% so that multivalued-
ness~or continuity if uP@0,2p)) becomes an issue not just on th
boundaryr 5a but for anyr P@a,`). It is a straightforward mat-
ter to demonstrate that on the boundaryr 5a the tangential dis-
placement is multivalued atu50 andu52p. The interesting part
of this problem, and the primary concern of this note, is in de
onstrating the nonuniform convergence of the tangential displa
ment componentuu(r ,u) as r↓a to a multivalued limit function
for r 5a, uP@0,2p#.

A formal statement of the Flamant problem appears, with
solution, in the elasticity text of Timoshenko and Goodier@4#, for
the case of a concentrated load acting normal to the interior
cular boundary, and is restated here verbatim:
‘‘ Verify that the stress function2

f52
P

p H cr sinu2
1

4
~12n!r log r cosu2

1

2
ru sinu

1
d

4
log r 2

d2

32
~32n!

1

r
cosuJ (1)

satisfies the boundary conditions for a force P acting in a hole
an infinite plate with zero stress at infinity, and that the circu
ferential stress round the hole is

P

pd
@21~32n!cosu# (2)

except atA (Fig. 1). Show that it also corresponds to singl
valued displacements.’’

Note that the last sentence in the problem statement expli
refers to the issue of single-valued displacements. This will
analyzed in Section 3. Section 2 contains an outline of the solu
for the stresses and displacements.

1Reference@2# considers the perfectly bonded interface while@3# treats the
smooth interface.

2f is appropriate for plane stress. For plane strain letn→n/(12n).
Journal of Applied Mechanics
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2 The Solution
Because the problem as originally stated provides the st

function, we will proceed directly from it as opposed to usin
complex potentials. First, note the following geometrical relatio
~Fig. 1!, valid away from the point~A! of application of the load
P,

R sinc5r sinu,

R25a21r 222ar cosu,

a sinc5r sin~c –u!,
(3)

cosc52R/2a on r 5a,

sinc5a sinu/R on r 5a,

cosc sinc52sinu/2 on r 5a.

The stress functionRc sinc gives rise to the well-known simple
radial stress distribution of a force acting at a point of a bound
The polar components of this stress state, referred to a basis a
hole center, are easily shown to be given by

Srr 5
2 cosc

R
cos2~u2c!,

Sru52
2 cosc

R
cos~u2c!sin~u2c!, (4)

Suu5
2 cosc

R
sin2~u2c!,

which may be expressed entirely in terms of~r,u! by utilizing
geometrical relations~3!. This distribution gives rise to nonvan
ishing tractions on the hole surface which must be removed
superimposing the stress field arising from the stress function

2
1

4
~12n!r log r cosu2

1

2
ru sinu1

a

2
log r

2
a2

8
~32n!

1

r
cosu.

For this function the polar components of stress follow from t
stress table in Barber@5#,

Srr 52
1

4
~12n!

cosu

r
2

cosu

r
1

a

2

1

r 2 1
a2

4
~32n!

cosu

r 3 ,

Sru52
1

4
~12n!

sinu

r
1

a2

4
~32n!

sinu

r 3 , (5)

Suu52
1

4
~12n!

cosu

r
2

a

2

1

r 22
a2

4
~32n!

cosu

r 3 .

The complete stress field for the problem follows directly by s
perimposing like components in~4! and~5! and multiplying each
component sum by2(P/p). By utilizing the relations in~3! it
can be quickly verified that the circumferential stress atr 5a is
given by ~2! while the normal and tangential tractions on th
boundary~Srr (r 5a), Sru(r 5a), respectively! vanish away from
point A.

The calculation for the polar components of displacement
lows from the stress function and the displacement table in Ba
@5#,
NOVEMBER 2002, Vol. 69 Õ 857
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52~k21!~c –u!sinu2~k11!log R cosu12 cos2

3c cosu12 cosc sinc sinu2F1

4
~12n!1

3

2Gcosu

1~k21!log r cosu1
a

r
1

k

k11

a2

r 2 cosu, (6)

4mpuu

P
52~k21!~c –u!cosu1~k11!log R sinu22 cos2

3c sinu12 cosc sinc cosu2F1

4
~12n!2

1

2Gsinu

2~k21!log r sinu1
k

k11

a2

r 2 sinu,

where k is (3 –n)/(11n) for plane stress and 3–4n for plane
strain. Consider the displacement of points initially situated on
boundaryr 5a. By using relations~3! in displacement compo
nents~6! we arrive at the form

4mur5
P

p F2
k21

2
~p2u!sinu2

k11

2
log~12cosu!cosuG ,

(7)

4muu5
P

p F2
k21

2
~p2u! cosu1

k11

2
log~12cosu!sinuG ,

where for compactness we have superimposed an approp
rigid-body displacement. An interesting feature of this bound
displacement is that it is multivalued. A casual inspection of~7!
reveals that the offending term occurs in the expression foruu ,
i.e., (p –u)cosu. This will be discussed in the following section
For now, we note that the boundary displacement behaves
rectly in the simple case of a uniform pressure applied to the in
boundary. To see this introduce the kernel functions

Ur5er•Uer52
k11

8pm
cosu log~12cosu!2

k21

8pm
~p2u!sinu,

(8)

Uu5eu•Ueu5
k11

8pm
sinu log~12cosu!2

k21

8pm
~p2u!cosu.

Then the boundary displacement is determined by

u5E
]R

Us~n!ds, (9)

wheres(n) is the traction vector andn is the unit normal vector
pointing away from the boundary]R. Note that in~9! U is a
function of the differenceu –u8,3 s(n) is a function ofu8, u is a
function ofu and integration is carried out with respect tou8. For
a pressure load,s(n)5p0er ~8! and ~9! yield the boundary dis-
placement vectoru5(ap0/2m)er .

3That is, the difference between field point and source point.

Fig. 1 Problem geometry
858 Õ Vol. 69, NOVEMBER 2002
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3 Discussion
First, the stress components are single-valued and infinitely

ferentiable at all points within the domain except at point A. Th
follows directly from~4! and~5!. Now consider the displacemen
field ~6! and in particular the terms (c –u)sinu, (c –u)cosu.
From Fig. 1 and the first three identities in~3! it follows that

c –u5sin21S a sinu

Ar 21a222ar cosu
D , uP@0,2p#, r P~a,`!.

(10)

Now for r P(a,`) the functionc–u is a single-valued and con
tinuous function of ~r, u!. Consider the limit asr↓a for u
P(0,2p). It is not hard to show that

lim@c~r ,u!2u#5
p2u

2
,r↓a (11)

which is consistent with boundary displacement~7!. Thus we have
the fact that, while single-valued and continuous for allr
P(a,`), uP@0,2p#, c–u converges to a discontinuous lim
function onr 5a, uP@0,2p), i.e., the functionc–u is multival-
ued onr 5a, uP@0,2p#. The limit function~p–u!/2 is piecewise
continuous and 2p periodic onr 5a, the points of discontinuity
occurring atu50, 62np, n integer.~A graph of this function is
shown in Fig. 2 for values ofr /a approaching unity.! The above
discussion concerning the functionc(r ,u) –u implies that the tan-
gential component of displacementuu(r ,u) has the following
properties:

uu~r ,0!5uu~r ,2p!, r P~a,`!,

Lim uu~r ,0!50Þuu~a,0!, r↓a,

Lim uu~r ,2p!50Þuu~a,2p!, r↓a,

uu~a,0!Þuu~a,2p! (12)

where use has been made of~6!. Because the point (r 5a,u
50,2p) is excluded from the domain~it coincides with the point
A of application of the concentrated forceP and the point of
singularity for the stresses! the displacement field is single-value
and continuous everywhere in the domain. The equation for
deformed boundary is given by

ã

a
512aFk21

2
~p2u!sinu1

k11

2
log~12cosu!cosuG ,

a5
P

4mp
. (13)

Fig. 2 Nonuniform convergence of function c–u
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Figure 3~a! shows the distortion of the boundary near the point
application of the load for the case of plane strain.

Note that the related problem of a tangential forceF acting at a
point on the interior boundary of an unbounded domain gives
to similar behavior. For that problem, it can be shown that
components of boundary displacement are given by

4mur5
F

p Fk21

2
~p2u!cosu2

k11

2
log~12cosu!sinuG ,

(14)

4muu5
F

p F2
k21

2
~p2u!sinu2

k11

2
log~12cosu!cosuG ,

so that the breakdown in single-valued behavior at the poin
application of loadF occurs in the expression for the radial com
ponent of displacement. This fact gives rise to a more jarr
picture of the boundary displacement field~Fig. 3~b!!.
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A Closed Contour With No Warping:
A Common Feature in all
Confocally Elliptical Hollow Sections

T. Chen
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Department of Civil Engineering, National Cheng Kung
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Fig. 3 Boundary distortion; „a… normal force „aÄ.01,nÄ1Õ3…,
„b… tangential force „aÄ0.4,nÄ1Õ3…
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We show that for a confocally elliptical hollow section und
Saint-Venant’s torsion, there always exists a confocally ellipti
closed contour inside the section that exhibits no warping. T
property is generally true without any regard to the thickness
the aspect ratio of the hollow section, as long as the inner and
outer ellipses are confocal. This property allows us to apply Pa
ham and Shail’s (Packham, B. A, and Shail, R., 1978, ‘‘St. Ven
Torsion of Composite Cylinders,’’ J. Elast.,8, pp. 393–407) su-
perposition method for the torsion solutions of a two-phase el
tical hollow section. Previously, this superposition method is o
applicable to symmetric compound sections with respect t
straight line or a circular arc. @DOI: 10.1115/1.1504095#

1 Introduction
Saint-Venant’s torsion of a prismatic bar is a classic problem

solid mechanics. For a circular cross-section or circular ring un
torsion, it is well known that there is no warping in the sectio
For a cross section of general shape, typically the absenc
warping only occurs at positions which exhibit the symmetry
the geometry. For instance, the warping contour of a square
under torsion indicates that there are only four straight lines w
zero warping, two diagonal, one horizontal, and one vertical~see,
for example,@1#, p. 133, Fig. 27!. In this work, we found, inci-
dentally, that for a confocally elliptical hollow section there a
ways exists a closed elliptical contour inside the section that
no warping. We make use of a mapping function that transfor
the confocal ellipses in thez-plane onto concentric circles in th
p-plane. Suppose the outer and the inner ellipses are map
respectively, onto circles with radii 1 andr, we find, remarkably,
that this closed contour with no warping is simply given byupu
5r 1/2. In other words, this zero warping closed contour is als
confocal ellipse with the same foci as that of the inner and ou
ellipses. This existence of the zero-warping contour is found w
out any regard to the thickness or the aspect ratio of the hol
section, provided that the inner and the outer ellipses are confo
A recent paper of Chiskis and Parnes@2# proposed a general cri
terion for closed thin-wall members which exhibit no warpin
under the condition of constant thickness. By lettingupu→1, the
present finding serves as a complemental example of the abs
of warping for a thin-wall section withnonconstantthickness.

The finding makes it possible to extend Packham and Sh
superposition method@3# to find the torsion solution of atwo-
phaseconfocally elliptical hollow section. This method states th
for a certain symmetric two-phase section, the torsion solution
be obtained by a linear superposition of two solutions with hom
geneous sections: one is the solution of the whole section and
other is one part of the compound section. Originally, this sup
position method was only applicable to a two-phase symme
section in which the interface is of a straight line or of a circu
arc. This finding of the applicability of Packham and Shai
method to elliptical interface is new and may have further imp
cation on solutions of various compound elliptical geometries.
the analysis, we use the complex function theory together w
conformal mapping techniques. We start with a brief revisit on
torsion solution of hollow sections and prove the assertion in S
tion 3. The validity of the superposition method to a special cl
of elliptical compound section is shown in Section 4.

2 A Revisit of Torsion of Hollow Sections
Consider the Saint-Venant’s torsion problem of a hollow sh

with shear modulusm whose cross-sectionR is bounded by two
single curvesLi , i 51,2. We use the complex variables approa
together with the method of conformal mapping to solve for t
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augu
27, 2001; final revision, April 3, 2002. Associate Editor: J. R. Barber.
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Fig. 1 A schematic illustration of a confocally elliptical hollow section mapping onto a concentric circle
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warping function to this question. The displacement fields of
Saint-Venant torsion are characterized byux52qyz, uy5qxz,
anduz5qw(x,y), whereq is the angle of twist per unit length o
the bar andw is the warping function. The equilibrium conditio
s i j , j50 requires thatw be harmonic throughout the cross secti
of the cylinder. On the traction-free boundaryLi , the boundary
condition is written in the form

dw

dn
52v•nuLi

, (2.1)

where v52y i1x j and n denotes the outward normal toLi .
Since w is harmonic, one can construct the analytic functi
w(z)5w(z)1 ic(z), of the complex variablez5x1 iy , in which
c is the conjugate harmonic function.

Since for any doubly connected regionR in the z-plane there
exists a one-to-one conformal mapping that transform the dom
R onto a circular annulus with outer radius 1 and inner radiusr in
the p-plane@4,5#. This mapping function can be written as

z~p!5 (
n52`

`

anpn, p5reiu, (2.2)

where an are some complex coefficients. The analytic functi
w(z(p)) in the circular annulus can also be expressed as a Lau
series

w~p!5 (
n52`

`

bnpn, (2.3)

with unknown coefficientsbn , and the boundary conditions~2.1!
are now transformed to

wc~p!2w̄c~ p̄!5 iz~p!z̄~ p̄!u upu511const.,

wc~p!2w̄c~ p̄!5 iz~p!z̄~ p̄!u upu5r1const., (2.4)

where the bar denotes the complex conjugation. We expand
series, using~2.2!, @6# ~see also@7# for simply connected sections!

z~p!z̄~ p̄!5(
k50

`

Ake
iku1(

k51

`

Āke
2 iku, (2.5)

where

Ak5 (
j 52`

`

aj 1kājr
2 j 1k. (2.6)
. 69, NOVEMBER 2002
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Thus, Eq. (2.4)1 provides

(
n52`

`

bneinu2 (
n52`

`

b̄ne2 inu

5 i S (
k50

`

Akur51eiku1(
k51

`

Ākur51e2 ikuD 1const.,

(2.7)

and (2.4)2 gives

(
n52`

`

bnr neinu2 (
n52`

`

b̄nr ne2 inu

5 i S (
k50

`

Akur5re
iku1(

k51

`

Ākur5re
2 ikuD 1const.

(2.8)

Equivalently,~2.7! and ~2.8! imply that

H bk2b̄2k5 iAkur51 ,

bkr
k1b̄2kr

2k5 iAkur5r ,
for k51,2,¯ ,`. (2.9)

This leads to

bk5
i ~r 2kAkur512Akur5r !

r 2k2r k , b2k5
i ~r kĀkur512Ākur5r !

r k2r 2k ,

(2.10)

and the coefficientb0 is left as arbitrary. Apart from a nonessenti
constant, Eqs.~2.3! and ~2.10! constitute the torsion solutions o
any hollow section described by the mapping function~2.2!. Vari-
ous shapes of technological interests can be resolved without
difficulty. For example, one can consider the hollow epitrochoi
hypotrochoids, and many others@8#. A general solution for the
stress function which uses conformal mapping for hollow cyl
ders of general geometry can also be found in Lurie~@9#, pp.
405–407!. We mention that previous solutions derived by Barte
@10# for eccentric ring and hollow lune can be reconstructed i
simple and unified manner. Instead of seeking warping fields
various geometric shapes, we shall restrict our attention on c
focally elliptical hollow section.

3 A Contour With No Warping in Confocally Elliptical
Hollow Sections

We consider here the hollow section is of a confocally elliptic
shape. The outer elliptical boundary is defined by the~a, b!-axes,
Transactions of the ASME
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and the inner boundary by the (a8,b8)-axes, in whicha anda8 are
the major axes of these ellipses. In the mapping~2.2! we assign
~Fig. 1!

z~p!5
a1b

2
p1

a2b

2
p21. (3.1)

It is well known @8# that the transformation~3.1! maps a con-
focal elliptical configuration in thez-plane onto concentric circle
in the p-plane. The outer and inner ellipses are mapped, res
tively, onto the circlesr51 andr5r in the p-plane. The semi-
axes of the inner and outer ellipse are interrelated by the follow
connections:

a85
a1b

2
r 1

a2b

2
r 21, b85

a1b

2
r 2

a2b

2
r 21. (3.2)

Thus, the circle of radiusr5m1/2, wherem5(a2b)/(a1b), in
thep-plane is mapped onto a flat ellipse witha85c andb8→0 in
the physical plane, wherec is the common focal distance of all th
ellipses given byc5Aa22b2. This flat ellipse represents here
crack of length 2c lying on thex-axis. It is therefore seen that th
parameterr needs therefore to obey the constraintm1/2<r<1.

From the results of~2.10!, it can be verified that

w5b2p21b22p22, (3.3)

where

b25 i
c2

4

r 2221

r 222r 2 , b225 i
c2

4

12r 2

r 222r 2 . (3.4)

This suggests that the warping function in the hollow ellipse ta
the simple form

w~p!5
c2

4

1

11r 22 S r222
r2

r 2 D sin 2u. (3.5)

Greenhill@11# was the first to solve the solution of hollow confo
cal ellipse in terms of the conjugate warping function~@12#, p.
320! using a different mapping functionz5c cosh(j1ih). Al-
though tedious, we have verified analytically that both express
are equivalent. It is also mentioned that the torsion solution
confocally elliptical hollow section can also be found in Lur
~@9#, pp. 407–409! in which the solutions are obtained in terms
stress function.

Back to ~3.5!, letting w(p)50 will give

sin 2u50, or r222
r2

r 2 50. (3.6)

The first condition is an expected outcome, as they in fact re
sent the lines of geometric symmetry. The latter is somewhat
prising, which gives exactly

r5r 1/2. (3.7)

Since the closed contourr 1/2 always lies inside the interval of~r,
1!, ~3.7! suggests that there always exists a unique closed con
that exhibits no warping inside the hollow ellipse, without a
regard to the value ofr ~or the thickness of the hollow section!. It
is mentioned that the contour ofr5r 1/2 represents an ellipse with
the same foci common to the outer and the inner ellipses. A s
lar analysis has been carried out for a number of geometries~cor-
responding to different mapping functions!. It turns out that no
simple guidelines can be found. For instance, there exists no z
warping closed contours for any hollow epitrochoid and, for h
low hypotrochoids the existence of the zero-warping contour
pends on the dimension as well as the geometric factor.

Back to~3.7!, for a thin-wall limitation, we setr 512d, where
d→0 and the elliptical hollow section becomes a thin ring
variable thickness. It follows from~3.2! that the axes of the inne
ellipse area85a2bd andb85b2ad, and the major and mino
axes of the zero-warping contour are
Journal of Applied Mechanics
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aur5r 1/25a2
b

2
d, bur5r 1/25b2

a

2
d. (3.8)

Whend→0, the warping function along the thickness direction
negligible andw is assumed to be a function only of the a
length. Since~3.7! represents a closed curve of zero warping,
conclude that for a limitingly thin confocal elliptical tube, there
no warp. Chiskis and Parnes@3# recently found a general criterion
for closed thin-wall members which exhibit no warping, in whic
their derivation is under the condition ofconstant thickness. The
present finding serves as a complemental example of the abs
of warping for a thin-wall section with nonconstant thickness.
our knowledge, no such results for nonconstant thickness w
reported before. It is mentioned that the existence of such a c
tour could be very sensitive to the shape of both interfaces.
example, one could fix the outer boundary of the ellipse~with
semi-axesa andb! and deform the inner boundary of the conf
cally elliptical hollow section to a geometrically similar ellips
~with semi-axeska andkb, wherek,1!. Since such an elliptical
ring has the same warping function as the simply connected e
tic section, namelyw}x,y ~see, for example, Timoshenko an
Goodier@13#, pp. 328–329!, no closed zero-warping contour now
exists.

4 Packham and Shail’s Superpositions for a Two-
Phase Confocally Elliptical Hollow Section

A few decades ago, Packham and Shail@3# showed that in
Saint-Venant’s torsion problem for a two-phase compound sec
~also in current flow of two immiscible viscous fluids@14#!, if the
cross section is symmetric about the interface, the stress func
~or the warping function! for the compound cylinder can be ex
pressed in terms of two separate solutions for homogeneous
inders. One corresponds to the torsion of the whole section,
the other to the torsion of a section whose cross section coinc
with that of the region occupied by one constituent of the tw
phase section. The superposition method was originally applie
the cases that the interfaces are parallel to thex or y-axes, and was
further modified to the cases ofu5constant orr 5constant. For
the former case, namelyu5const., Chen and Huang@15# gener-
alized the concept to analyze the torsional rigidity of a two-ph
circumferentially symmetric compound bar. The aim of this se
tion is to show that, upon the finding of the fact~3.7!, Packham
and Shail’s method is also applicable to a special class of c
pound section with elliptical interface.

Let us now consider the auxiliary problem of a hollow circul
cross-section consisting of two different phases in which the m
terial a lies in the regionr 1/2<r<1 and the phaseb in r<r
<r 1/2. This belongs to the original context of Packham and Sh
with interface being described byr 5const. Note that for the su
perposition to be valid, it is necessary that the interfacer5r 1/2 be
the square root of the radii of the inner and outer boundary. Th
analogous to the image method in harmonic problems@16#. Con-
sider the following two boundary value problems for hollow e
liptical sections under torsion

¹2w150 in Va , ]w1 /]n52v•n on r5r and r51,

¹2w250 in Va , ]w2 /]n52v•n on r5r 1/2 and r51.
(4.1)

The solutionw1 has been given in~3.5! and w2 , by the same
routes in Section 2, is found as

w2~p!5
c2

4

1

11r 21 S r222
r2

r D sin 2u. (4.2)

Packham and Shail@3# procedures show that the warping fun
tions in phasesa and b of this compound configuration can b
obtained from those of the two homogeneous sections by the
ear superposition
NOVEMBER 2002, Vol. 69 Õ 861
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wa~r,u!5a1w1~r,u!1a2w2~r,u!, r 1/2<r<1,

wb~r,u!5b1w1~
r
r ,u!1b2w2~

r
r ,u!, r<r<r 1/2, (4.3)

where the coefficientsa1 , a2 , b1 , b2 are

a15
2mb

ma1mb
, a25

ma2mb

ma1mb
,

b152
2ma

ma1mb
, b25

ma2mb

ma1mb
. (4.4)

The field solutions~4.3!, ~4.4! can be verified, with some math
ematical skills, that they indeed fulfill Laplace equation, t
traction-free boundary condition~2.1! as well as the continuity
conditions of the warping displacement and traction at interf
r5r 1/2, namely

wa2S ma1mb

2ma
wb1

ma2mb

2ma
w̄bD5 i

ma2mb

2ma
zz̄. (4.5)

We now consider a special type of two-phase elliptical holl
section. Suppose the geometry of this compound elliptical sec
is given such a way that, under the transformation~3.1!, it is
mapped onto the configuration of the auxiliary boundary va
problem. We claim that the warping functions of this compou
elliptical cross-section in thep-plane are given as~4.3! and~4.4!.
The reasons are simple. Sincew is the real part of the analytic
function w and the mapping function~3.1!, and its inverse, is
analytic, thus it satisfies the governing equation~Laplace equa-
tions!. Also, since for a hollow confocal ellipse, the closed co
tour r5r 1/2 has zero warping~or equivalently the normal deriva
tive of the conjugate functionc is zero!. Thus, Packham and
Shail’s superperposition method is applicable to this compo
confocally elliptical configurations. Obviously~4.3! and ~4.4! are
exactly the warping fields of this compound elliptical section
the transformed domain. This perspective is new and may h
further implications on chessboard-like elliptical geometry@17#.
Of course, the torsion solutions of this compound elliptical sect
could have been analyzed directly as in the steps in Sectio
together with the satisfaction of interface conditions~4.5!. Al-
though much cumbersome than that of~4.3!–~4.4!, we have in-
deed done the analysis and have verified that the superpositi
true for this configuration.
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Are Lower-Order Gradient Theories of
Plasticity Really Lower Order?

K. Yu. Volokh
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Technology, Haifa 32000, Israel
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An explicit example of one-dimensional shearing is used to ill
trate the necessity of extra boundary conditions for a class
incremental theories of plasticity regarded as otherwise conv
tional apart from a dependence of the tangential moduli on g
dients of plastic strain.@DOI: 10.1115/1.1504096#

Gradient effects may be introduced into plasticity theory
using additional kinematical and work-conjugate stress variab
Such theories enjoy the structure of Cosserat-type continua in
general case. Extra stresses and boundary conditions are inh
in the generalized continuum theories. While very flexible in
troducing new quantities, the generalized continuum theories h
drawbacks associated with the difficulty of physical interpretat
of the higher-order stresses and extra boundary conditions
avoid such higher-order formulations, a class of theories has b
proposed by Bassani@1#, which introduces gradients of plasti
strain into the instantaneous tangent moduli. Otherwise, conv
tional equilibrium equations of lower-order theory are retaine
The underlying premise of these enhanced conventional theo
is that they accommodate only the same types of boundary
ditions associated with the conventional theory. In this note it w
be shown that this is not always the case. By considering a r
tively simple, well-posed problem for one-dimensional shear
of a layer, it will be demonstrated that this class of theories c
accommodate extra boundary conditions under special circ
stances, and, in fact, are not lower order in this sense. Howe
the higher-order nature of the theories does not appear to b
accord with basic physical requirements, as will be discussed

To begin, consider a conventional material whose stress-st
curve in shear is specified byg[ge1gp5t/G1gp with

gp50~t<tY!, gp5g0~t/tY21!n~t.tY!. (1)

In the plastic ranget/tY511(gp /g0)N with N51/n, such that
the tangent modulus defined byṫ5Gtġ can be expressed as

1

Gt
5

1

G
1

1

H
with

1

H
5

ng0

tY
S gp

2

g0
2D (n21)/2n

. (2)
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Fig. 1 Numerical solutions of Eq. „4… with nÄ3 and mÄ2. The curves corre-
spond to the values lÄ1Õ4;1Õ2;1;2;4 from the bottom to the top.
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Consider shearing displacements parallel to thex2-axis with
u2(x1)[u(x) and g(x)5u8(x). With s12(x1)[t(x), conven-
tional incremental equilibrium requiresṫ8(x)50.

The incremental boundary value problem considered here
displacement boundary conditions:u̇(0)50 andu̇(L)5 v̇ with v
increased monotonically. The solution for the conventional ma
rial where the stress satisfies~1! is a uniform state of stress an
strain consistent with the incremental relationsġ5 v̇/L and u̇
5ġx. The plastic strain is also uniform and all details of t
solution can be generated as a function ofv.

Introduce the enhanced material by including the gradien
plastic strain in the tangent modulus in~2! according to

1

Gt
5

1

G
1

1

H
with

1

H
5

ng0

tY
S ~gp /g0!2

~11,2gp8
2/gp

2!mD (n21)/2n

(3)

where , is the material length parameter. The factorm can be
used to adjust the strength of the gradient hardening. In the
sence of the gradient this reduces to the original form~2!, and it
meets requirements outlined for the type of formulation propo
by Bassani@1#. In the plastic range,ṫ5Gtġ is precisely equiva-
lent to ṫ5Hġp . Assuming conventional equilibrium hold
( ṫ8(x)50), ṫ is uniform and, thus,ġe is uniform in both the
elastic and plastic range. In the elastic range (t<tY), g5ge
5v/L, t5Gg andgp50. In the plastic range (t.tY), equilib-
rium requires (Hġp)850. Becausege is uniform, the displace-
ment can be written asu(v,x)5ge(v)x1up(n,x) with gp5up8 .
Moreover, becauseH is homogeneous in the plastic strain and
gradient, the equation (Hġp)850 admits a separated solutionup

5a(v)b(x) with gp5ab8 and ġp5ȧb8 (ȧ5da/dv). The
equation is third order and homogeneous inb and its derivatives:

b9@~n21!m,2b-b81@12~n21!m#,2b921b82#50. (4)

One solution to~4! is obviouslyb85c corresponding to a uni-
form plastic strain distribution. This solution coincides with th
solution for the conventional material when the conditions,u̇(0)
50 and u̇(L)5 v̇, are enforced. But there is an entire family
other perfectly acceptable solutions to the problem as posed
satisfy the boundary conditionsu̇(0)50 andu̇(L)5 v̇. These so-
lutions do not have a uniform distribution of plastic strain. Th
are possible becausegp8 is not otherwise determined at the ons
of plastic flow. Due to the third-order character of~4!, one addi-
tional boundary condition can be imposed. The example show
Fig. 1 was computed numerically from~4! with b~0!50, b(L)
chanics
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5b0 and b8(0)5lb0 /L for n53, m52, ,/L51 and several
values ofl. The solution forl51 is that with uniform plastic
strain. For each of the solutions, it is a straightforward proces
piece together the entire solution to the boundary value prob
with u̇(0)50 andu̇(L)5 v̇ by making an appropriate choice fo
a(v). The plastic strain distribution will depend onl, as will the
overall relation between shear stress and shearing displacemev.

Uniqueness of solution requires that one extra boundary co
tion be specified onġp in addition tou̇(0)50 andu̇(L)5 v̇. The
example shown introduces the extra condition at the left end
the interval. One could have equally well imposed the one ex
boundary condition at the right end, but not on both simul
neously. Higher order theories~Fleck and Hutchinson@2# and
Hutchinson@3#! do involve extra boundary conditions. In a on
dimensional problem such as the present one, they require s
fication of extra conditions atboth ends of the interval. An extra
condition at each end of the interval would be expected on ph
cal grounds due to the constraint, or lack thereof, on plastic fl
that would be expected due to interaction of dislocations w
each boundary. Thus, it would appear that the added flexib
associated with the extra boundary condition afforded by the
hanced formulation in the present example is inconsistent w
sound physical principles.

The values of parameters chosen for the numerical examp
Fig. 1 are not exceptional; solutions can be generated for
choice of the parameters. Similarly, the one-dimensional shea
problem is not an isolated example. Another simple, basic
ample for which an extra boundary condition must be specifie
the deformation well away from the edges of a uniform film a
tached to a planar substrate. Moreover, the issue arises in
enhanced class of conventional theories whether these prob
are approached using a phenomenological theory or a single c
tal theory such as that discussed by Bassani@1#. The need for an
extra boundary condition in these examples arises because
deformation at the onset of plasticity is uniform and, therefore,
gradient of plastic strain is indeterminant. Consequently the t
gent modulus is also indeterminant unless an additional condi
is imposed such as the extra boundary condition. At the very le
these basic examples raise questions about enhanced conven
formulations, and they suggest that further conditions must
stated to render unique solutions. Our own view is that high
order boundary conditions, which specify constraints on pla
deformation at boundaries, interfaces, and free surfaces, shou
an integral part of a strain gradient theory of plasticity.
NOVEMBER 2002, Vol. 69 Õ 863
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A Note on the Post-Flutter Dynamics
of a Rotating Disk
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The dynamic response of a thin, flexible disk spinning in an
closed air-filled chamber, beyond the onset of aeroelastic flutte
investigated experimentally. The results describe the occurre
of new nonlinear dynamic phenomena in the post-flutter regim
primary instability leads to the Hopf bifurcation of the flat equ
librium to a finite amplitude backward traveling wave. A secon
ary instability causes this traveling wave to jump to a larg
amplitude frequency locked, traveling wave vibration. For a sm
range of rotation speeds, both types of traveling wave moti
co-exist. The results underscore the interplay between struct
and fluidic nonlinearities in controlling the dynamic response
the fluttering disk in the post-flutter regime.
@DOI: 10.1115/1.1504097#

Introduction
The aeroelastic stability of rotating flexible disks is a significa

concern for the engineering design of a diverse class of mech
cal systems such as magnetic and optical data storage dev
thin sawblades, and turbomachinery. A majority of the literat
on the problem is devoted to linear coupled fluid-structure in
action models aiming to predict accurately the speed and mod
the onset of aeroelastic flutter,@1–9#.

To the best of our knowledge,@1,2,4,10# are the only works in
the literature that present experimental data on the post-flu
vibration response of a spinning disk. In@1#, the disk speed was
changed in increments of 100 rpm, which is too large to reso
the transitions in dynamic response we are discussing here. It

1To whom correspondence should be addressed
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octob
7, 2001; final revision, February 6, 2002. Associate Editor: N. C. Perkins.
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be noted that the disk and the experimental apparatus used
were also used in@1#. In @2# and @10# a focus was placed on
investigating the onset of solitary waves on a very th
membrane-like disk spinning over a thin air film. The results
@2# and @10# indicated a transition from harmonic to apparen
fixed frequency solitary waves. This is similar to the frequen
lock-in phenomenon described in the present work. However
@2,10# the speed dependence of unstable wave amplitude, and
coexistence of multiple solutions in the post-flutter regime w
not presented. The present experiments are performed using a
steel disk enclosed in a large sealed chamber, a significantly
ferent experimental regime from@2# and @10#.

This note aims to communicate rapidly experimental resu
which describe the occurrence of new nonlinear dynamic phen
ena occurring at rotation speeds above the onset of the flu
instability. These new results should assist the continuing de
opment of nonlinear fluid-nonlinear structure interaction model
for this problem.

Experimental Setup
The experimental apparatus~Fig. 1! utilized here is that used in

@1#. The design minimizes sources of experimental error, incl
ing bearing noise, rotor imbalance, and unwanted stressing o
disk caused by temperature gradients. The primary elements
clude a thin disk held between thick collars, a high precis
spindle, and vibration measurement instrumentation all placed
side a large, sealed chamber. The disk has a nominal outer d
eter 356 mm, and the collar diameter is 106.7 mm. The disk m
terial is 8660 steel, ground to a uniform thickness 0.775 mm
with maximum runout less than 0.10 mm. Residual stresses f
manufacture are relieved after the grinding, creating a disk tha
substantially stress-free. For further details of the experime
chamber and its functionality, the reader is referred to@1#.

The experimental configuration in Fig. 2 shows two inductan
type displacement transducers measuring the transverse moti
the disk at a radial distance of 148 mm. The probes are angu
separated by 18 deg, have a linear range of 2.5 mm and a re
tion of 0.20 mm. The vibration response signals from the tw
displacement probes are conveyed to a Tektronix 2630MS Mo
Analyzer coupled to an IBM PS2/Model 70. A counter connec
to an optical probe measures the disk rotation speed. An elec
magnetic actuator is driven by amplified signals from the co
puter and applies a transverse force on the disk. Short dura
pulses are applied to the actuator to investigate the stability of
fluttering motions under perturbation. The surrounding chambe
closed during the experiments.

Experimental Procedure
At pre-flutter speeds, disk vibration is excited randomly by t

turbulent boundary layer that develops on the disk surface at h
speeds. At each speed the Fourier spectrum of the vibration
sponse is computed and averaged over ten time intervals.
magnitude of each peak is converted through the sensor cal
tion data to the amplitude of the corresponding traveling wa
measured at the sensor location. Each peak in the vibration s
trum is associated with a~m, n! forward or backward traveling
wave withm nodal circles andn nodal diameters. Identification o
the nodal diameter number is facilitated through computation
the phase of the cross-spectrum of the data from the two displ
ment probes,@11#.

As the disk speed is increased, the first critical speed occur
40.5 rev/s rotation speed. At this speed, the backward trave
wave ~BTW! frequency of the~0,3! mode vanishes. With furthe
increases in disk speed the~0,2!, and ~0,4! modes reach their
critical speeds in succession. As the disk speed is increased
the supercritical range, the frequency of the~0,3! BTW increases
from zero~This is sometimes called a reflected wave.! The ampli-
tude of the peak corresponding to the~0,3! BTW starts to increase
rapidly beyond 50 rev/s rotation speed indicating the onset
aeroelastic traveling wave flutter.

er
2002 by ASME Transactions of the ASME
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Fig. 1 A schematic of the chamber „shown open here … and the disk apparatus
„from †1‡…
s
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At speeds greater than 50 rev/s the disk speed is increased
rev/s increments while increasing and then decreasing the rota
speed across the flutter instability. The fluttering BTW is allow
to stabilize after each speed increment and its frequency and
plitude measured at the sensor locations. Two sets of data
collected while the speed is gradually increased and one se
taken as the speed is decreased from post-flutter speed. The
are collected and presented in Figs. 3~a! and ~b!.

Results
1. As the rotation speed is increased from 50 rev/s, the prim

flutter instability of the~0,3! BTW occurs at about 53 rev/s. Thi
point is indicated in Figs. 3~a! and ~b! by the point A. The exact
location of point A requires an analysis of the Hopf bifurcation
the presence of colored noise such as that generated by turb
boundary layer excitation of the disk.

2. As the disk speed is increased above that at point A,
amplitude and frequency of the fluttering~0,3! BTW continue to
increase. However, below point B, there is a small, but discern

Fig. 2 A schematic of the experimental configuration
Mechanics
by 1
tion
ed
am-
are
t is
data

ary

in
ulent

the

ble

change in slope of the speed variation of wave frequency, acc
panied by a flattening of the amplitude response. The solu
branch from A to B is referred to as theprimary instability
branch.

3. The first secondary instability occurs at point B~at approxi-
mately 58.5 rev/s!. It is characterized by a sudden, large increa
in the traveling wave amplitude, and a sudden, simultaneous
crease in frequency of the traveling wave. This instability is qu

Fig. 3 „a… Frequency of the „0,3… backward traveling wave
„BTW… versus disk rotation speed; „b… vibration amplitude of
the „0,3… BTW measured at the sensor location, versus disk
rotation speed. Triangles and squares represent dynamically
dissimilar branches.
NOVEMBER 2002, Vol. 69 Õ 865
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dramatic because the amplitude of the traveling wave ne
doubles from about 35% of plate thickness to nearly 80% of p
thickness while its frequency decreases by nearly 20% fr
nearly 33 Hz to 28 Hz. There is a marked increase in tonal aco
tic emission from the enclosure accompanying this secondary
stability.

4. As the speed is increased above point B, the amplitude o
traveling wave continues to increase, while the wave freque
remains nearly constant. This new solution branch is referred t
the locked frequency branch. The points on this branch are ind
cated by solid squares in Fig. 3~a! and~b! while all the other data
points including pre-flutter and along the primary instabil
branch are indicated by solid triangles. At yet greater speeds
amplitude continues to increase while the wave frequency rem
nearly constant.

5. As the speed is decreased from above point B on the loc
frequency branch, the amplitude of the~0,3! BTW decreases while
its frequency remains nearly constant. As the speed is decre
the second secondary instabilityoccurs at point C~disk speed
approximately 56.5 rev/s!. At point C, the amplitude of the flut-
tering ~0,3! BTW decreases suddenly while its frequency
creases suddenly from about 28 Hz to about 30 Hz. The solutio
now on the primary instability branch. As the speed is decrea
further the amplitude and frequency of the fluttering~0,3! BTW
decrease. Below point A, the zero equilibrium of the disk is sta
again.

6. The secondary instability at point B affects all stable trav
ing waves, and not exclusively the fluttering~0,3! BTW. In par-
ticular, while the amplitudes of the stable traveling waves cor
sponding to other nodal diameter modes remain very small, t
frequencies all drop by about 5–15% at point B and remain ne
constant thereafter. Because this effect was also observed in@1# on
exactly the same disk, we omit presenting this data for the sak
brevity.

7. One additional test was performed. The disk speed was
creased in small increments from below point A to above it wh
the solution was allowed to stabilize on the primary instabil
branch. The speed was then adjusted to lie between points B
C while the disk was vibrating on the primary instability branch
rectangular pulse generated from the signal analyzer was fe
the electromagnetic actuator described earlier to perturb the s
tion lying on the primary instability branch. For sufficiently larg
impulse, the response immediately transitioned to the locked
quency branch, demonstrating the coexistence of the primary
stability branch and the locked frequency branch over a sm
range of rotation speeds.

Discussion
The use of smaller speed increments than in@1# allowed the

transitions in the dynamic response of the disk in the post-flu
regime to be clearly resolved. In particular, the results 1 throug
clearly indicate two distinct solution branches exist beyond
onset of traveling wave flutter. Moreover, secondary instabilit
trigger the transitions between the primary instability branch a
the locked frequency branch.

Following the onset of primary stability at point A, the respon
is likely to be dominated by structural geometric nonlinearit
such as those modeled by the Von Karman plate. The trave
wave amplitudes grow approximately proportionally to the squ
root of the speed.

However, as the wave amplitude grows along the primary
stability branch, nonlinear coupling to the surrounding air is like
to be the primary trigger for the secondary instabilities. Followi
866 Õ Vol. 69, NOVEMBER 2002
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the secondary instability, the dynamics of the disk appear to
dominated by fluidic nonlinearities. The nonlinear couplin
mechanism leading to the secondary instability may be fou
amongst the following explanations:

1. The near constancy of BTW frequency along the locked f
quency branch indicates a coupling with another oscillating s
tem whose frequencies are unchanged with disk speed. This a
tional system could be one of the oscillating modes of the acou
cavity of the enclosure, a suggestion supported by the large ac
tic emission along the locked frequency branch. No attempts
alter the cavity were made.

2. Another possible explanation for the near constant freque
on the frequency locked branch could be coupling with an in
pendent vortex shedding frequency near the rim of the disk.
preliminary investigations using a hotwire anemometer to m
sure flow fluctuations just outside the disk rim did not support t
suggestion. However, we cannot rule out the possibility that fl
separation near the rim of the disk at large disk vibration am
tude may be the cause.

3. Another explanation of these results may arise out of
large body of literature concerning the hydrodynamic stability
laminar flows coupled to flexible surfaces. Of particular relevan
to the rotating disk problem are the works of Carpenter et
@12–14#. In these works, the authors investigate the hydrodyna
stability of the three-dimensional Karman swirling flow over rig
disk with a viscoelastic coating. This system features several fl
dominated instabilities leading to time-periodic fluid motions a
one structure dominated instability, namely traveling wave flut
of the disk coating. Thenonlinear interaction of these waves ha
not been studied in the literature. This may yield important inf
mation regarding the post-flutter lock-in phenomenon.
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Discussion: ‘‘Computationally Efficient
Micromechanical Models for
Woven Fabric Composite Elastic
Moduli’’ „Tanov, R., and Tabiei, A.,
2001, ASME J. Appl. Mech., 68,
pp. 533–560…

Z.-M. Huang
Department of Engineering Mechanics, Tongji Universit
1239 Siping Road, Shanghai 200092, P. R. China
e-mail: huangzm@mail.tongji.edu.cn

In their paper, Tanov and Tabiei presented two mic
mechanics-based models to evaluate the elastic moduli of wo
fabric reinforced composites. After going through their numeri
examples shown in the paper, the present reader has a s
feeling that the accuracy and hence the efficiency of their mo
is suspect.

The fabric investigated by Tanov and Tabiei is schematica
shown in Fig. 1, whereaf and aw are the fill and warp yarn
widths, andgf andgw are the inter-yarn gaps between the fill a
warp yarns. After the fabric is impregnated with a polymer matr
the areas in between the inter-yarn gaps have no reinforcem
Namely, they become pure matrix regions in the woven comp
ite. Apparently, these pure matrix regions can significantly red
the overall stiffness and strength of the woven composite.
amount of reduction depends on the gap-yarn ratiosgf /af and
gw /aw . It has been shown by this author~see@1#! that when the
gap-yarn ratiog/a ~supposinggf /af5gw /aw5g/a! is only 4%, a
reduction of as high as 22% in the in-plane elongation modu
can be recognized. The larger the gap-yarn ratio, the lower
in-plane modulus of the resulting woven composite. Therefore
order to achieve as high a mechanical performance as poss
the woven composites have been generally fabricated with
small ~if not zero! inter-yarn gaps as possible.

However, the three examples of woven fabric reinforced ep
~with modulus between 3.45 to 4.51 GPa! matrix composites in-
vestigated by Tanov and Tabiei were all assumed to have
large gap-yarn ratios~using the term of Ref.@2#, the gap-yarn ratio
was given by (12Vy)/Vy , see Fig. 1 and Fig. 2 of Ref.@2#!,
being 85.7%, 284.6%, and 72.4%, respectively. From the in
data of the yarns, epoxy matrices, and the yarn volume fract
provided in Ref.@2#, we can easily estimate the maximum po
sible in-plane moduli for the three woven composites without a
inter-yarn gaps, which are given by those of the correspond
cross-plied laminates@0 deg/90 deg#. The estimation for the prop
erties of the unidirectional~0 deg! lamina is made based on th
bridging micromechanics model~Ref. @3#, with bridging param-
etersb50.35 anda50.45! by assuming that it is fabricated from
the yarn~fiber! and the matrix with the given yarn~fiber! volume
fraction. The classical lamination theory is then applied to obt
Copyright © 2Journal of Applied Mechanics
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the in-plane modulus of the cross-plied laminate. The maxim
possible in-plane moduli for the three woven composites thus
tained are: 18.21 GPa, 11.77 GPa, and 45.1 GPa, respective
light of the fact reported in Ref.@1# that a 50% gap-yarn ratio
would cause nearly 300% reduction in the in-plane modulus o
woven composite, the predicted moduli of the woven compos
with the aforementioned very large gap-yarn ratios, i.e., 17
GPa, 11.86 GPa, and 45.08 GPa from Tanov and Tabiei’s four-
model, or 18.21 GPa, 11.93 GPa, and 45.17 GPa from their sin
cell model, would be hardly possible.
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Fig. 1 Schematic of a plain woven fabric
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Closure to ‘‘Discussion of
‘Computationally Efficient
Micromechanical Models for Woven
Fabric Composite Elastic
Moduli’ ’’ „2002, ASME J. Appl.
Mech., 69, p. 867…

R. Tanov1

A. Tabiei
Associate Professor and Director

Center for Excellence in DYNA3D Analysis, Departmen
of Aerospace Engineering and Engineering Mechanics,
University of Cincinnati, Cincinnati, OH 45221-0070

It is with great embarrassment and humiliation that we wr
these lines. We, the authors of the above paper, do strongly
lieve that truth is born through doubt and dispute. However,
were very disappointed to read the ‘‘Discussion of ‘Computatio
ally Efficient Micromechanical Models for Woven Fabric Com
posite Elastic Moduli by R. Tanov and A. Tabiei~J. Appl. Mech.,
68, pp. 553–560, 2001!’ ’’ by Zheng-Ming Huang. We do not
believe that raising trivial questions in front of a large audience
the readers of this journal would contribute in any way to scie
in general, and computational mechanics in particular. We th
that the normal and less embarrassing for both sides way to
dress such issues is through personal communication, but s
this did not happen we see these lines as our only opportunit
defend our work. As much as we want to say, replying to
above discussion, we will limit our response to only pointing t
answers to the questions therein raised. We apologize for tryin
explain what we think is obvious and trivial and what the rea
might have already deduced if reading the referenced lines.

In his writing Huang is questioning the accuracy and theref
the applicability of our work on composites micromechanics, p

1Presently at IMMI, Westfield, IN.
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lished in this journal. Needless to say, in developing this work
ourselves have gone through a long and rigorous process of q
tioning, testing, and comparing, to get enough confidence in
presented approaches and their assumptions and formulation
illustrate that, we have compared our results to previously p
lished data from theoretical, finite element, and experimental s
ies. However, the author of the above discussion felt that the
presented in our work is ‘‘hardly possible’’ based on his notio
for woven composites. He has tried to illustrate his point by fi
using a micromechanics-based homogenization scheme to d
mine the values of the moduli presented by us. The values he
come up with, come within a reasonable proximity to our resu
However, after determining these values, he further referenc
woven composite ‘‘parameter,’’ which he calls ‘‘gap-yarn ratio
and based on which he claims that the above calculated mo
should additionally undergo a ‘‘nearly 300% reduction.’’ If th
reader is to read Ref.@1# of his discussion he would immediatel
recognize that what is referenced there as ‘‘gap-yarn ratio’’ is j
a different way of expressing the composite yarn volume fracti
the ratio of the volume of the yarns to the volume of the ent
composite layer. By homogenizing the composite constitu
yarns and matrix in his initial calculations Huang has alrea
taken into consideration this ratio. In this process he, as m
micromechanical approaches including ours do, has arrived
fictitious continuous and homogeneous composite layer. The c
tinuity and homogeneity of this layer would, of course, imply n
gaps within it, whatsoever. However, Huang has failed to rec
nize that by claiming that due to gaps in the initial yarn period
arrangement the properties should further be significantly redu
At this point of the analysis, after the homogenization is comple
there is no yarn, no matrix, no gaps, but only one continuous
homogeneous layer, which, to repeat yet again, excludes the p
ence of any gaps. These gaps, used as basis for Huang’s susp
our work, make his claims incorrect and ungrounded. Anot
proof of which is that he failed to determine any definite value
the parameters he states as inaccurate apart from that ‘‘ne
300% reduction,’’ which even from a strictly arithmetical point o
view makes no sense whatsoever.

We would hereby like to thank the Editor of theJournal of
Applied Mechanicsfor the provided opportunity to defend ou
work. And finally, we would like to again express our confiden
in the methods in subject that we have previously developed
published.
2002 by ASME Transactions of the ASME
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